

May - June 2020

ISSN: 0193-4120 Page No. 10803 - 10810

10803

 Published by: The Mattingley Publishing Co., Inc.

A Study on Personalized Privacy Preservation

Framework based Ontology Document

Hye-Kyeong Ko1

1Department of Computer Engineering, Sungkyul University, Anyang, Republic of Korea

ellefgt@sungkyul.ac.kr (Corresponding Author)

Article Info

Volume 83

Page Number: 10803 - 10810

Publication Issue:

May- June 2020

Article History

Article Received: 19 November 2019

Revised: 27 January 2020

Accepted: 24 February 2020

Publication: 19 May 2020

Abstract

This paper considers data-publishing, where the publisher needs to specify sensitive

information that should be protected. If a document that contains such information is

published carelessly, users could infer unauthorized information by exploiting common

sense inference. In this paper, we propose a framework that uses encryption for preventing

sensitive information from being exposed to unauthorized users. In this framework, sensitive

data contained in ontology documents are encrypted separately, and then all encrypted data

are moved from their original document to the protected information set and bundled with

and encrypted structure index. Our experiments show that the propose framework prevents

information leakage via data inference. Moreover, the experiment results show that our

method demonstrates better query processing performance than the existing method.

Keywords; data-publishing, privacy preservation, ontology document, unauthorized

information

I.INTRODUCTION

The amount of data available in digital form is ever-

increasing, and almost invariably, the data are now

near networks [1], [2]. Recent research on

integration systems and peer-to-peer databases has

created new ways for diverse groups to share and

process data [3-5]. However, in most practical cases,

complex constraints of trust and confidentiality exist

between these cooperating and competing groups.

As a result, in many cases data can be disseminated

only when there are no security or confidentiality

issues for any potential recipients [6]. OWL

(Ontology Web Language) is a semantic web

generation language for publishing and sharing

ontologies that provide advanced web search,

software agents and knowledge management

functions on the web [7]. OWL defines propositions

accumulated in the inference system as a language

defining the web ontology and its related

knowledge, and consists of set of classes and

properties that can describe the relationship between

a class and its members and enable logical inference

on facts not defined syntactically [7], [8].Ontology

document publishing with security requirements

encounters many challenges because users can infer

data using such common sense inference. The

information leakage to the user of the type of

information where a higher security-level authority

exists. Therefore, information leakage could allow

users to guess their own decryption capabilities

compared with those of other users. Both an

adversary and general user could obtain a sense of

their privileges and those of other users. If the data

owner publishes data insecurely, users could infer

unauthorized information from the published

document by common sense inference (e.g., “all

patients in the same ward have the same disease”).

Motivation example. A hospital has ontology

documents on its patients, physicians, and

departments. Figure 1 illustrates part of an ontology

document represented as a tree. A patient has private

information such as name, disease, and ward. A

physician has information such as name (represented

as the pname element) and treat, and a patient is

identified by the name information.

May - June 2020

ISSN: 0193-4120 Page No. 10803 - 10810

10804

 Published by: The Mattingley Publishing Co., Inc.

In thisexample, Tom is treating patient Jane, who

has leukaemia and lives in ward R201. The hospital

provides documents similar to the form shown in

Figure 1. Some data are sensitive and should not be

inferred by unauthorized users. In particular, the

hospital does not want departments to know the

disease of patient Jane, in this example, leukaemia,

for her privacy. A naïve approach would hide a

shaded leukaemia node to solve this problem.

However, if it is well known that patients in the

same ward have the same disease, department users

could infer that Jane has leukaemia from the

information about patient Cara, who also lives in

ward R201. Simply hiding the shaded leukaemia

node cannot protect all sensitive information

because of common sense inference. We can solve

the information leakage problem in the following

ways: the first is by hiding the leukaemia (1) node of

the Jane element so that users cannot infer the

disease information. The second is by hiding

R201(1) for Jane and R201(2) for Cara so that users

cannot use the ward information. The third is by

hiding the disease nodes of both Jane and Cara. In

addition, users could infer Jane’s disease by the

related information.

For example, users could guess the patient

information in terms of the related branch

physician(1)/pname(1)/Tom and

physician(1)/treat(1)/Jane in Figure 1. Ontology

document publishing with security requirements

encounters many challenges because users can infer

data using such common sense inference. If we

remove sensitive nodes, such as Jane, leukaemia (1),

and R201(1) that are related to the

physician(1)/treat(1)/Jane branch, some related

information from the sensitive nodes could still

remain. For example, even after removing those

sensitive nodes, the elements disease(1), ward(1),

disease(2), ward(2), treat(1), and treat(2) still exist.

A user could be aware of the existence of that part in

the document that he/she is not allowed to access;

this is information leakage to the user of the type of

information where a higher security-level authority

exists. Therefore, information leakage could allow

users to guess their own decryption capabilities

compared with those of other users. Both an

adversary and general user could obtain a sense of

their privileges and those of other users.

In this paper, we propose a framework for protecting

sensitive information in published ontology

documents from unauthorized users. In the

framework, the data owner publishes an ontology

document that is partially encrypted according to

access rights. Each sensitive node is encrypted

separately and all encrypted information is removed

from its original document to the protected

information set and bundled with the encrypted

structure index that informs us of the structure

information of the original document. The remainder

of this paper is organized as follows. Section 2

surveys related work. Section 3 presents the

proposed framework for secure data publishing and

proves that our framework does not allow

information leakage. Section 4 presents our

experiment results, and Section 5 concludes the

paper.

 Fig 1. Original ontology document with sensitive information

May - June 2020

ISSN: 0193-4120 Page No. 10803 - 10810

10805

 Published by: The Mattingley Publishing Co., Inc.

II. RELATED WORKS

Fig 2. Figure2. Different architecture of database

security based on trust domains [4]

Database security has been studied extensively in

the past [8-10]. Recently, works have proposed

methods for data publishing [6], [10], and [11].

Miklau and Suciu [6] showed a good approach for

classifying different architectures for related studies

based on trust domains. Figure 2 shows the four

different database security architectures they

identified. Architecture A has a single trust domain.

Thus there are no security issues. Architecture B

shows the client-server access control model. In

architecture B, the server owns the data and controls

the query execution. However, the server does not

trust the client that submits queries [12-15]. Client-

server applications and many web-based

applications use this architecture. Much of the work

in this architecture has focused on how to process

user queries without disclosing protected data [9],

[16], and [17]. In architecture C, the client owns the

data and also issues queries. However, the client

does not trust the server. In this case, the client

would pay a trusted party to store data and execute

queries Architecture D is for data publishing. In the

data publishing architecture, once the data owner

has published data such data can be downloaded,

copied, disseminated, and redistributed. Both query

generation and query processing are performed in

the trust domains that are different from the domains

for data [6]. Several security models have been

proposed for data security [18], [19]. There are two

traditional approaches for controlling access to data.

The first maintains data on a secure server that

authenticates users and enforces access policies,

without publishing data [18]. The other publishes

multiple views of data, one for each user [19].

However, these approaches have several limitations.

First, the number of views can become very large.

Second, users cannot further publish the data that

they downloaded from the owner. Miklau and

Suciu’s work [6] contains an encryption-based

approach to access control on publishing ontology

documents. This method is essentially identical to

publishing, with the exception of the specification

for access control policies. In order to specify such

access control policies, this method uses an

extension of XQuery [20] to define sensitive data in

a publishing document.

III.PROPOSED FRAMEWORK FOR

PERSONALIZED PRIVACY

PRESERVATION

Data publishing, once the data owner has published

data, he/she loses control over the data [6]. Different

users might have different viewing rights for

different parts of the same document. The main

problem with data publishing is that a user might

infer the unauthorized sensitive information.

Therefore, we propose a framework for secure data

publishing of ontology documents that users

encryption techniques. The key idea is to use

different secret keys for encrypting different parts of

an ontology document-based on the specified access

control policies. The framework components are

shown in Figure 3, where a partially encrypted

ontology document is published on the Internet.

Once data are published, the data owner does not

have control over who downloads and processes the

data, and thus published data should be properly

encrypted to enforce access control policies. In the

proposed framework, each user is required to

register during the registration phase.

The data owner starts by annotating the ontology

document according to the access rights of the users.

In this registration phase, the authorization record

returns specific information, called keys, to the user,

such keys, are necessary to decrypt the relevant parts

of the ontology source according to the user’s access

rights. Authorized users can access the data,

depending on the keys they possess. In our

framework, users do not need to decrypt the entire

document; they can selectively access those parts of

the published document that are predetermined by

May - June 2020

ISSN: 0193-4120 Page No. 10803 - 10810

10806

 Published by: The Mattingley Publishing Co., Inc.

the policy evaluator shown in Figure 3. In following

paragraphs, we introduce the basic components of

the policy evaluator.

Authorization Record

This is the access information recorded for

authorizing transactions. The right of the users to

access sensitive nodes is represented by XPath [21].

For example, some rights related to physician can be

represented by //patient/name, //patient/ward.

Fig 3. Example of proposed framework for

personalized privacy preservation

Our framework also focuses on browsing privileges,

that is, privileges for viewing information. Three

different browsing privileges are supported: view,

navigate, and browse-all. The view privilege allows

a user to read all public documents. In contrast, the

navigate privilege allows a user to view authorized

document [22]. The browse-all privilege subsumes

navigate and view privileges.

Key assignment

In our framework, each node is encrypted with a

unique node key by the encrypted procedure shown

in Figure 2. In order to send node keys to users, the

node keys are grouped into sets of node keys.

Different views of the document can be defined by

choosing the appropriate sets of node keys.

3.1 Protected Information Set

In our framework, the system encrypts the sensitive

parts of an ontology document. Encrypting such

sensitive parts means that the selected parts of the

original document structure are hidden from

unauthorized users. The key idea of our framework

is to prune sensitive nodes from the original

document tree encrypt each sensitive node

individually. Sensitive nodes are selected according

to the authorization records, and moved to the

protected information set. Then, the sensitive nodes

are encrypted separately by the use of keys. These

encrypted nodes are stored in the protected

information set that consists of the encrypted nodes

and encrypted structure index. After, decryption

each sensitive node returns to its correct position in

the original document using the encryption structure

index.

The protected informationset (sensitive nodes) and

public nodes are published to multiple users. Those

nodes that are not secure are called “public nodes.”

Figure 4 presents the example of an ontology

document with sensitive nodes. The white and black

circles denote the public and sensitive nodes,

respectively. The sensitive nodes are only accessible

to those users who won the matching keys. The

system first selects the sensitive nodes according to

the authorization record. Then, it labels the original

ontology document. The labelling step has two

cases: one labels the public nodes and the other the

sensitive nodes. After labelling, all the sensitive

nodes are pruned from the original document. Figure

4 shows an example of pruning the sensitive nodes

(ward(1), disease(1), and so on). After pruning, the

document includes only the public nodes. In the

encryption step, each sensitive node is

symmetrically encrypted under its node key, and the

encrypted structure index is also encrypted. In our

framework, the document is partitioned into public

and sensitive nodes in order to support secure data

publishing. The principal problem with query

processing is to effectively find the positions of

decrypted sensitive nodes. After encryption, all

sensitive nodes are pruned from the original

ontology document, and therefore the positions of

these nodes in the document must be remembered. A

secure and efficient labelling scheme is required for

protecting the structure information of the sensitive

nodes and for representing their positions. In this

paper, we extend IBSL [23], to protected IBSL,

which takes advantage of lexicographical order of

binary strings. When sensitive nodes are pruned

from the original document, an unauthorized user

should not be able to infer other structure

information using the labels of public nodes.

Protected IBSL can hide the label values, assigned

to sensitive nodes, and its labelling effectively

separates the public nodes.The protected

information set consists of the encrypted nodes and

encrypted structure index. The pruning step prunes

the sensitive nodes from the document while

keeping the public nodes in the document without

May - June 2020

ISSN: 0193-4120 Page No. 10803 - 10810

10807

 Published by: The Mattingley Publishing Co., Inc.

label information. When it comes to encrypting the

ontology document without label information.

When it comes to encrypting the ontology

document, if the public nodes have labels, an

adversary can guess the positions of the encrypted

nodes through the label information and structure

information of the public nodes. In order to protect

sensitive information and for efficient query

processing, the proposed framework utilizes the

encrypted structure index, which contains the

structure information of the original ontology

document for identifying the positions of the

decrypted sensitive nodes.

3.2Query Processing for Protected Ontology

Document

The query processing algorithm takes a public

document, the protected information set, a query,

and the keys as input and places the decrypted nodes

into the appropriate locations. We can place the

child nodes of a decrypted node using the algorithm

1, which inserts the decrypted node into the pubic

document. This demands for the public document to

not be labelled, and for the structure information of

the decrypt node to be known. Algorithm 1

identifies the parent node within the decrypted

document and already has a child node in the

decrypted node and the parent node,the algorithm 1

determines whether some of the decrypted node’s

siblings that should also be turned into children of

the decrypted node.

Algorithm 1. Query processing

Input: (1) a public document

 (2) the protected information set

 (3) a query

 (4) the keys that the user owns

Output: query results

Begin

01: process the query against the encrypted

structure index

02: decrypt the encrypted nodes and encrypted

structure

 index using the keys

03: find those elements that satisfy the query

against the

decrypted ontology data

04: place the elements in the public document

05: select an element and determine whether the

label of the

 element has some relationships with the labels

stored in

 the encrypted structure index

06: if it has a parent and the parent has a child in

the public

 document, select the first child of the parent

node.

07: compare the label of the element and that of

the first

child

08: append the element as a sibling of the first

child

Figure 4. Example of a protected ontology document

May - June 2020

ISSN: 0193-4120 Page No. 10803 - 10810

10808

 Published by: The Mattingley Publishing Co., Inc.

 depending on the comparison result

09: else if it has a parent, but the parent does not

have a child

10: append the element as a child to the parent

11: repeat the comparison in Lines 5 to 10 until

all the

 elements found in Line 3 are placed

If the parent has no child, the decrypted node is

addeddirectly to the parent node. If the parent has a

child, it should be determined whether some of the

current children of the parent node should bechild of

the decrypted node and where to insert the decrypted

node in the list of child. If doing this, Algorithm 1

iterates over the children of the parent. If Algorithm

1 finds the first child, the decrypted node is inserted

between the first and last child. If Algorithm 1

cannot find the first child, the decrypted node is

added to the parent node.

IV.PERFORMANCE EVALUATION

We conducted experiments to evaluate our scheme

and compare its performance with that of Miklau’s

scheme [6]. In the experiments, the data owner

encrypts an ontology document and publishes the

public document and protected ontology document

to the user. Our scheme and Miklau’s scheme were

implemented using Java of the Advanced

Encryption Standard (AES) [24] with 128-bit keys.

The experiments were performed on a 3.20 GHz

Pentium processor with 3GB of RAM that runs

Windows 7. In selecting the nodes to be encrypted,

XPath [21] was used. We conducted the experiments

20 times in order to obtain small confidence

intervals.

Query processing time for protected documents

The number of nodes to be compared was measured

to observe the relationship between nodes and sizes

in the encrypted structureindex. Table 1 presents

XPath expressions used to represent the nodes to be

encrypted.

Table 1. Encrypted nodes

Encrypted

node type

XPath expression

EN1 //Africa/*

EN2 //item/description/parlist[/listitem/text]

EN3 //item//parlist[.//mailbox]//text

EN4 //parlist/list/item/text

EN5 //*/text

Fig.5. Query Processing time

In the experiment, we measured the decryption time

of the encrypted nodes according to the queries. The

encrypted node type listed in Table 1 is utilized as

the queries. In order to compare the query

processing time of the proposed scheme with that of

Miklau’s scheme [6], the number of encrypted nodes

was observed when searching for a position in the

ontology document, and the query processing time

was measured. The results presented in Figure 5

indicate that the proposed scheme outperforms

Miklau’s scheme with respect to all the queries of

1.1 MB document. The number of nodes to be

compared is shown in Figure 5. The results

demonstrate that the number of nodes to be

encrypted is related to the number of compared

nodes, whereas identifying the position and query

processing time is affected. According to the queries

expressed by the XPath expression, the number of

encrypted nodes and that of the nodes to be

compared are different.

In the proposed scheme, labels are not compared to

other nodes. This is because the proposed scheme

labels the child nodes by extending the parent’s

label to represent the structural information of the

ontology document. The results show that our

scheme considerably outperforms Miklau’s scheme

on all the queries for the document.

With regard to the time required to replace node’s

position in the protected information set be

decrypted in the public document. This is because

protected IBSL can identify the relationship among

nodes. In order to facilitate the determination of the

relationship among nodes, in our scheme, the node

May - June 2020

ISSN: 0193-4120 Page No. 10803 - 10810

10809

 Published by: The Mattingley Publishing Co., Inc.

in a document are labelled such that the relationship

between any two nodes can be established quickly.

Hence, protected IBSL is crucial for efficient access

control and fast query processing.

Fig.6. Comparison of number of nodes removed

to prevent information leakage

Removing nodes to prevent information leakage

In this experiment, we measured how many nodes

were removed to prevent information leakage.

Figure 6 shows the result of removing nodes to

prevent information leakage for 1.1 MB document.

For the child/descendant constraints, when we traced

their inference process, we had to choose a parent or

ancestor to remove, and this could remove many

child/descendant nodes. In Figure 6, the number of

removed nodes increases with an increase in the

number of sensitive nodes. When comparing the

number of nodes removed with our scheme with

those removed with Miklau’s scheme, we can see

that when the number of sensitive nodes increases,

our scheme removes only 1/2 to 1/3 of the nodes

compared with Miklau’s scheme.

IV.CONCLUSIONS

Data owners publish data insecurely, and users can

infer unauthorized information from the published

document by common sense. Previous works in data

publishing have considered the specification of

access control policies and efficient query

processing against encrypted document. In this

paper, we proposed a novel framework that protects

sensitive published information by encryption

technique. The framework employs a protected

information set and encrypted structure index to

publish ontology documents without information

leakage via common sense inference. In this

framework, each unit of sensitive information is

encrypted separately, and all encrypted information

is moved from the original document to the

protected information set and bundled with the

encrypted structure index. For secure data

publishing, the encrypted structure index

summarizes the structure information of the original

document. The encrypted elements to be contained

in the query results are restored using the encrypted

structure index. The query processing time of our

scheme is 3~4times more efficient than Miklau’s

scheme. Our future work will focus on group key

management for managing secure multi-level access

control.

REFERENCES

[1] K. Lee, M. Kang, Y. Jung. (2018).

Development of voice guide service for

pharmaceutical information based on

ontology, 7(4), 66-74.

[2] J. Choi, M. Koo. (2017). A study on the

offering of the latest film information using

XML parser. The Journal of Convergence on

Culture Technology, 3(1), 19-23.

[3] Z. G. Ives, A. Y. Lyer, J. Madhavan, R.

Pottinger, S. Saroiu, I. Tatarinov, S. Betzler,

Q. Chen, E. Jaslikowska, J. Su, W. Yeung.

(2003). Self-organizing data sharing

communities with SAGRES, In SIGMOD

Proceedings of the 2003 ACM SIGMOD

International Conference on Management of

Data (p.582).

[4] W. S. Ng, B. C. Ooi, K. L. Tan, A. Zhou.

(2003). Peerdb: A p2p-based system for

distributed data sharing. In Proceedings of

the 19th International Conference on Data

Engineering (pp. 575-586).

[5] M. Stonebraker, P. M. Aoki, W. Litwin.

(1996). A wide-area distributed database

system. VLDB Journal, 5(1), 48-63.

May - June 2020

ISSN: 0193-4120 Page No. 10803 - 10810

10810

 Published by: The Mattingley Publishing Co., Inc.

[6] G. Miklau, D. Sucu (2003). Controlling

access to published data using cryptography.

In Proceedings of the 29th International

Conference on Very Large Data Bases (pp.

898-909).

[7] A. Algergawy, E. Schallehan, and G. Saake

(2008). A sequence-based ontology matching

approach. In proceedings of 18thEuropean

Conference on Airificial Intelligence

Workshops (pp. 26-30).

[8] Noy, N. F. (2004). Semantic integration: A

survey of ontology-based approaches.

SIGMOD Record, 33(4), 65-70.

[9] A. Brodskyand, C. Farkas, S. Jajodia. (2000).

Secure databases: constraints, inference

channels, and monitoring disclosures. IEEE

Transaction on Knowledge and Data

Engineering, 12(6), 900-919.

[10] S. Castano, M. G Fugini, G. Martella, P.

Samarati. (1995). Database Security.

Addison-Wesley & ACM Press.

[11] E. Bertino, S. Castano, E. Ferrari, M. Mesiti.

(1999). In Proceedings of the 2nd

International Workshop on Web Information

and Data Management (pp. 22-27).

[12] J. G. Lee, H. Y. Whang. (2006). Secure

query processing against encrypted XML

data using query-aware decryption.

Information Sciences, 176(13), 1928-1947.

[13] J. Kim. (2017). Study on semantic web for

multidimensional data. The Journal of the

Institute of Internet, Broadcasting and

Communication, 17(3), 121-127.

[14] Y. Choi (2018). Design and implementation

of video file structure analysis tool for

detecting manipulated video contents.

International Journal of Internet,

Broadcasting and Communication, 10(3),

128-135.

[15] W. Kang. (2018). An extended access

control with uncertain context. International

Journal of Advanced Smart convergence,

7(4), 66-74.

[16] X. Yang, C. Li. (2004). Secure XML

publishing without information leakage in

the presence of data inference. In

Proceedings of the 30th International

Conference on Very Large Data Bases (pp.

96-107).

[17] S. Dawson, S. D. C. D. Vimercati, P.

Lincoln. P. Samarati. (1999). In Proceedings

of the 18th ACM SIGMOD-SIGACT-

SIGART Symposium on Principles of

Database Systems (pp. 114-125).

[18] E. Damiani, S. D. c. D. Vimercati, s.

Paraboschi, P. Samarati. (2001). A fine-

grained access control system for XML

documents. ACM Transaction on

Information and System Security, 5(2), 169-

202.

[19] T. Yu, D. Srivastava, L. V. S. Lakshmanan,

H. V. Jagadish. (2002). In Proceedings of the

28th International Conference on Very Large

Data Bases (pp. 478-489).

[20] S. Boag, D. Chamberlin, M. F. Fernandez, D.

Florescu, J. R. J. Simeon. (2007). XQuery

1.0. http://www.w3.org/TR/2007/REC-

xquery-20070123.

[21] J. Clark, S. DeRose. (1999). XML path

language (XPath).

http://www.w3.org/TR/1999/REC-xpath-

19991116.

[22] H. Ko, S. Lee. (2007). On the efficiency of

secure XML broadcasting. Information

Sciences, 177(24), 5505-5521.

[23] H. Ko, S. Lee. (2010). A binary string

approach for updates in dynamic ordered

XML data. IEEE Transactions on

Knowledge and Data Engineering, 22(4),

602-607.

[24] J. Daemen, V. Rijmen, The block cipher

Rijndael. (1998). In Proceedings of the

International Conference on Smart Card

Research and Applications (pp. 277-284).

