
 

May - June 2020 

ISSN: 0193-4120 Page No. 10795 - 10802 

 

 

10795 

 Published by: The Mattingley Publishing Co., Inc. 

A Study on the Prediction of KOSDAQ Index by 

Comparing Time Series Analysis Models 
 

Chang-Ho An1 

 
1Department of Financial Information Engineering, Seokyeong Univ., SEOUL, Republic of Korea  

choan@skuniv.ac.kr1 

 
Article Info 

Volume 83 

Page Number: 10795 - 10802 

Publication Issue: 

May- June 2020 

 

 

 

 

 

 

 

 

 

 

 

 

 

Article History 

Article Received: 19 November 2019 

Revised: 27 January 2020 

Accepted: 24 February 2020 

Publication: 19 May 2020 

Abstract  

The purpose of this study is to suggest a KOSDAQ index prediction model by estimating 

and comparing the transfer function model and the multiplicative seasonal ARIMA model, 

which arethe time-series models. Major findings are summarized as follows.The result of 

data transformation showed stationarityafter the ADF test.Analysis of sample cross-

correlation function (SCCF) in estimating the transfer function model showed that linear 

dependency relationship exists. As the result of analyzing the goodness of fit of the transfer 

function model using the impact response weights and the noise time series model, the white 

noise process was observed in the residual time series, and between the residual time series 

and the producer price index (PPI).In the multiplicative seasonal ARIMA model estimation, 

only 5 of the 9 candidate models followed the white noise process. As the result of selecting 

the model by comparing the values of AIC statistics and SBC statistics among five models 

and analyzing the goodness of fit, the residual time series follow the white noise process.The 

comparison of AIC statistics and SBC statistics of fitted models of the two models showed 

that the goodness of model fit of the multiplicative seasonal ARIMA prediction model was 

better with AIC=345.5553 and SBC=351.3057.Therefore, the KOSDAQ index prediction 

value and the predicted interval with 95%` confidence level of the multiplicative seasonal 

ARIMA prediction modelwere presented by inverting the square root transformed value to 

the original value, and as the result, the KOSDAQ index was expected to rise sharply in 

April and May 2020 compared to 2019. 

 

Keywords; Transfer function model,Multiplicative seasonal ARIMA model, ADF test, 

Sample correlation function, Impact response weight. 

 

I.INTRODUCTION 

The downward trend in the global economy, which 

began after the second half of last year, is 

accelerating in 2020, and is expected to continue 

next year. Variables that will affect economic flows 

in the future include the US-China trade dispute, the 

Korea-Japan conflict, and the low interest rate 

monetary policy of central banks major countries. 

The US-China trade disputes, which began in 2018, 

have raised expectations for progress in negotiations 

in 2019, but seem difficult to resolve in the short 

term because core issues such as intellectual 

property rights have not been settled yet. As the 

domestic economy is unlikely to pick up quickly, 

downward pressure will continue. In addition, the 

conflict between Korea and Japan, which was 

triggered by Japan's tightening of export regulations, 

continues, and, if the tension is prolonged, will have 

a negative impact on the domestic economy. 

Meanwhile, the cycle variation value of the 

coincident composite index, which shows the 

domestic economic phases, has fallen below the 

standard since December 2018, and as of 2019, the 

possibility of an apparent economic improvement is 

low. Recently, there are signs of abnormalities in the 

financial markets, such as the short- and long-term 

interest rate reversal in the US and negative interest 

rates in Europe and Japan. Indeed, the central banks 

of major countries have already turned to 

quantitative easing, and this will continue next year. 
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These changes in domestic and foreign conditions 

may act as favorable factors for securing downside 

rigidity in terms of stock price, but it seems to be 

somewhat insufficient to increase the stock price in 

a trend. The volatility of the stock market is 

expected to continue as uncertainties in the domestic 

market, accelerated global economic slowdown, and 

the possibility of downside risks become high. In 

particular, volatility of KOSDAQ market is expected 

to increase as the market activation policy such as 

pension fund investment and venture fund launch 

does not significantly affect the stock market. 

Recently, the KOSDAQ index has plummeted due 

to the biostock shock. The KOSPI index has plunged 

as the KOSDAQ index plummeted due to the recent 

shock of bio stocks. If the stock market continues to 

fall, the domestic economy will inevitably contract 

in the real market, including sluggish employment 

and investment. Stock price data have the 

characteristics of time series data with volatility, so 

there are many time series models for predicting 

stock index. Existing studies of time series models 

using economic and financial time series data with 

volatility are as follows. 

Kanas presented the S&P500 index prediction 

model as an ANN model [1], and Tay and Cao 

proposed a method for introducing financial time 

series data into the SVM model [2]. Jeantheau 

published a study using the ARCH model to predict 

stock prices [3]. Amilonl and Liu et al. predicted 

stock price using the GARCH model based on 

Skewed-GED Distribution in the Chinese stock 

market [4-5], and Veloce compared the forecast 

values of the ARIMA model and the VAR model 

[6]. Roh proposed an integrated model with an 

artificial neural network to estimate volatility of the 

KOSPI 200 stock index [7], and Lee and Chun 

attempted to predict the KOSPI index using the DL-

GARCH model integrating the GARCH model and 

deep learning [8]. And Li et al. predicted the stock 

market using SVR with stock-related social data 

[9].Predicting the stock price is very complicated 

and difficult because the stock index forecast is 

changed by numerous variables that are directly or 

indirectly intertwined with each other. However, it is 

important to study the prediction model using 

various economic indices in order to know the flow 

of large markets.In this study, we used 12-year data 

(2008-2019) of the KOSDAQ index and the 

producer price index provided by the Bank of 

Korea's Economic Statistics System, and estimated a 

model using the transfer function model and the 

multiplicative seasonal ARIMA model. The transfer 

function model introduces the input time series into 

the ARIMA model and attempts to improve the 

predicted value by analyzing the dynamic 

relationship between the input and the output time 

series [10]. The multiplicative seasonal ARIMA 

model is a comprehensive ARIMA model that can 

accommodate seasonal components in an ARIMA 

model that can be adapted to nonstationary time 

series data.  

This study is composed as follows. Chapter 2 

examines the research model and theoretical 

background of the main statistics. Chapter 3 

empirically compares and analyzes the time series 

models, and presents predictions. And in Chapter 4 

conclusions and suggestions based on the analysis 

results are presented. 
 

II. RESEARCH MODEL 

 

A.Transfer Function Model 

The transfer function model is a time series model 

composed of the past values of the output time series 

and the present and past values of the white noise 

plus the present and past values of the input time 

series [11]. In this study, the model using the output 

time series as the KOSDAQ index (Zt = KOSDAQ) 

and the input time series (Xt = PPI) as the producer 

price index is as follows: 

 

Zt = μ + ν(B)Xt + nt 

     = μ +
ωs(B)

δr(B)
BbXt +

θ(B)

ϕ(B)
+ εt 

 

(l) 

Where, 

ν(B) = ∑ νjB
j ∶ transfer function∞

j=−∞ , 

nt =
θ(B)

ϕ(B)
εt: noise process, 

ωs(B) = ω0 − ω1B − ω2B2 − ⋯ − ωsBs, 

δr(B) = 1 − δ1B − δ2B2 − ⋯ − δrBr, 

ϕ(B) = 1 − ϕ1B − ϕ2B2 − ⋯ − ϕpBp, 

θ(B) = 1 − θ1B − θ2B2 − ⋯ − θqBq, 

b ∶ delay parameter, 

εt~i. i. d. (0, σt
2), and Xt and  εtare mutually 

independent. 

 

In the analysis of the transfer function model, the 

sample cross correlation function (SCCF) is 
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ρzx̂(k) =
γzx̂(k)

√γzẑ(0)√γxx̂(0)

 
 

(2) 

where, 

γzx̂(k) =
1

n
∑ (Zt − Z̅)n

t=k+1 (Xt−k − X̅), k ≥ 0, 

and γzx̂(k) =
1

n
∑ (Zt − Z̅)n+k

t=1 (Xt−k − X̅), k < 0. 

 

If the normal time series Zt and Xt do not correlate 

with each other and Xt is a white noise process, 

Var[ρzx̂(k) ≃
1

(n−k)
]. If large sample, Var[ρzx̂(k)] ≃

1

n
 holds [12]. 

2.2 Multiplicative Seasonal ARIMA Model 

In case of nonstationary time series, where both 

trend and seasonal factors exist at the same time, the 

-order non-seasonal time differencing is used to 

remove the trends, and then if there are seasonal 

components, the D-order seasonal time differencing 

is used to convert it into normal time series. In other 

words, when the seasonal cycle is S, Zt(KOSDAQ 

index) follows the multiplicative seasonal 

ARIMA(p,d,q)(P,D.Q)probability process when the 

d-order non-seasonal and D-order seasonal time 

differenced time series Wt = (1 − B)d(1 − Bs)DZt 

follows the stationary probability process. 

 

ϕ(B)Φ(Bs)(1 − B)d(1 − Bs)DZt

= δ + θ(B)Θ(Bs)εt 

(3) 

Where, 

εt~(0, σε
2), 

ϕ(B) = 1 − ϕ1B − ϕ2B2 − ⋯ − ϕpBp, 

θ(B) = 1 − θ1B − θ2B2 − ⋯ − θqBq, 

Φ(Bs) = 1 − Φ1Bs − Φ2B2s − ⋯ − ΦpBps , 

Θ(Bs) = 1 − Θ1Bs − Θ2B2s − ⋯ − ΘqBqs. 

2.3 Model Selection Criteria 

The choice of models is not just based on a 

statistical criterion, but to build a model that can be 

realistically explained. Thus, new criteria are needed 

for deciding which model to choose among many. 

There are several criteria for selecting the most 

suitable model for time series among several 

models. The selection criteria statistics of the model 

used in this study are Akaike's Information Criterion 

(AIC) and Schwarz Bayesian Criterion (SBC) 

statistics [13] [14]. 

 

AIC = −2 ln(L) + 2m 

SBC = −2 ln(L) + m ln (n) 

(4) 

Where,m is the number of parameters in the model 

and n is the number of time series data. 

The method is to select the model with minimum 

AIC and SBC values as the value L of the likelihood 

function calculated from the maximum likelihood 

estimator of the parameter increases, that is, the 

smaller the value −2 ln (L), the higher the model fit. 

2.4 Augmented Dickey-Fuller Test (ADF test) 

The Augmented Dickey-Fuller test (ADF test), 

which performs the unit root test based on that the 

time series Zt(KOSDAQ index) follows the AR(p) 

probability process, is as follows [15]. 

 

Zt = ct + ϕZt−1 + ∑ ϕi∇

p−1

i=1

Zt−i + εt 

 

(5) 

Where,∇= 1 − B. (Equation 5) can be expressed as 

follows using the differential time series. 

 

∇Zt = ct + ϕ0Zt−1 + ∑ ϕi∇

p−1

i=1

Zt−i + εt 

 

(6) 

where, if ϕ0 = ϕ − 1, the test for hypothesis 

H0: ϕ = 1 is the same as the test for H0: ϕ = 0. 

 

III. RESULTS  

Time series models used in this study are the 

transfer function model and the multiplicative 

seasonal ARIMA model. Using these two models, 

we estimated the model and diagnosed the goodness 

of fit. Based on the results, we presented a 

KOSDAQ index prediction model. 

A. Data Conversion and Stationary Time Series 

Test 

The time series of the KOSDAQ index data showed 

a stochastic trend as shown in [Figure 1]. Thus, the 

first-order time difference was used to eliminate the 

trend, and the logarithmic and square root 

transformations were taken to stabilize the variance 

since the variance was not constant, As the result, 

the variation in the time series plot for the square 

root transformation was relatively more stable. 

Moreover, it was converted to stationary time series 

when the seasonal time differencing was also 

performed as autocorrelation was shown at time lag 

12 in the sample autocorrelation function (SACF) 

and at time lags 1 and 12 in the sample partial 
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autocorrelation function (SPACF) after the first 

differencing (∇√KOSDAQ). 

 
Fig 1. Trend of KOSDAQ Index 

 

Autocorrelations was found at time lag 6 in the first 

and seasonal differences of the KOSDAQ index, 

namely the sample partial autocorrelation function 

(SPACF) and the sample inverse autocorrelation 

function (SIACF) of ∇12∇√KOSDAQ, and at time 

lag 1 in the first and the seasonal differences of the 

producer price index, namely the sample partial 

autocorrelation function (SPACF) and sample 

inverse autocorrelation function (SIACF) of 

∇12∇√PPI. Therefore, the Augmented Dickey-Fuller 

(ADF) test of ∇12∇√KOSDAQ and  ∇12∇√PPIand 

the seasonal unit root test of ∇12∇√KOSDAQ 

showed that the p-value of the Tau statistic was 

smaller than the significance level α = 0.05, and it 

was determined to be a stationary time series that no 

longer requires time differencing. The test results 

are shown in (Table 1). 

 

Table 1. ADF Unit Root Test and Seasonal Unit 

Root Test 

 

Augmented Dickey-Fuller Unit Root Tests 

TYPE Lag Tau Pr< Tau 

Zero Mean 6 -4.06 <.0001 

Single 

Mean 

6 -4.05 0.0017 

Trend 6 -4.06 0.0093 

Zero Mean 1 -5.80 <.0001 

Single 

Mean 

1 -5.79 <.0001 

Trend 1 -5.78 <.0001 

Seasonal Augmented Dickey-Fuller Unit Root Tests 

Zero Mean 6 -19.70 <.0001 

Single 

Mean 

6 -19.57 <.0001 

 

In addition, it was confirmed by the graphical 

method in the transfer function model that the time 

series data of the KOSDAQ index were the 

stationary time series as shown in (Figure 2), and in 

the multiplicative seasonal ARIMA model as shown 

in the red line of (Figure 2). 

 

 
Fig .2. Stationary Time Series of KOSDAQ Index 

Predictive Model Estimation 

 

In order to determine whether the constant term is 

included in the model prior to model estimation, T-

test for the mean 0 of ∇12∇√KOSDAQ and 

∇12∇√PPI were performed and the results showed 

that the p-values of the t-statistics were 0.8146 and 

0.7633 respectively, which were greater than the 

significance level α = 0.05. Thus the constant terms 

were not included in the estimated transfer function 

prediction model and the estimated multiplicative 

seasonal ARIMA prediction model. 

The results of estimating the transfer function 

prediction model are as follows. 

In the results of autocorrelation analysis of the 

stationary input time series ∇12∇√PPI by data 

transformation, the non-seasonal model was 

modeled as MA(2) by the sample autocorrelation 

function (SACF), and as AR(1)by the sample partial 

autocorrelation function (SPACF) and the sample 

inverse autocorrelation function (SIACF). For the 

seasonal model, MA(1)12by the sample 

autocorrelation function (SACF), and AR(1)12 by 
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the sample partial autocorrelation function (SPACF) 

and the sample inverse autocorrelation function 

(SIACF). And ARIMA(1,1,1)(1,1,1)12 model was 

selected considering above. The estimation of the 

pre-whitening parameter of ∇12∇√KOSDAQ by the 

selected model is shown in (Equation 7). 

 

(1 − 0.47733 B)(1 − 0.06367 B12)

(1 + 0.29307 B)(1 − 0.86561 B12)
 

(7) 

The linear dependency was confirmed by estimating 

the sample cross-correlation function (SCCF) 

between ∇12∇√KOSDAQ and ∇12∇√PPI using 

Equation (7). The tentative transfer function model 

selected by estimating the impact response weights 

and applying b = 0,r = 0,1,2in sequence was given 

as (Equation 8). 

 

∇12∇√KOSDAQ 

 

=
(−7.8619 + 6.21869 B)

(1 − 0.8635 B)
∇12∇√PPI + εt 

 

(8) 

The graph of the estimated impact response weights 

is shown in (Figure 3). 

 
Fig 3. Bar Graph of Impact Response Weight 

 

The autocorrelation analysis results of the tentative 

transfer function model showed that the non-

seasonal model was modeled as MA(1) by sample 

autocorrelation function (SACF), and AR(3) by 

sample partial autocorrelation function (SPACF) and 

sample inverse autocorrelation function (SIACF). 

For the seasonal model, MA(1)12by the sample 

autocorrelation function (SACF), and AR(3)12by the 

sample partial autocorrelation function (SPACF) and 

the sample inverse autocorrelation function 

(SIACF).Therefore, the noise time series model was 

estimated by applying this model.The estimated 

transfer function prediction model of KOSDAQ 

index using the transfer function model and the 

noise time series model is shown in (Equation 9). 

 

∇12∇√RKOSDAQ  

   =
(−4.84 − 0.60B)

(1 + 0.74B)
∇12∇√RPPI 

(9

) 

    +
(1 + 0.04B)(1 − 0.44B12)

(1 + 0.77B + 0.56 B2 + 0.34B3)(1 + 0.37B12)
 

 

Estimation of the multiplicative seasonal ARIMA 

prediction model is as follows. 

The autocorrelation analysis of the stationary time 

series ∇12∇√KOSDAQ showed that the seasonal 

sample autocorrelation function (SACF), sample 

partial autocorrelation function (SPACF) and sample 

inverse autocorrelation function (SIACF) were 

truncated at time lag 12, And non-seasonal models 

were found to have nonzero values at time lags 1, 2 

and the like. This means that the model 

ARIMA(p, 1, q)(P, 1, Q)12 without a constant term is 

a suitable model. Therefore, if we observe the 

principle of parameter saving and scope it as 0 ≤
p, q, P, Q ≤ 1, the nine candidate models are as 

follows. 

 

Table 2. Model Identification of 

𝐀𝐑𝐈𝐌𝐀(𝐩, 𝟏, 𝐪)(𝐏, 𝟏, 𝐐)𝟏𝟐 

From Table 2, the Portmanteau test result of the 

residual time series shows that the models with p −
value > 0.05 at all time lags are 5 models (Table 2 

second column “pass” value), of which the model 

ARIMA(1,1,0)(0,1,1)12 is selected with the smallest 

values of AIC, SBC, and σε
2̂. As the result of 

estimation by the model ARIMA(1,1,0)(0,1,1)12, all 

the parameters were significant as p − value <

ARIMA
(p, 1, q)(P, 1, Q)

12

 
p-

value 

>0.05 

AIC SBC 

(1,1,0)(1,1,0)12 pass 356.3071 362.0575 

(0,1,1)(0,1,1)12 pass 345.6812 351.4316 

(1,1,0)(0,1,1)12 pass 345.5553 351.3057 

(1,1,1)(0,1,1)12 pass 347.0377 355.6633 

(1,1,1)(1,1,0)12 fail   

(1,1, )(1,1,1)12 fail   

(1,1,1)(1,1,1)12 fail   

(0,1,1)(1,1,0)12 pass 356.3737 362.1240 

(1,1,0)(1,1,1)12 fail   
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0.05 = α in the significance test Therefore, the 

estimated multiplicative seasonal ARIMA prediction 

model of KOSDAQ index is shown in (Equation 

10). 

 

(1 − 0.10019 B)(1 − B12)∇12∇√KOSDAQ 

  = (1 − B)(1 − 0.68938 B12) 

(10) 

3.3Goodness of Fit Test 

After fitting the models of (Equation 9) and 

(Equation 10), p-values of t-statistics were 0.1852 

and 0.8822, respectively, greater than the 

significance level for the mean 0 of the residual time 

series, indicating that the means appeared to be 

statistically 0. The autocorrelation analysis of 

(Equation 9) and (Equation 10) showed that the p-

value histograms for the Portmanteau test follow the 

white noise process by being below the 0.05 

boundary of the vertical axis at all time lags. As the 

result of the Portmanteau test for the existence of 

cross-correlation between the residual time series 

and the producer price index in (Equation 9), the p-

values of the χ2-statistics were greater than the 

significance level α = 0.05 at all time lags, and 

thus, white noise process was also observed between 

the residual time series and the producer price index 

as shown in (Table 3). 

 

Table 3. Portmanteau Test Statistics between the 

Residual Time Series and the Producer Price 

Index 

To Lag Chi-Square DF Pr>ChiSq 

5 4.57 3 0.2058 

11 10.88 9 0.2843 

17 13.99 15 0.5266 

23 18.06 21 0.6451 

 

In addition, as the result of the Portmanteau test for 

autocorrelation analysis of the residual time series in 

(Equation 10), the p-values of the χ2-statistics were 

greater than the significance level α = 0.05 at all 

time lags, and thus, it was shown that the residual 

time series also followed white noise process as 

shown in (Table 4). 

 

 

 

 

 

Table 4. Portmanteau Test Statistics of the 

Residual Time Series 

To Lag Chi-Square DF Pr>ChiSq 

6 7.52 4 0.1109 

12 9.60 10 0.4762 

18 16.28 16 0.4339 

24 18.85 22 0.6548 

 

Prediction Model Selection 

Both the transfer function prediction model 

(Equation 9) and the multiplicative seasonal 

ARIMA prediction model (Equation 10) were 

judged to be suitable models. (Table 5) shows the 

comparison between two models using AIC and 

SBC statistics, which are model selection criteria. 

 

Table 5. Prediction Model Comparison 

 

In the comparison of (Table 5), the values of AIC 

and SBC of multiplicative seasonal ARIMA 

prediction model are smaller than those of transfer 

function prediction model. Since this means that the 

multiplicative seasonal ARIMA prediction model is 

better fitted, the multiplicative seasonal ARIMA 

prediction model was chosen as the KOSDAQ index 

prediction model. 

 

B.Prediction 

Applying the selected multiplicative seasonal 

ARIMA prediction model, 1-lag and multi-lag 

predictions of the fitted period and the prediction 

intervals with 95% confidence level are presented in 

(Figure 4). The analysis results are the values 

converted to the square root, so the results are 

inversely transformed to the original values. 

Classification AIC SBC 

Transfer Function 

Prediction Model 

429.8647 454.7243 

Multiplicative Seasonal 

ARIMA Prediction 

Model 

345.5553 351.3057 
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Fig. 4. Prediction by Model 

𝐀𝐑𝐈𝐌𝐀(𝟏, 𝟏, 𝟎)(𝟎, 𝟏, 𝟏)𝟏𝟐without Constant Term 

 

Predictions from January to December 2020 (12 

months) converted into the original value from the 

KOSDAQ index values converted into the square 

root are shown in (Table 6). 

 

Table 6. 12-Month Forecast by 2020 

From the results in Table 6, the KOSDAQ index is 

expected to rise sharply in April and May compared 

to the previous year (2019), and is expected to 

remain at the same level as the previous year from 

June. 

IV.CONCLUSIONS 

This study presents the KOSDAQ index prediction 

model by estimating and comparing the time series 

models, the transfer function model and the 

multiplicative seasonal ARIMA model, using time 

series data (KOSDAQ index and producer price 

index) from January 2008 to December 2019. The 

results are as follows. 

First, as the result of the T-test on the mean 0 of the 

data transformed into stationary time series by the 

data transformation, the p-value of the t-statistic was 

greater than the significance level α = 0.05, so the 

constant term was not included in the model. 

Second, the transfer function model estimated the 

pre-whitening parameters by performing the 

prewhitening process on the producer price index, 

which is the stationary input time series. And 

examination of cross-correlation of the KOSDAQ 

index, which is the stationary output time series, and 

the producer price index, which is the stationary 

input time series, did not violate the causality of the 

model. The estimated impact response weights were 

used to identify and estimate the transfer function 

model and the noise time series model. The result 

showed that the noise time series model followed 

the white noise process. Therefore, after fitting the 

model by integrating the transfer function model and 

the noise time series model, the autocorrelation 

analysis showed that the model is no longer cross-

correlated between the residual time series and the 

producer price index. 

Third, the multiplicative seasonal ARIMA model 

estimation showed that only 5 out of 9 candidate 

models followed the white noise process. Among 

the five models, the model with the AIC statistic and 

the SBC statistic having the smallest values was 

chosen. The autocorrelation analysis of the residual 

time series showed a fitted model following the 

white noise process. 

Fourth, the comparison of two fitted models with 

AIC statistics and SBC statistics showed that the 

multiplicative seasonal ARIMA model is more 

appropriate. 

Fifth, the KOSDAQ index is expected to rise in 

April and May 2020 compared to 2019 as the results 

obtained by inversely transforming the square root 

transformed values to the original values of the 

KOSDAQ index prediction value and the 95% 

confidence level predicted by the multiplicative 

ARIMA model, and is expected to remain at the 

same level as 2019 over time from June. 

The result of this study cannot guarantee accurate 

predictions considering the global economic 

situation and the internal and external situation of 

companies. However, it is expected to be used as an 

important basis to present a direction in developing 

Month January February March 

Predicted 

Value 

706.686 693.302 710.674 

Month April May June 

Predicted 

Value 

721.471 729.744 711.550 

Month July August Septemb

er 

Predicted 

Value 

700.642 703.832 707.083 

Month October Novemb

er 

Decembe

r 

Predicted 

Value 

654.640 676.961 680.481 
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a prediction model in the difficulties and complex 

reality of stock index prediction. 
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