

# Reliability Estimation after Selection from one Parameter Exponential Population

Ajaya Kumar Mahapatra1\*- 1Centre for Applied Mathematics and Computing, Siksha O Anusandhan University, Bhubaneswar-751030, India.

Brijesh Kumar Jha2 - 2Department of Mathematics, Siksha O Anusandhan University, Bhubaneswar-751030, India.

Article Info Volume 83 Page Number: 10298 - 10303 Publication Issue: May - June 2020

Article History Article Received: 19 November 2019 Revised: 27 January 2020 Accepted: 24 February 2020 Publication: 18 May 2020

#### Abstract:

Let  $\Pi 1, \Pi 2, ..., \Pi k$  be k populations, where  $\Pi i$  being exponential with unknown hazard rate  $\lambda i$ , i = 1, ..., k. Suppose independent random samples are drawn from populations  $\Pi 1, \Pi 2, ..., \Pi k$ . Let Xi1,Xi2,...,Xin, i = 1, ..., k. be a random sample of size n drawn from the ithpopulation. Let  $Xi = \sum_{i=1}^{j} (j=1)^n \mathbb{I} X_i$  be the sample mean of ithpopulation. The natural selection rule is to select the population with the highest mean. That is,  $\Pi i$  is selected, if  $Xi = \max(X1, \ldots, Xk)$ . We consider the problem of estimating the Reliability function of the selected population. The Unique Minimum Variance Unbiased Estimator(UMVUE) is derived and some natural estimators are proposed. Finally a numerical comparison of the risks of these estimators is done when the loss function is squared error.

## **1. Introduction**

The problem of estimation of reliability function in exponential population has been extensively studied in the literature. To see a detailed review in this area. one may see Kumar et al.[1], Mahapatra et al.<sup>[2]</sup>. However, the estimation of Reliability function(Survival function) of a selected exponential population has not been addressed so much in the literature. Kumar et al.[1] have studied the estimation of the reliability function after a subset selection for a two parameter exponential population where the failure rate is known. They have derived the uniformly minimum variance unbiased estimator and some natural estimators. These estimators are further improved by solving a differential inequality. To the best of our knowledge probably, that was the only work available in the literature. This present work considers the estimation of the survival function after selection from exponential population. It may be noted that

the model used by Kumar et al.[1] is different to this model. However, the estimation of a parameter from a selected population is quite useful in "Ranking and Selection Methodology". One may be interested to purchase a car having high reliability or low hazard rate. Then, he may also be interested to know the reliability or hazard rate of the car that he has purchased for his personal use. For some useful references in this context, one may see Sackrowitz and Samuel-Cahn [3], Vellaisamy and Sharma[4], [5], Arshad and Misra[6], Arshad et al.[7]. The estimation of a scale parameter in exponential distribution was probably first studied by Samuel-Cahn[3] Sackrowitz and for k=2exponential populations. Independent samples of size 1 were taken from each population. Two selection rules were considered based upon maximum minimum observation. or Later. Vellaisamy and Sharma[4] have considered the estimation of the reverse hazard rate  $\frac{1}{\lambda_i}$  after selection from a general Gamma population. It was assumed that the shape parameters are known positive integers. They derived the UMVUE of the



selected scale parameter. An admissible class of estimators was constructed using Brewster-Zidek [8] technique for k = 2 populations. Misra et al.[9] have extended this work for the case when the shape parameters are known positive real numbers. They have also studied for the case k = 2 populations. This paper is organized as follows: Some preliminary notations and the selection rules are presented in Section 1. The UMVUE of the selected population is derived and some natural estimators are proposed in Section 2 and 2.1. The risks of these estimators are compared through a simulation study in Section 3.

## **2.** Preliminaries

In this section, we derive the estimand from a exponential population when the inverse of the scale parameters are unknown. Let  $\Pi_1, \ldots, \Pi_k$  be k populations, where  $\Pi_i$  has the density

$$f_i(x) = \lambda_i e^{-\lambda_i x}, x > 0, \lambda_i > 0, i = 1, ..., k.$$

Then the survival function  $\theta_i(t)$  at time t >0, of the i<sup>th</sup> population is derived as

$$\theta_i(t) = P(X_{ij} > t) = e^{-\lambda_i t}.$$
 (2.1)

Let independent random samples are drawn from each of the populations  $\Pi_1,...,\Pi_k$ . Let Xi1,...,Xin be a random sample of size n drawn from i<sup>th</sup> population, i =1,...,k . Let Xi =  $\sum_{j=1}^{n} X_{ij}$  then we observe that  $\underline{X} = (X_1, \ldots, X_k)$  is complete and sufficient for  $\underline{\lambda} = (\lambda_1, \ldots, \lambda_k)$ . SupposeX<sub>(1)</sub>  $\geq$ .....  $\geq$  X<sub>(k)</sub>be the order statistics of X<sub>1</sub>,...,X<sub>k</sub>. Note that X<sub>i</sub> has Gamma  $(n, \lambda_i)$  distribution with density

$$\frac{\lambda_i^n}{\Gamma(n)}x^{n-1}e^{-\lambda_i x}, \qquad x>0, \qquad \lambda_i>0.$$

We want to select the population having largest  $X_i$ . The optimality of this decision rule was studied by Gupta and Panchapakesan[10]. We want to estimate  $\theta_i(t)$  after selection from these k populations

selected scale parameter. An admissible class of according to a selection rule. More precisely, we want

to estimate 
$$\theta_M = \sum_{i=1}^k \theta_i I_i$$
, where  $I_i = 1$ , if  $X_i > X_{i}$ 

Х<sub>(1)і</sub>,

$$= 0$$
, otherwise,  $i = 1, 2, 3, ... ... k$ .

and

$$X_{(1)i} = \max\{X_1, ..., X_{i-1}, X_{i+1}, ..., X_k\}.$$

The case of ties is ignored, since the distribution under consideration is continuous.

**2.1.** Derivation of the UMVUE and Some Natural Estimators

In order to derive the UMVUE, we prove the followings:

**Lemma 2.1.**Let X ~ Gamma(n, $\lambda$ ). Define I<sub>B</sub>(x) as the usual indicator function. Then for any a >0,

$$\begin{split} & E[e^{-\lambda t}I_{(a,\infty)}(X)] = E\left[\left(\frac{X-t}{X}\right)^{n-1}I_{(a+t,\infty)}(X)\right].\\ & \textbf{Proof: Note for any } \alpha > 0 \text{ , we have} \\ & E[e^{-\lambda t}I_{(a,\infty)}(X)] = \int_{a}^{\infty} x^{n-1} e^{-\lambda(x+t)} dx \\ & = \int_{a+t}^{\infty} (x-t)^{n-1} e^{-\lambda x} dx \\ & = \int_{a+t}^{\infty} \left(\frac{(x-t)}{x}\right)^{n-1} x^{n-1} e^{-\lambda x} dx \\ & \text{which} \qquad \qquad \text{shows} \\ & E[e^{-\lambda t}I_{(a,\infty)}(X)] = E\left[\left(\frac{X-t}{x}\right)^{n-1}I_{(a+t,\infty)}(X)\right]. \text{ This} \end{split}$$

 $E[e^{-\lambda t}I_{(a,\infty)}(X)] = E[(\frac{-\lambda t}{X})^{n-1}I_{(a+t,\infty)}(X)].$  This proves the lemma.

We can extend Lemma 3.1 to the case of k independent variables  $X_1, X_2, X_3, \dots, X_k$ , where  $X_i$  follows Gamma(n,  $\lambda_i$ ),  $i = 1, 2, 3, \dots, k$ . Then, we prove the following result.

### Lemma 2.2.

$$E\left[\sum_{i=1}^{k} e^{-\lambda_i t} I_i\right] = E\left[\sum_{i=1}^{k} \left(1 - \frac{t}{X_i}\right)^{n-1} I_{\left(X_{(1)i} + t, \infty\right)}(X_i)\right]$$

**Proof:** Applying Lemma 3.1, we can write  $E\left[e^{-\lambda_{i}t} I_{i}\right] = E\left(1 - \frac{t}{X_{i}}\right)^{n-1} I_{\left(X_{(1)i} + t, \infty\right)}(X_{i}),$ which implies



$$E\left[\sum_{i=1}^k e^{-\lambda_i t} \ I_i\right] = E\left[\sum_{i=1}^k \left(1 - \frac{t}{X_i}\right)^{n-1} I_{\left(X_{(1)i} + t, \infty\right)}(X_i)\right]$$

This proves the lemma. Lemma 3.2 immediately yields the following result.

**Theorem 2.1.** The UMVUE of  $\theta$ M is given by

$$\delta_{U} = \left(1 - \frac{t}{X_{(1)}}\right)^{n-1} I_{(X_{(2)} + t, \infty)}(X_{(1)})$$

It may be seen that the UMVUE of the hazard rate  $\lambda_i$  does not exist for this problem (see Vellaisamy and Jain [11]) but it is interesting to see that the UMVUE exists for the reliability function. The form of this estimator is quite different from the UMVUE of reliability function for the component problem(see Zacks and Even[12]). Next we obtain some natural estimators of  $\theta_M$ . It can be easily Likelihood that the Maximum seen Estimators(MLE) of  $\theta_i(t)$  for the component problem is  $e^{-\frac{nt}{X_i}}$  (that is based upon the i<sup>th</sup> sample only). So, we propose a natural estimator, which is the MLE of  $\theta M$ , given  $by \delta_{ML} = e^{-\frac{nt}{X_{(1)}}}$ . Further, it can be seen that the "best scale equivariant estimator" for the component problem is  $e^{-\frac{x_i - 2y_i}{X_i}}$ . So an analogue of the best scale estimator is given by  $\delta_N =$ equivariant (n-2)t  $X_{(1)}$ . We consider the squared error loss e function. It is given by  $L(\theta, \delta) = (\theta - \delta)^2$ , where  $\theta$  is unknown and  $\delta$  is an estimator of  $\theta$ . The form of these two estimators are such that the exact risk (Mean Squared Error) is difficult to derive. So the exact decision theoretic properties are also hard to study. In the next section, the expected losses of these estimators are compared through a numerical approach.

3. Numerical ComparisonIn this section, we have numerically compared the risks of the estimators  $\delta N$ ,  $\delta U$  and  $\delta MLE$  for some choices of  $\lambda 1$ ,  $\lambda 2$  with respect to loss as defined in the previous section. For the computational purpose, t = 1 and k = 2 has been taken. The risks of these estimators are tabulated by taking different values of n as shown in the following tables. The risk values are based on 10,000 samples of sizes n from the exponential populations for given values of  $\lambda_1$  and  $\lambda_2$ . The following points are observed.

- (i) The mean squared errors of these estimators decrease when n increases. This is true for all values of  $\lambda_1$  and  $\lambda_2$ .
- (ii) For large sample size, the risks of the estimators  $\delta_N$  and  $\delta_{MLE}$  are same. Since the estimator  $\delta_U$  is not smooth, the performance of this estimator does not follow the same pattern. However the UMVUE dominates the other two estimators in some regions of the parameter space.
- (iv)Moreover, it seems that the estimator  $\delta_{MLE}$ has a better performance over the other two estimators over a substantial portion of the parameter space.
- (v) From the simulation study, we are unable to establish a hierarchy among these estimators. However, we recommend the MLE as it dominates the other two estimators over a substantial portion of the parameter space. Certainly the UMVUE is not preferred unless one is interested in the class of unbiased estimators.
- (vi) We have calculated the risks of these estimators for various values of n,  $\lambda_1$  and  $\lambda_2$ . However, all the risk values are not incorporated in the table.



| <b>Table 1:</b> n =5 |              |               |               |                 |  |
|----------------------|--------------|---------------|---------------|-----------------|--|
| ↓                    | $\downarrow$ | $R(\delta_N)$ | $R(\delta_U)$ | $(\delta_{ML})$ |  |
| <u> </u>             | 25           | 0.010598      | 0.050013      | 005053          |  |
|                      | 5            | 0.013310      | 0.033608      | 008781          |  |
|                      | 75           | 0.010692      | 0.021662      | 011133          |  |
| 25                   | 0            | 0.010777      | 0.014945      | 012449          |  |
|                      | 5            | 0.009390      | 0.011467      | 013150          |  |
|                      | 0            | 0.009467      | 0.010186      | 013133          |  |
|                      | 25           | 0.013437      | 0.033545      | 009053          |  |
|                      | 5            | 0.029786      | 0.077278      | 012082          |  |
|                      | 75           | 0.034197      | 0.055912      | 015328          |  |
| 5                    | D            | 0.032327      | 0.047723      | 017653          |  |
|                      | 5            | 0.025477      | 0.037423      | 021157          |  |
|                      | 0            | 0.023998      | 0.026255      | 022440          |  |
|                      | 25           | 0.010621      | 0.017370      | 012746          |  |
|                      | 5            | 0.032669      | 0.043255      | 018061          |  |
|                      | 75           | 0.050816      | 0.058729      | 018647          |  |
| 0                    | 0            | 0.059791      | 0.062297      | 018849          |  |
|                      | 5            | 0.059770      | 0.046842      | 019951          |  |
|                      | 0            | 0.052402      | 0.040990      | 020393          |  |
| 5                    | 25           | 0.009385      | 0.012493      | 013187          |  |
|                      | 5            | 0.028200      | 0.034428      | 021704          |  |
|                      | 75           | 0.046188      | 0.046198      | 021367          |  |
|                      | 0            | 0.060271      | 0.047723      | 020282          |  |
|                      | 5            | 0.068961      | 0.041403      | 017941          |  |
|                      | 0            | 0.064721      | 0.034147      | 016712          |  |

### **Table 2:** n =15

| Ļ  | $\downarrow$ | $R(\delta_N)$ | $R(\boldsymbol{\delta}_U)$ | $\delta_{ML}$ ) |  |
|----|--------------|---------------|----------------------------|-----------------|--|
|    | 25           | 0.002053      | 0.035868                   | 001480          |  |
|    | 5            | 0.002480      | 0.002972                   | 003388          |  |
|    | 75           | 0.002245      | 0.002756                   | 003401          |  |
| 25 | þ            | 0.002232      | 0.002746                   | 003381          |  |
|    | 5            | 0.002225      | 0.002743                   | 003369          |  |
|    | D            | 0.002217      | 0.002729                   | 003338          |  |
|    | 25           | 0.002603      | 0.002918                   | 003248          |  |
|    | 5            | 0.005344      | 0.045147                   | 003576          |  |
| 5  | 75           | 0.006623      | 0.028832                   | 005612          |  |
|    | D            | 0.005789      | 0.006654                   | 007305          |  |
|    | 5            | 0.004897      | 0.006548                   | 008217          |  |
|    | þ            | 0.005789      | 0.006657                   | 008205          |  |
|    | 25           | 0.002251      | 0.002762                   | 003406          |  |
|    | 5            | 0.005953      | 0.008660                   | 006974          |  |
| 0  | 75           | 0.006860      | 0.022507                   | 005201          |  |
|    | D            | 0.009120      | 0.038221                   | 005320          |  |
|    | 5            | 0.009515      | 0.017069                   | 007082          |  |
|    | þ            | 0.008294      | 0.011074                   | 008830          |  |
|    | 25           | 0.002251      | 0.002763                   | 003406          |  |
|    | 5            | 0.005402      | 0.006512                   | 007408          |  |



|   | 75 | 0.007837 | 0.008978 | 008548 |
|---|----|----------|----------|--------|
| 5 | þ  | 0.008072 | 0.019080 | 007019 |
|   | 5  | 0.008838 | 0.019210 | 004560 |
|   | D  | 0.008247 | 0.010156 | 004942 |

#### **Table 3:** n = 20

| ↓  | $\downarrow$ | $R(\delta_N)$ | $R(\delta_U)$ | $\delta(\delta_{ML})$ |
|----|--------------|---------------|---------------|-----------------------|
|    | 25           | 0.001838      | 0.021601      | 0.001213              |
|    | 5            | 0.001918      | 0.003208      | 0.002155              |
|    | 75           | 0.001789      | 0.001942      | 0.002192              |
| 25 | 0            | 0.001743      | 0.001654      | 0.002096              |
|    | 5            | 0.001682      | 0.002970      | 0.001961              |
|    | 0            | 0.001549      | 0.002674      | 0.001794              |
|    | 25           | 0.001682      | 0.002970      | 0.001961              |
|    | 5            | 0.004789      | 0.030114      | 0.003038              |
|    | 75           | 0.004335      | 0.020102      | 0.004027              |
| 5  | 0            | 0.004546      | 0.005414      | 0.004807              |
|    | 5            | 0.004340      | 0.004611      | 0.004922              |
|    | 0            | 0.004295      | 0.004372      | 0.004984              |
|    | 25           | 0.001786      | 0.001943      | 0.002197              |
|    | 5            | 0.004095      | 0.005857      | 0.004461              |
|    | 75           | 0.006698      | 0.014778      | 0.004853              |
| D  | 0            | 0.008190      | 0.024909      | 0.004841              |
|    | 5            | 0.006644      | 0.013585      | 0.005505              |
|    | 0            | 0.006698      | 0.007435      | 0.006224              |
|    | 25           | 0.001786      | 0.001943      | 0.002197              |
|    | 5            | 0.004328      | 0.004611      | 0.004929              |
|    | 75           | 0.005673      | 0.006557      | 0.005765              |
| 5  | 0            | 0.007157      | 0.011118      | 0.005451              |
|    | 5            | 0.007957      | 0.014818      | 0.004421              |
|    | 0            | 0.006700      | 0.010669      | 0.004299              |



## 4. Conclusion

The present problem investigates the estimation of survival function of a selected exponential population. Interestingly, we are able to get the UMVUE which has not been discussed in the literature so far.

## References

- S. Kumar, A. K. Mahapatra and P. Vellaisamy, "Reliability estimation of the selected exponential populations", Statistics and Probability Letters, Vol.79, (2009), pp.1372-1377.
- A. K. Mahapatra, S. Kumar and P. Vellaisamy, "Improved Estimators for the Reliability of a Series System", International Journal of Reliability, Quality and Safety Engineering, Vol.20,No.6,(2013),pp.1350021(1)-1350021(23).
- H. Sackrowitz and E. Samuel-Cahn, "Estimation of the mean of a selected negative exponential population", J. Roy. Statist. Soc., Ser B, Vol.46, (1984), pp.242-249.
- P. Vellaisamy and D. Sharma, "Estimation of the mean of the selected gamma population", Comm. Statist. Theory Methods, Vol.17, No.8, (1988), pp.2797-2817.
- P. Vellaisamy and D. Sharma, "A note on the estimation of the mean of the selected gamma population", Comm. Statist. Theory Methods, Vol.18, No.2, (1989), pp.555-560.
- M. Arshad and N. Misra, "On Estimating the scale parameter of the selected uniform population under the entropy loss function", Brazilian Journal of Probability and Statistics, Vol.31, No.2, (2017), pp.303-319.
- M. Arshad, N. Misra and P. Vellaisamy, "Estimation after selection from Gamma populations with unequal known shape parameters", Journal of Statistical Theory and Practice, Vol.9, No.2, (2014), pp.395-418.
- J.F. Brewster and J. V. Zidek, "Improving on equivariantestimators", Ann. Statist., Vol.2, (1974), pp. 21-38.

- 9. N. Misra, S. Kumar, E. C. VanderMeulen and K. Vanden Braden "On estimating the scale parameter of the selected gamma population under the scale invariant squared error loss function", Journal of Computational and Applied Mathematics, Vol.186, (2006), pp.268-282.
- 10. S. S. Gupta and S. Panchapakesan, Multiple Decision Problems:Theory and Methodology of Selecting and Ranking populations, John Wiley,NewYork.
- P. Vellaisamy and S.Jain, "Estimating the parameter of the population selected from discrete exponential family,"Statist. Probab. Lett., Vol.78, (2008), pp.1076-1087.
- S. Zacks and M. Even, "Minimum variance unbiased and maximum likelihood estimators of reliability functions for systems in series and in parallel, J. American Statist. Assoc., Vol.61, (1966b), pp.1052.