
May – June 2020

ISSN: 0193-4120 Page No. 10019- 10032

10019 Published by: The Mattingley Publishing Co., Inc.

Selection and Optimization of Automated Test

data by using State Chart Diagram and Hybrid

Firefly Algorithm

Rajesh Kumar Sahoo1, Taresh Singh2, Priyabrata Sahu3, Bibhuprasad Sahu4
1Department of Computer Science & Engineering, Ajay Binay Institute of Technology, Cuttack,

Odisha, India
2Department of Computer Science & Engineering, Pranveer Singh Institute of Technology, Kanpur,

Uttar Pradesh, India
3Department of Computer Science Engineering & Application, Indira Gandhi Institute of Technology,

Sarang, Biju Pattnaik University of Technology, Odisha
4Department of Computer Science & Engineering, Gandhi Institute For Technology, Bhubaneswar,

Odisha, India

Article Info

Volume 83

Page Number: 10019- 10032

Publication Issue:

May - June 2020

Article History

Article Received: 19 November 2019

Revised: 27 January 2020

Accepted: 24 February 2020

Publication: 18 May 2020

Abstract:

Testing of software is used to generate error or bugs. Generation of test cases is a

key factor in software testing. Manual testing is a time-consuming and costly

process which may generate various errors during software development process.

Automated testing reduces the cost and time for generating the test cases. Test case

generation is to be adequate requirements of the problem. The proposed approach is

used to optimize the test cases obtained from UML state chart diagram using hybrid

Bee Colony Firefly Algorithm (BCFA) which is the combination of a bee colony

and firefly algorithm. In order to generate the test cases, state chart is diagram was

converted into its corresponding intermediate graph form called State Chart

Diagram Graph (SCDG). This hybrid technique is used to generate the automated

optimized test cases through withdrawal operation of an ATM without dependency.

The proposed approach also identifies the operational faults, execution faults and

message faults in the present study.

Keywords: Automated testing, Bee colony algorithm, Firefly algorithm, BCFA

approach, generation and optimization of test cases.

I. INTRODUCTION

Testing plays an important role for developing the

software. By using the selected test cases in

software testing gives the desired result with less

effort. Software testing is one phase of software

development life cycle which detects faults or

errors for designing the quality software. Testing is

done throughout the process of software

development [1].Generation of test cases with test

data having various merits over test case design

through code based testing. Software testing

depends on the models because the test cases

remain same even some changes occurs in the code.

Designing the models is used on the basis of

generation of test cases or test data and also it

reduces the cost [2].

The optimization techniques are used to design the

suitable test case which plays a very crucial role in

software development process. It requires the key

attributes like correctness and quality for generating

the test cases or test data. Automated testing is

applied to increase the reliability and test case

coverage of the software product. Automated test

case design gives the significant reduction in time

and effort by increasing the reliability of software

by increasing the coverage [6].

D.D.Karaboga [3] introduced Bee colony algorithm

in 2005 and by this technique, the honey

May – June 2020

ISSN: 0193-4120 Page No. 10019- 10032

10029 Published by: The Mattingley Publishing Co., Inc.

bees are searching different food source position in

order to replace the solution with a new improved

solution. Dr. Xin She yang developed the firefly

algorithm in the year 2007[14]. There are two

important variables are used in firefly algorithm

which is attractiveness and the intensity of light.

One firefly attracts to other fireflies through brighter

firefly than itself. So the attractiveness depends on

the light intensity. The intensity of light and

attractiveness decrease if the distance between

fireflies increases [8].

The proposed BCFA approach uses the hybrid

technique which is a combination of two techniques

like bee colony and firefly algorithm where the test

cases are optimized and it inspires software

developers to enhance the design quality of

software. This paper represents the model based

technique which is used for automated generation

and optimization of test cases by using bee colony

firefly algorithm (BCFA). Through this approach,

the automatic test cases are generated using state

chart diagram graph (SCDG). This proposed work

emphasizes on the appropriate BCFA hybrid

optimization technique which gives a better result

which is optimal.

The rest of the paper is organized as follows.

Section II discusses basics of automated testing,

overview of bee colony algorithm, firefly algorithm,

and BCFA hybrid algorithm. Section III is for

literature survey, Section IV represents the

proposed systems, and methodology and working

principle of proposed approach. Section V focuses

on the simulation results; Section VI focuses on the

discussion and future scope and Section VII

concludes the paper.

II. BASIC CONCEPTS

1. Overview of automated testing

The automatic test cases or test data takes input

from program code and generates the optimal

cases by applying different meta-heuristic

algorithms [21]. Unified Modeling Language

(UML) described as a standard for modeling the

behavior of a system. It is used to specifying and

modifying the system under development.

Modeling of data is emphasized on requirements of

data needed. The object model is used to explain

the software system through objects. Now UML is

used to design and analyzed the large complex

systems. Existing approaches are available for

automatic generation of test cases but the purposed

approach emphasizes to generate the automated

best test cases or test data in less time. This

proposed paper focuses on the redundancy,

selection and optimization challenges of test cases.

2. Overview of Bee Colony Algorithm

Bee colony is the popular algorithm of swarm

intelligence technique. It is a nature-based

stochastic method which emphasizing on searching

for food behavior of honey bees. Possible set of

solutions represent the food source position. The

amount of nectar symbolizes the fitness values of

all solutions or food source. Generally employed,

onlooker and scout bees are available in bee colony

algorithm. Employed bee initiated the generation of

food sources and their fitness functional values are

calculated randomly. Through onlooker bee

selected food sources are improved to produce

better results. Finally the best food source or

candidate solution is memorized.

3. Overview of Firefly Algorithm

The Firefly Algorithm is a bio-inspired heuristic

algorithm which is a population based stochastic

method which is derived and motivated by flashing

or mating behavior of fireflies. The light intensity is

the key factor where the firefly moves towards the

other fireflies. The light intensity less attracts if the

distance increases between fireflies and the source

of light. The attractiveness of fireflies is having a

mutual relation with the brightness. According to

the algorithm, the current best solution is

represented through the fireflies with high intensity

of light or attractiveness. The firefly will move

randomly to search new better firefly for the next

iteration. The position of all fireflies represents a

possible set of solutions and their light intensities

represent corresponding fitness functional values.

May – June 2020

ISSN: 0193-4120 Page No. 10019- 10032

10021 Published by: The Mattingley Publishing Co., Inc.

4. Overview of BCFA

The proposed BCFA hybrid Algorithm is created or

developed by merging the Bee Colony Optimization

Algorithm with the approach used in firefly

Algorithm. Here total population of the candidate

solution is subdivided into two parts. One part of the

solution undergoes BCO and another part undergoes

firefly optimization algorithm. According to the

intelligent behaviors, the proposed technique

generates the optimal number of test cases which is

robust and focusing on generating the possible path

from control flow graph. The advantages of this

algorithm are for its implementations in complex

functions with mixed, random and discrete values.

III. LITERATURE SURVEY

Swain et al. [10] focused on the strategy which gives

information after combining the use case and

sequence diagram that is used for generating the test

cases. Khandai et al. [11] described a technique to

generate the test cases from UML combinational

diagrams like sequence and activity diagram. An

activity diagram is converted into activity diagram

graph by applying the criteria of path coverage.

Similarly, sequence graph is generated by message

path coverage. This paper also explains how the

generated test cases are traversed from activity

sequence graph (ASG). Monalisha Sharma et al. [9]

described an approach to generate the test cases

from UML diagrams which is useful in software

design. An approach is initiated by Kansomkeat et

al. [18] to generate the test sequences by using UML

state chart diagrams. The criteria of testing are

guiding the test sequence generation which finds the

coverage of transition and states using testing flow

graph (TFG). Korel [15] introduced a method where

test cases or test data are generated by functional

testing with minimization and data flow concepts.

Test cases or test data are used through actual values

of input variables. During program execution the

search algorithm locating the selected control path

which is traversed. Sahoo et al. [13] explained how

the automated test cases are generated and optimized

by using different meta- heuristic algorithms like

harmony search, particle swarm optimization and

bee colony algorithms. According to this paper, bee

colony algorithm generates the optimized test cases

in very less iteration as compared to harmony search

and particle swarm algorithm. Suresh et al. [17]

represented that genetic algorithm (GA) is used to

generate the test data automatically through basis

path testing. According to this paper indicates that

GA is more effective and efficient to generate the

test data automatically. Sumalatha [16] focused on

how the test cases are optimized by UML diagram

like activity diagram using evolutionary algorithms.

Geniana Ioana Litiu et al. [20] explained how

evolutionary algorithms are generating the test path

and comparing their results among particle swarm

optimization, Genetic algorithm, and simulated

annealing. Biswal [4] focused on the test scenarios

which are analyzed by sequence diagram. The

function is executed by objects in the sequence

diagram with the exchange of messages. Kaur et al.

[5] focused on how Bee colony optimization (BCO)

algorithm generates the test suite in regression

testing. In this paper, BCO algorithm is designed for

maximum fault coverage with the generation of test

cases in less time. Samuel et al. [19] presented a

technique to test the object- oriented software which

is based on UML sequence diagram and also

explained how sequence diagrams generate the test

cases by using dynamic slicing technique.

IV. PROPOSED SYSTEM

This paper proposes a methodology for generation of

test cases for withdrawal system of an ATM machine

from the State Chart Diagram Graph (SCDG). In this

approach, the combinational form of a bee colony and

firefly algorithm (BCFA) is used to optimize the test

cases. In this proposed approach combines the bee

colony algorithm emphasizing on the food source

position and the initialized with the idea that honey

bees will search for better position of food source in

the hope to get a better result. Firefly Algorithm (FA)

is conceptualized by using two variables like

attractiveness and intensities of light through the

movements of fireflies to get the best result.

May – June 2020

ISSN: 0193-4120 Page No. 10019- 10032

10021 Published by: The Mattingley Publishing Co., Inc.

BCFA is a combination of Bee Colony and Firefly

algorithms which may generate the optimum solution.

This paper also aims at finding out the effectiveness

through various test cases of test data. This method

generates and optimizes the test cases with

maximizing the path coverage. This method is used

for evaluating its efficiency and effectiveness for

generating the test cases for maximizing to achieve

the goal.

1. Necessity of Proposed System

The proposed system is intended to generate an

automatic and optimized test case from a UML model

with existing approaches of bee colony firefly

algorithm (BCFA). Optimized test cases may not be

helpful in the testing process. It may be required to

differentiate between the various test cases.

2. Proposed approach and working on

proposed approach

The proposed hybrid Algorithm is created or

developed by merging the Bee Colony Optimization

Algorithm with the approach used in firefly

Algorithm. Here total population of the candidate

solution is subdivided into two parts. One part of the

solution undergoes BCA and another part undergoes

Firefly optimization algorithm. The advantages of this

algorithm are for its implementations in complex

functions with mixed, random and discrete values.

Fig 1: Flowchart of test case generation using BC-FA hybrid approach

May – June 2020

ISSN: 0193-4120 Page No. 10019- 10032

10022 Published by: The Mattingley Publishing Co., Inc.

3. Conversion of State-chart Diagram to State-

chart Diagram Graph

State chart diagram is under UML that describe the

time taken by a software system. It consists of

mostly transitions and of states. A state represents a

condition which satisfies some condition. Start

State represents the beginning of a process whereas

End State represents the termination of a process. A

state transition can be defined as the relationship

between two states that indicates transfer of control

from one state to another depending upon certain

conditions. It also represents the different states and

the events that effect to changing the state. “Fig. 2”

represents the state chart diagram and state chart

diagram graph of withdrawal task of an ATM.

Table 1 represents the dependency table for overall

operation of ATM which is shown in state chart

diagram graph.

Fig 2. State Chart Diagram and State Chart Diagram Graph of withdrawal operation of an ATM

Idle

Validate Pin

Number

Re-enter Pin

Number

Ask for withdrawal

amount

Check if amount if

non-zero and non-

negative

Check the

withdrawal limit

Check bank

balance availability

Check if amount is

multiple of 100 or

not

Dispense cash and

Print receipt

Check today's

withdrawal limit

Print error

message

Ask for pin number

[OK]

[Not Ok]

[Not Ok]

[Not Ok]

[Not Ok]

[Not Ok]

[Not Ok]

W
ro

ng
 p

in
 e

nt
er

ed

[OK]

[OK]

[OK]

[OK]

[OK]

[OK]

[OK]

DC

B

E

I

G

H

F

J

X

Y

Z

A

K

May – June 2020

ISSN: 0193-4120 Page No. 10019- 10032

10023 Published by: The Mattingley Publishing Co., Inc.

TABLE I: Dependency Table of State chart Diagram Graph Used in ATM Operation

Node Activity

Name

Possible

number of

outputs

Dependency

Nodes

Input Expected outputs

A Ask for PIN 1(B) NA User prompts to

enter PIN

B: PIN is forwarded for

validation

B Check validity

of PIN

2 (C,D) A PIN provided by

the user

D: Valid PIN

C: Invalid PIN

C Re-enter PIN 2 (D,E) B Incorrect PIN

message

E: Message displayed for

incorrect PIN

D: Valid PIN

D Ask for

withdrawal

amount

1 (F) B,C User prompts to

enter withdrawal

amount

F: Amount is forwarded to be

checked

E Print error

message

1 (Y) C,F,G,H,I,J Invalid input Y: Message displayed for

incorrect withdrawal amount

F Check if

amount is

non-negative

or non-zero

2 (E,G) D Amount entered

by the user

G: Amount is forwarded for

further checking

E: Invalid amount

G Check the

withdrawal

limit

2 (E,H) F Amount entered

by the user

H: Amount is forwarded for

further checking

E: Invalid amount

H Check if

amount is a

multiple of

100 or not

2 (E,I) G Amount entered

by the user

I: Amount is forwarded for

further checking

E: Invalid amount

I Check today’s

withdrawal

limit

2 (E,J) H Amount entered

by the user

J: Amount is forwarded for

further checking

E: Invalid amount

J Check bank

balance

availability

2 (E,K) I Amount entered

by the user

K: Amount is checked

E: Invalid amount

K Dispense cash

and print

receipt

1 (Z) J Amount entered

by the user

Z: Cash is dispensed and receipt

is printed

X is defined as the starting node. Y and Z are

defined as the end nodes where Y is the end node

with Unsuccessful result and Z is the end node with

the Successful result.

A, B, C, D, E, F, G, H, I, J and K are the

intermediate nodes describing various operations or

activities occurring within the system during

operation execution. Out of which A, B, C, D, E and

K describes the whole ATM operation. Rest nodes

F to J describe only the withdrawal amount

checking operation.

May – June 2020

ISSN: 0193-4120 Page No. 10019- 10032

10024 Published by: The Mattingley Publishing Co., Inc.

4. Generation and Optimization of test data

After creating SCDG graph, next step is to generate

and optimize the test cases. For optimization purpose

various meta-heuristic evolutionary algorithms are

used. In this proposed approach the hybrid bee

colony optimization algorithm is used for optimizing

the test cases. The test coverage criteria are

calculated through test cases which covered a

number of elements. The generations of test cases

are reduced.

5. BCFA (Pseudo code for test case or Test

data generation by using BCO-FA Hybrid

Approach)

Identify all the paths P= {path1, path 2, path3, …..,

path n} from starting node to end node

Assign each node in the graph based upon the

importance or priority of each node in that graph.

Now apply BCFA to the State Chart Diagram Graph

Calculate the fitness value of each path of the given

graph.

fx=1/(abs(net_bal-wd_amt)*min_bal)+ε)2

where, ε varies from 0.1 to 0.9

Choose the initial best solution, sort the population

based upon the fitness function value.

While generation(t)<500

do Rank the solutions

Discard the bottom half solutions having worst

fitness values

Top half best solutions undergo operation in two

phases separately

Make two copies of best solutions.

One copy undergoes Bee Colony Optimization

i.e., Phase1

Another copy undergoes Firefly Algorithm i.e.,

Phase 2

Phase 1

//Employed Bee Phase

Produce new candidate solution Check the

boundary conditions

 Evaluate its fitness value

If(finess(new)>fitness(old))

then replace the older solution

//Probability Calculation Phase

Calculate the probability of occurrence of each

solution P

//Onlooker Bee Phase If P>rand ()

Produce new candidate solution

Check the boundary conditions

Evaluate its fitness value

If(finess(new)>fitness(old))

 then replace the older solution

End If

End If

Phase 2

Select any two fireflies at a time

Calculate distance between those two fireflies

Move the firefly toward the other firefly

Intensity Values / Fitness Function value

calculation

Check the boundary conditions

Evaluate its fitness value

If(fitness(new)>fitness(old))

then replace the older solution

End If

Memorize the best solution Update Post and Best

values

Generation (k) = Generation(k) +1

Get the best solution so far

End While

Select the best solution with best fitness value

from the above pseudo code of BCFA approach

Phase 1 :- (Bee Colony Algorithm)

The new solution can be calculated as

c=x (j) +ebf*x(j) (1)

where, x(j)= candidate solution at jth position

ebf = random value within the range of [-1,+1]

May – June 2020

ISSN: 0193-4120 Page No. 10019- 10032

10025 Published by: The Mattingley Publishing Co., Inc.

The probability of occurrence for each candidate

solution is calculated as follows:

prob(j)=fx(j)/tfx; (2)

Where, prob = probability factor

 fx(j) = fitness function value

 tfx = total fitness value of all candidate

solution

In Onlooker Bee phase, the solution having

probability greater than a random value within the

range of [0, 1] are selected and their corresponding

solutions are improved with the help of the

following equation:

v(j)=x(j)+ebf*x(jj); (3)

where, ebf = random value in the range of

 [- 0.1,+0.1]

Phase 2 :- (Firefly Algorithm)

The distance between any two fireflies can be

calculated as

r =(x (i)-x(j))^2/vmin (4)

where, x(j)= candidate solution at jth position

x(i)= candidate solution at ith position

 vmin= minimum balance

The movement of a firefly toward another is

calculated as follows:

x1=x(i)+round((beta0*(exp(- (gamma*r)))*(x(j)-

x(i))+vmin*alpha*(rand-0.5)) (5)

where, x1=new solution

rand= random value within the range of [0,1]

beta0 = attractiveness at r=0

gamma and alpha = firefly parameters where

beta0=1, gamma=1 and alpha=0.2

6. Methodology

For Mathematical function,

f(x)=1/(abs(suc_bal)+ε)2 (6)

where, 0.1<= ε <0.9 (taking ε -value because

overflow condition due to infinity).

Here Successive Amount (suc_amt) is defined as:

suc_bal = net_bal - (wtd_amt-min_bal) (7)

where, net_bal = current account balance

min_bal= minimum bank balance limit

Initially, the population size and the number of

generations or a maximum number of iterations is

provided by the user. After that, an initial

population is generated randomly and their

corresponding fitness values are calculated and

stored. The initial best optimal solution is

calculated. Then the candidate solutions are sorted

in terms of their fitness values. Higher the fitness

value more the solution tends toward optimality.

After the sorting operation, the bottom half worst

solutions is discarded and are replaced with a copy

of top half best solution found so far. Then both

copies of top half best solution undergo two

different phases of optimization techniques. In this

case the first phase i.e., in Phase 1, the candidate

solutions undergoes Bee Colony Optimization

(BCO) and another copy of candidate solution

undergo the second phase (Phase 2) i.e., Firefly

Algorithm (FA) optimization. Phase 1 of BCO is

subdivided into two more phases i.e., Employed

Bee phase and Onlooker Bee phase. In Employed

Bee phase a new solution is generated and checked

if the fitness function values of the new candidate

solution are better than the old existing solution or

not. If the solution is found to be producing better

solution than the old solution replaced is replaced

by the new solution. After Employed Bee Phase,

the relative fitness value of each candidate solution

May – June 2020

ISSN: 0193-4120 Page No. 10019- 10032

10026 Published by: The Mattingley Publishing Co., Inc.

is calculated. In Onlooker Bee phase, the candidate

solutions having a relative value less than a

specific constant value ‘pa’ then that solution is

discarded from the memory and is replaced with a

newly generated random solution. In Phase 2, two

candidate solutions or fireflies are selected at

random and distance between those two fireflies is

calculated. Then the firefly having lower fitness

value is moved toward the firefly having higher

fitness value. If the fitness function value of the

new candidate solution is better than the old

existing solution then the old solution is replaced

with the new solution. Then new better solutions

are created. After the completion of two phases of

optimization, the current best solution is

memorized. The result gained from both phases is

merged. Again all the candidate solutions are

sorted and the bottom half worst solution is

discarded and are replaced with a copy of top half

best solution. Then both copies of top half best

solution undergo two phases and the programs

iterates until termination criteria is satisfied. The

solution produced so far is the optimal solution.

According to Firefly Algorithm, the position of all

fireflies represents a possible set of solutions and

their distance from the light intensity which

represents fitness values or quality of all solutions.

In BCFA hybrid approach combined the Bee

Colony and Firefly algorithm which gives the

optimal solution to maximize the mathematical

function f(x).It may be implemented using

MATLAB-7.0 as shown in Table-1. This table

primarily focuses on generating the best solution

in the search space.

TABLE II: Fitness Function Value for Each Sample Space or Test Case

Iteration

Number

Bee Colony

Algorithm(BCA)
Firefly Algorithm(FA)

Bee Colony Firefly

Algorithm (BCFA)

Test

data

Fitness

Function Value

Test

data

Fitness

Function Value

Test

data

Fitness

Function Value

1 4100 5.9779e-010 3900 5.9199e-010 4000 6.25e-010

10 6200 6.6425e-010 5600 6.4418e-010 9000 7.716e-010

20 7300 7.0358e-010 8300 7.4245e-010 11500 8.9106e-010

30 9200 7.8024e-010 10800 8.5496e-010 14900 1.1037e-009

40 15600 1.1569e-009 13400 1.0014e-009 18100 1.3819e-009

50 19400 1.5259e-009 15400 1.1413e-009 20900 1.7217e-009

60 20400 1.6524e-009 18000 1.3717e-009 24400 2.3564e-009

70 23400 2.1433e-009 20500 1.6659e-009 27200 3.1561e-009

80 27600 3.3029e-009 22900 2.0474e-009 30300 4.6276e-009

90 30400 4.6912e-009 25100 2.5252e-009 33100 7.0615e-009

100 34300 8.7341e-009 28200 3.543e-009 36400 1.352e-008

110 36900 1.5241e-008 30900 5.0299e-009 39400 3.1886e-008

120 39000 2.7776e-008 33200 7.1817e-009 42900 2.2673e-007

130 41100 6.5741e-008 36100 1.2624e-008 44000 9.964e-007

140 42700 1.8901e-007 38900 2.6873e-008 44000 9.978e-007

150 43500 4.4435e-007 41200 6.9244e-008 44000 9.978e-007

160 44000 9.9968e-007 43500 4.4429e-007 44000 9.989e-007

170 44000 9.9989e-007 44000 9.978e-007 44000 9.998e-007

180 44000 9.9997e-007 44000 9.998e-007 44000 9.998e-007

200 44000 9.998e-007 44000 9.998e-007 44000 9.998e-007

May – June 2020

ISSN: 0193-4120 Page No. 10019- 10032

10027 Published by: The Mattingley Publishing Co., Inc.

V. SIMULTION RESULTS

The proposed approach generates the automated

test cases or test data for Bank ATM by using

BCFA hybrid algorithms. The figure-3 shows the

relation between two variable quantities which are

iteration numbers and test cases or test data measured

along one of a pair of axis represented in table-1.

Fig 3. Graphical representation of iteration numbers test data

After evaluation, it was found that using bee colony

Optimization technique the optimal solution is

achieved after 160 iterations whereas by using

firefly Algorithm the optimal solution is achieved

after 170 iterations. But by implementing the hybrid

approach (BCFA) it was observed that the optimal

result is achieved much earlier around 130

iterations. The proposed approach generates the test

case or test data for Bank ATM’s withdrawal

operation using bee colony, firefly and BCFA

algorithm. Every generated test case traverses test

paths that contain a set of nodes which is the subset

of the original set of nodes. The reduced test cases

cover all nodes and edges with traversing the path by

DFS algorithm which is implemented in MATLAB

7.There are seven possible numbers of paths that can

be traversed through BFS by using SCDG system

graph. Out of which only one path produces an

optimal result and rest of the paths do not produce

optimal result.

Here Path number 1, 2 3, 4, 5, 6, 7, 8, 9, 10, 11 and

12 all produces incorrect result and can be labeled

as unsuccessful. Only Path 13 produces correct

optimized solution and can be regarded as

Successful. Table 3 represents the possible paths

generated by SCDG.

May – June 2020

ISSN: 0193-4120 Page No. 10019- 10032

10030 Published by: The Mattingley Publishing Co., Inc.

Table III: Possible Path Generation by Using State Chart Diagram Graph

<Path 1 <Path 2 <Path 3 <Path 4 <Path 5 <Path 6 <Path 7

State X State X State X State X State X State X State X

A(m1,a,b) A(m1,a,b) A(m1,a,b) A(m1,a,b) A(m1,a,b) A(m1,a,b) A(m1,a,b)

B(m2,b,c) B(m2,b,c) B(m2,b,c) B(m2,b,c) B(m2,b,c) B(m2,b,c) B(m2,b,c)

C(m3,c,b) D(m4,c,b) C(m3,c,b) D(m4,c,b) C(m3,c,b) D(m4,c,b) C(m3,c,b)

E(m5,b,d) F(m6,b,c) D(m5,b,c) F(m6,b,c) D(m4,c,b) F(m6,b,c) D(m4,c,b)

State Y > E(m5,c,d) F(m6,b,c) G(m7,b,c) F(m6,b,c) G(m7,b,c) F(m6,b,c)

 State Y > E(m5,c,d) E(m5,c,d) G(m7,b,c) H(m8,b,c) G(m7,b,c)

 State Y > State Y > E(m5,c,d) E(m5,c,d) H(m8,b,c)

 State Y > State Y > E(m5,c,d)

 State Y >

<Path 8 <Path 9 <Path 10 <Path 11 <Path 12 <Path 13

State X State X State X State X State X State X

A(m1,a,b) A(m1,a,b) A(m1,a,b) A(m1,a,b) A(m1,a,b) A(m1,a,b)

B(m2,b,c) B(m2,b,c) B(m2,b,c) B(m2,b,c) B(m2,b,c) B(m2,b,c)

D(m4,c,b) C(m3,c,b) D(m4,c,b) C(m3,c,b) D(m4,c,b) C(m3,c,b)

F(m6,b,c) D(m5,b,c) F(m6,b,c) D(m5,b,c) F(m6,b,c) D(m5,b,c)

G(m7,b,c) F(m6,b,c) G(m7,b,c) F(m6,b,c) G(m7,b,c) F(m6,b,c)

H(m8,b,c) G(m7,b,c) H(m8,b,c) G(m7,b,c) H(m8,b,c) G(m7,b,c)

I(m9,b,c) H(m8,b,c) I(m9,b,c) H(m8,b,c) I(m9,b,c) H(m8,b,c)

E(m5,c,d) I(m9,b,c) J(m10,b,c) I(m9,b,c) J(m10,b,c) I(m9,b,c)

State Y > E(m5,c,d) E(m5,c,d) J(m10,b,c) K(m11,c,d) J(m10,b,c)

 State Y > State Y > E(m5,c,d) State Y > K(m11,c,d)

 State Y > State Z >

VI. DISCUSSION AND FUTURE SCOPE

By considering the mathematical function

fx=1/(abs(net_bal- wd_amt)+ε)2 ,where ε varies from

0.1 to 0.9,this proposed paper generates and

optimized the test cases as well as test data

automatically through bee colony algorithm, firefly

algorithm and combinations of a bee colony and

firefly algorithm(BCFA). By considering some

sample test cases it has been observed that the

functional value depends on upon the parametric

values of the input variables and food source position.

Firefly algorithm generates the optimized test cases

with test data which would also have the coverage of

path. BCFA hybrid approach generates the test cases

or test data with less time as compared to other two

approaches like bee colony and firefly algorithm. The

position of all fireflies represents a possible set of

solutions and their light intensities represent

corresponding fitness values or quality of all

solutions. This proposed BCFA algorithm is

optimized the test cases. For any algorithm

implementation first, the algorithm is converted into

pseudo code before the application developed. Firefly

algorithm is determined with maximizing the path

covered. The optimum value is obtained from Firefly

algorithm comes from Bee Colony Algorithm (BCA).

In future different hybrid search based optimization

technique like PSBCA, GFA, and BCBA may be

used for generating the test cases from combinational

UML diagrams with path coverage which also

improve the software design quality.

May – June 2020

ISSN: 0193-4120 Page No. 10019- 10032

10029 Published by: The Mattingley Publishing Co., Inc.

VII. CONCLUSION

This proposed technique is used for generation and

optimization of test cases or test data by removing

the ambiguities’ effectively and efficiently. The

proposed system takes less CPU execution time to

choose the best test path which is more efficient

and reliable for the development of software.

According to experimental results, the proposed

BCFA hybrid approach gives a better result, takes

less CPU execution time and minimized the error

in less iteration as compare to bee colony algorithm

(BCA) and Firefly Algorithm (FA).

REFERENCES

[1] A. Bertolino, ”Chapter 5: Software testing”,

IEEE SWEBOK Trial Version 1.0, May

2001.

[2] S. Srivastava, S. Kumar and A. K. Verma,

“Optimal path sequencing in basis path

testing”, International Journal of Advanced

Computational Engineering and Networking,

ISSN (PRINT):2320- 2106, Vol.1, No.1,

2013.

[3] Basturk, B., Karaboga, D.,” A powerful and

efficient algorithm for numerical function

optimization: artificial bee colony(ABC)

algorithm”, In Proceedings of the IEEE

Swarm Intelligence Symposium, pp. 459–

471. IEEE, 2006.

[4] Biswal Baikuntha Narayan , Test case

Generation and Optimization of Object-

oriented Software using UML behavioral

Models,2010, http://ethesis.nitrkl.ac.in/2923/

[5] Dr. Arvinder Kaur and Shivangi goyal, "A

Bee Colony optimization Algorithm for fault

coverage based regression test suite

Prioritization" International Journal of

Advanced Science and Technology, Vol.29,

April 2011.

[6] P.N. Boghdady, N.L. Badr, M. Hashem and

M.F. Tolba, “A proposed test case generation

technique based on activity diagrams,

“International Journal of Engineering &

Technology, IJET- IJENS,Vol.11, No,3.

[7] S.Anand et al., “An Orchestrated Survey

on Automated Software Test Case

Generation”, Journal of Systems and

Software, 2013.

[8] Rajesh Kumar Sahoo, Durga Prasad

Mohapatra, Manas Ranjan Patra, “A firefly

Algorithm Based Approach for Automated

Generation and Optimization of Test

cases”, International Journal of Computer

Sciences and Engineering,vol.4,Issue-

8,2016.

[9] Monalisha Sharma , Debasish Kundu

,Rajib Mall, "Automatic test case

generation from UML sequence

diagrams", 15th international conference

on advanced computing and

communications PP. 60-64.

[10] Santosh Kumar Swain, Durga Prasad

Mohapatra and Rajib Mall, "Test case

generation based on use case and sequence

diagram, International journal of software

Engineering , IJSE Vol.3, No-2, 2010.

[11] M. Khandai , A. A. Acharya , D. P.

Mohapatra, Test case generation for a

concurrent system using UML combinational

diagram , International journal of Computer

Science and Information Technologies,2011.

[12] Supaporn Kansomkeat , Jeff offutt, Aynur

Abdurazik, Andrea Baldini , A

comparative Evaluation of tests generated

from different UML diagrams ", Technical

Report, George Mason university , 2008.

[13] Rajesh Kumar Sahoo, Deeptimanta Ojha,

Durga Prasad Mohapatra, Manas Ranjan

Patra, “Automated Test case Generation

and optimization: A Comparative Review”,

International Journal of Computer Science

& Information Technology, Vol.8, No.5,

2016.

[14] X. S. Yang, Firefly Algorithm: Stochastic

Test Functions and Design Optimization,

International Journal of Bio- Inspired

Computation, Vol. 2, No. 2, pp.78–84,

2010.

http://ethesis.nitrkl.ac.in/2923/

May – June 2020

ISSN: 0193-4120 Page No. 10019- 10032

10030 Published by: The Mattingley Publishing Co., Inc.

[15] Korel, B.,”Automated software test data

generation”, IEEE, Trans. Software

Engineering, Vol. 16, No.8, pp.870-879,

1990.

[16] V. Sumalatha, “Model-Based Test Case

Optimization of UML Activity Diagrams

using Evolutionary Algorithms”,

International Journal of Computer Science

and Mobile Applications, Vol.2, No.11,

pp.131- 142, 2014.

[17] Yeresime Suresh, Santanu Ku. Rath, ”A

genetic Algorithm based approach for test

data generation in basis path Testing”,

International Journal of Soft computing and

Software Engineering (JSCSE), Vol.3,

No.3, 2013.

[18] Kansomkeat. S and Rivepiboon. W,2003,

“Automated generating test case using

UML state chart diagrams”, In proc.

SAICSIT 2003, ACM, PP. 296-300, 2003.

[19] Philip Samuel, Rajib Mall and Sandeep

Sahoo, "UML sequence diagram based

testing using slicing", IEEE conference on

Software Engineering, PP. 176-178,2005.

[20] Latiu Geniana Ioana, Cret Octavian

Augustin, Vcariu Lucia, "Automatic Test

data Generation for software path testing

using evolutionary algorithms",

International conference on emerging

intelligent data and web technologies, Buch

a rest , PP.1-8,2012.

[21] R.K. Swain, V.Panthi , and P.K. Behera ,

"Generation of test cases using activity

diagram, “International Journal of

computer science and informatics,Vol.3,

2013.

