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Abstract 

Damage occurred in a structure cause reduce stiffness of the structure. 

Theoretically, once the stiffness is varied, the vibration characteristics 

- natural frequencies and mode shapes - of the structure are 

consequently changed. Therefore, the vibration-based damage 

detection can be formulated to an optimization problem in which an 

objective function numerically calculated from the difference 

between the experimental vibration characteristics and those of 

predicted damage where this paper employs experimental vibration 

characteristics that are approximated from the numerical calculation 

from the actual damage. The damage detection in plates is used as test 

cases in which a genetic algorithm (GA), a population-based 

derivative-free approach, is the solution search in the formulated 

optimization problems. There are 2 test cases of damage detection in 

plates to be investigated. The first case has one damaged region 

consisting of 4 damaged elements and the second case has five 

separately damaged elements. To enhance of performance of GA, this 

paper proposes a probability-based crossover and mutation embedded 

in GA. By this proposed idea each decision variable is assigned a 

probability to be performed GA operators - crossover and mutation. 

Unlike normal GA which applies the GA operators on all decision 

variables, by the probability-based crossover and mutation, only some 

decision variables to be performed the GA operators to avoid the 

unnecessary variables to be applied by the operators. After simulation 

runs, solutions obtained from the GA with probability-based 

crossover and mutation are better than those obtained from the normal 

GA for both 2 test cases. These results show that the probability-

based crossover and mutation can enhance the performance of GA in 

damage detection in plates. 

1. Introduction

The vibration-based damage detection 

methods, non-destructive methods, are based 

on the fact that vibration characteristics such as 

natural frequencies and mode shapes of the 

structure are changed due to the occurred 

damage in a structure. Many applications in 

civil engineer and mechanical engineer 

employed these methods [1-3]. This method 

formulates damage detection as an 

optimization problem having a minimized 

objective function numerically calculated from 
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the differences between the vibration 

characteristics of actual damage and those of 

predicted damage [4,5]. 

Genetic algorithm (GA) [6,7] is a 

derivative-free population-based optimization 

method of which search mechanisms are based 

on the Darwinian concept of survival of the 

fittest. Several works employed GAs to solve 

damage detection in plates such as [8-10]. As 

the GA is a population-based optimization 

method, the GA contains a set of solutions or 

population. Each GA generation, so-called 

parent solutions are selected from the current 

population. Consequently, the parent solutions 

are applied GA operators - crossover and 

mutation to form newly generated solutions, 

offspring solutions, which are then the 

members of the updated population.  

Previous works in damage detection 

such as the focus on algorithms used as 

optimizers [11-13] or objective identifications 

[14,15]. However, the previous works had not 

considered the relation of decision variables. In 

the damage detection, a decision variable 

represents damage amount of its corresponding 

divided element. Since there is coupling 

between divided elements of plates, which 

affects to the vibration characteristics of the 

plates, probability-based crossover and 

mutation are proposed to improve solutions 

obtained from a genetic algorithm (GA) to 

avoid GA operators applied on unnecessary 

decision variables. By the probability-based 

crossover and mutation, decision variables 

representing damage factors of divided 

elements are assigned probabilities to be 

performed by the GA operators - crossover and 

mutation. Unlike normal GA which performs 

the crossover and mutation on all decision 

variables, only some decision variables are 

considered to be performed by the GA 

operators based on their corresponding 

probabilities. 

 

2. Objective Calculation in Vibration-based 

Damage Detection 

As previously described, vibration-based 

damage detection can be formulated to the 

optimization problem with an objective 

function to be minimized. It can be 

consequently explained by the formulation as 

follows. For free vibration of undamped 

structures, the equation of motion is given by 

the following equation 

 

0][][


  xkxm  (1) 

 

where [m] and [k] are mass and stiffness 

matrices respectively. The corresponding eigen 

value equation for vibration mode j is given by 

 

0])[]([ 2


 vmk j  (2) 

where 
2

j  and v


 are eigen value, the square of 

nature frequency, and eigen vector, mode 

shape, of j
th
 mode of vibration, respectively. 
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Figure 1 A rectangular divided element for finite element model. 

 

Figure 1 shows a divided rectangular 

element used in the finite element models for 

plates [16]. At each nodal point, there are 3 

degrees of freedom which are deflection in z 

direction (w), twist angle about x-axis (f) and 

twist angle about y-axis (q ). From the element, 

there are 4 nodal points so that 12 degrees of 

motion for computing local stiffness matrix [k]i 

and local mass matrix [m]i. 

In finite element model, the stiffness 

matrix [k] and mass matrix [m] can be 

calculated by the sum of their local matrices of 

all divided elements as the equations (3) and 

(4). 
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Once the damage occurs in an element 

i of a structure, local damaged matrix [k]di is 

reduced from its local undamaged matrix [k]i 

according to damage factor (γi) of the element. 

The damaged local matrix can be computed by 

the following equation. 

iidi kk ])[1(][   (5) 

The values of the parameters γi fall in 

the range 0 to 1. The damage factor γi = 1 

indicates that an completely damaged element 

and γi = 0 or less than 1 implies undamaged or 

partially damaged elements respectively. 

Similar to equation (4) the stiffness 

matrix of the damaged structure is the sum of 

their local damaged matrices. 
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Moreover, it is assumed that the mass matrix is 

unchanged due to the occurred damage. By 

substituting the stiffness matrix [k] from 

equation (2) into equation (6), approximately 

experimental vibration characteristics - natural 

frequencies and mode shapes - could be 

obtained. 

In the optimization process, the 

decision variables are the predicted damage 

factors i of all divided elements so that the 

number of decision variables is equal to the 

number of divided elements. The objective 

function f is numerically calculated from the 

difference between natural frequencies and 

mode shape of true occurred damage and the 

approximately experimental vibration 

characteristics [15] as show in the following 

equation.  
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where NM is the number of vibration modes 

used in the calculation. 
i

w is a weight factor 

corresponding to the i
th
 eigen value while 

ivw is a weight factor corresponding to the i
th
 

eigen vector. In this paper, 
i

w  and 
ivw  are 

equal to one dividing NM for all vibration 

mode i. 
2  is a minimum numerical 

indicator shows the difference between the 

eigen value of predicted damage and that of 

actual damage. MACi is a maximum index to 

indicate the difference of the eigen vectors. 
2  and MACi are given by equations (8) and 

(9) respectively. 
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where ip and ie are natural frequencies of 

predicted damage and actual damage of 

vibration mode i, while vip and vie are mode 

shapes of measured points of the predicted and 

actual damage of the vibration mode i. It can 

be noted that ip and vip are related to the 

predicted damage, while ie and vie are 

measured natural frequency and mode shape of 

the actual damaged occurred in the structure. If 

the damage is correctly predicted, for all 

vibration mode i i and MACi are equal to 0 

and 1, the objective function f is then equal to 

0. 

 

3. Test problem 

The damage detection in a cantilever plate 

(Figure 2) used as the test problem. The plate 

had the dimensions of 100 cm  100 cm  5 

cm. The properties of the plate are as follows: 

modulus of elasticity (E) = 210 GPa, Poisson' 

ratio () = 0.3, and density () = 7,800 kg/m
3
. 

In the finite element model, the plate is divided 

into 64 square elements and each element has 

4 nodal points. In experimental approximation, 

there are 6 measured points as shown in Figure 

3 where deflection in the z-direction (w) can be 

measured. Two different cases of the test 

problem (Figure 4) are considered – (1) the 

plate having only one region consisting of 

elements 27, 28, 35, and 36 damaged partially 

to an extent of 20%, and (2) the plate having 

elements 2, 15, 27, 45, and 62 partially 

damaged of 40%, 30%, 50%, 60%, and 20% 

respectively. The occurred damage factors i 

for both cases are numerically described by 

equations (10) and (11) respectively. The first 

test case represents a simple case because it 
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has only one region so that it has a small 

number of neighbor undamaged elements that 

make GA search mechanism difficulty. On the 

other hand, the second test case represents the 

harder case which has a larger number of 

neighbor undamaged elements. 

 27 = 28 = 35 = 36 = 0.2, and i = 0 for other elements (10) 

 2 = 0.4, 15 = 0.3, 27 = 0.2, 45 = 0.1, 62 = 0.5, and i = 0 for other elements  (11) 

 
Figure 2 Cantilever plate. 
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Figure 3 Top view of the cantilever plate with 

divided elements and 6 measured points in 

circles. 

4. Probability-based crossover and mutation 

Probability-based crossover and mutation is 

proposed in order to assign probabilities on 

decision variables to be performed GA 

operators. At first, genetic algorithm (GA), a 

population-based derivative-free optimization 

method, will be explained. GA search 

mechanisms are based on the Darwinian 

concept of the survival of the fittest. In GA, a 

population or a set of solutions, which is the 

input to GA, is randomly generated. The 

solutions in the population are then evaluated 

to obtain their objectives, which indicate how 

fit of solutions to the optimization problem. 

After objective calculation, elitism operator is 

applied to pass good solutions including the 

best solution to be members of updated 

population. Thereafter fit solutions are then 

selected with replacement to be parent 

solutions. The parent solutions are then 

changed by GA operators, crossover and 

mutation, to achieve resulting offspring 

solutions, which will be members of the 

updated population. The solutions in the 

population will be evaluated again and then to 

be selected for the parent populations in order 

to be performed the crossover and mutation. 

The process of GA is repeated until 

termination condition is satisfied. Finally, after 

the termination, the best solution of the latest 

population is the output of the algorithm. The 

process of GA is displayed in Figure 5. 
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(a) Case 1 : one damaged region (b) Case 2 : five separately damaged elements 

Figure 4 Two different cases of the test problem 
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A population is randomly generated

Evaluate objectives of solutions in the population

Select parent solutions form the population

Perform crossover and mutation parent solutions 

form offspring solutions

Perform elitism on the  population to pass good 

solutions to next generation

Merge elitist solutions with offspring solutions to 

form population of the next generation

Finished ?

Report the best solution as output of GA

No

Yes

 
Figure 5 GA process 

 

The GA operators generally applied on 

the whole of representative chromosome of a 

solution. For the test problem used in this 

paper, the representative chromosome of a 

solution is encoded into a real number string 

with length of 64, the number of divided 

elements. After a period of time in GA search, 

GA probably found the best solution with 

optimum decision variables, damaged factors, 

represent for undamaged elements, which is 

zero, so there is not necessary to perform the 

crossover and mutation on the representative 

variables of those elements because the 

crossover and mutation may change the values 

of the variables. This paper will propose 

probability-based  crossover and mutation in 

GA in order to enhance GA performance in 

vibration-based damage detection in plates. 

The connectivity of elements are considered in 

order to assign probabilities for crossover and 

mutation of divided elements of a plate. 

From Figure 1, an element has 4 nodal 

points at its corners. For instance, element 10 

has 4 nodal points - 10, 11, 20, and 21, these 4 

nodal points are also connected to other 9 

neighbour elements 1-3, 9, 11, and 19-21 

which are considered as the neighbour 

elements of element 10. The displacement 

coordinates - w, f, and q - of the nodal points 

are therefore also used for the finite element 

model of the neighbour elements. 

Theoretically this shows unavoidable coupling 

among the decision variables corresponding 

damage factors of the elements. If there is 

much difference between damage factor of an 

element and those of neighbour elements, this 

element should be performed the GA 

operators, crossover and mutation, rather than 

another element with the less difference 

between its damage factor and damaged 

factors of its neighbour elements. 

The probability depends on how the 

predicted damage of a considering element is 

different from those of the neighbor elements 

in which the current best solution is used for 

the probability calculation. At first, the squared 

summation of the predicted damage of an 

element i and those of its neighbor elements, si, 

is calculated by using equation (12). 

 



nn

j

jiis
1

2
  (12) 

where nn is number of neighbor elements 

surrounding around an element i. Given  is 

the summation of si for all elements as shown 

in equation (13).  





N

i
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  (13) 

The probability of the element i (Pi) to be 

performed in crossover and mutation is given 

2

)1( min
min

PNs
PP i

i


  (14) 
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where N is the number of divided elements. In 

the equation, it shows that the average of Pi is 

equal to 0.5. In each time of the GA operators, 

a pair of parent individuals is randomly picked, 

the probability Pi is then compared with a 

random number r  [0,1]. If Pi is more that r, a 

corresponding decision variable of the element 

i is then picked to be performed the GA 

operators, crossover and mutation. The picked 

decision variables are then performed 

crossover and mutation to obtain a generated 

sub-individuals. The picked variables of 

resulting generated full individuals are same as 

those of the generated sub-individuals, while 

other variables of the full individuals are same 

as those of the parent individuals. Figure 6 

shows an example of probability-based  

crossover and mutation on 6 decision variables 

chromosomes. In this figure, it is assumed that 

after probabilities are assigned to decision 

variables and variables 2, 3, and 4 are then 

picked for the crossover and mutation. 

Compared to the crossover and mutation in 

normal GA, computational time in crossover 

and mutation of GA with the proposed idea is 

less than that of the normal GA because the 

crossover and mutation is performed on a 

smaller number of decision variables. 

 

0.0677 0.8711 0.7709

0.9670 0.2844 0.9363

0.9915 0.9245 0.8752

0.0432 0.2310 0.8320

0.9915 0.9245 0.8839

0.0638 0.2310 0.8320

0.9874 0.3034 0.7630

0.43890.3805 0.0889

0.9915 0.9245 0.8839

0.0638 0.2310 0.8320

Offspring 1

Offspring 2

0.9874 0.0677 0.8711 0.7709 0.3034 0.7630

0.43890.3805 0.9670 0.2844 0.9363 0.0889

Parent 1

Parent 2

Crossover

Mutation

 
Figure 6 Probability-based  crossover and mutation on 6 bit real-coded chromosome. 

 

Table 1. Optimized solutions and its objective function of test case 1 

Element Exact value Normal GA GA with probability-based  

crossover and mutation 

27 0.2 0.224904 0.201853 

28 0.2 0.108285 0.198778 

35 0.2 0.169831 0.199810 

36 0.2 0.191527 0.200408 

Other 

elements 

0.0 0.000006-0.065870 0.000000-0.001935 

Objective function 0.00000416 0.00000002 
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Table 2. Optimized solutions and its objective function of test case 2 

Element Exact value Normal GA GA with probability-based  

crossover and mutation 

2 0.4 0.392777 0.385960 

15 0.3 0.073004 0.217605 

27 0.2 0.164418 0.158516 

45 0.1 0.004171 0.041386 

62 0.5 0.343915 0.464706 

Other 

elements 

0.0 0.000079-0.328162 0.000000-0.065984 

Objective function 0.00001500 0.00000171 

 

5. Numerical results 

In GA run, a solution is encoded into a real 

coded chromosome of which length is 64, the 

number of divided elements, as shown in 

Figure 3. Population size and number of 

generations used as a termination condition are 

20 and 3200 respectively so that the number of 

generated solutions is equal to 64,000. 

Simulated binary crossover (SBX) [17], [18] is 

used for real-coded crossover in which 

crossover probability is 1.0. For mutation, 

variable-wise polynomial mutation [19], of 

which the probability of 1 divide the number 

of decision variables of a chromosome to be 

mutated, is used. The number of repeated runs 

is 10 where the best solution of all repeated run 

is reported as the output of an algorithm.  

Table 1 and Table 2 show the optimized 

solutions and their objective function of test 

cases 1 and 2 respectively. Figure 7 and Figure 

8 display damage factors of each element of 

the solutions for cases 1 and 2 respectively.  

 

0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.03

0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01

0.00 0.01 0.00 0.04 0.01 0.01 0.00 0.00

0.00 0.00 0.22 0.11 0.00 0.01 0.01 0.00

0.07 0.02 0.17 0.19 0.00 0.00 0.00 0.01

0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.20 0.20 0.00 0.00 0.00 0.00

0.00 0.00 0.20 0.20 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 
(a) Normal GA (b) GA with probability-based  crossover and mutation 

Figure 7 Damage factors of optimized solutions in each element for case 1 

0.01 0.39 0.00 0.00 0.00 0.00 0.00 0.33

0.00 0.01 0.05 0.00 0.00 0.00 0.07 0.03

0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00

0.01 0.02 0.16 0.00 0.00 0.01 0.01 0.02

0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.00

0.01 0.00 0.00 0.09 0.00 0.00 0.01 0.00

0.00 0.00 0.00 0.05 0.01 0.06 0.02 0.02

0.00 0.01 0.00 0.00 0.00 0.34 0.25 0.01

 

0.01 0.39 0.01 0.00 0.00 0.00 0.00 0.07

0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.02

0.00 0.00 0.05 0.00 0.01 0.00 0.00 0.02

0.00 0.00 0.16 0.01 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.02 0.00 0.00 0.05 0.04 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.04 0.01 0.00

0.00 0.00 0.00 0.01 0.00 0.46 0.03 0.01

 
(a) Normal GA (b) GA with probability-based  crossover and mutation 

Figure 8 Damage factors of optimized solutions in each element for case 2 
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From Table 1 and Table 2, it is found 

that the optimized solution by GA with 

probability-based crossover and mutation is 

better than that by the normal GA for both 

objective functions and the predicted damage 

factors for both cases 1 and 2. By illustrating 

damaged factors as two decimal digits 

numbers in Figure 7, the damage factors from 

the optimized solution obtained from with 

probability-based crossover and mutation are 

the same as the exact damage factors in case 1. 

In Figure 8, GA with probability-based 

crossover and mutation supplies the optimized 

solution for case 2 is not good as its optimized 

solution for case 1. The separation of damaged 

elements causes difficulty for the GA search 

mechanism. From the optimized solution by 

normal GA in Figure 8(a), the predicted 

damage factor of element 2, 0.39, is close to 

the actual amount, 0.4, however, the predicted 

damage factor of element 15, 0.07, is far away 

from the actual damage factor, 0.3. It can be 

observed that the pre predicted damaged factor 

of neighboring element 8, which is 

undamaged, is 0.33. Similarly, the other 

damaged elements 45 and 62, also have the 

neighboring elements 44 and 64 with 

significant nonzero damage factors. The reason 

behind this unexpected outcome is that the 

damage occurred as Figure 8(a) probably 

contributes to the vibration characteristics 

close to the vibration characteristics of the 

actual damage in equations (11). In search 

mechanism after a number of GA generation, 

if the solution as Figure 8(a) is obtained as the 

best solution at that time, thereafter it is very 

difficult for GA finally meet the actual best 

solution because no GA operators that 

exchange values between different decision 

variables where GA actually has crossover to 

exchange values of the same decision variable 

from two parental solutions. The probability-

based crossover and mutation can improve GA 

performance on this difficulty, however, it is 

not enough to make GA correctly predict the 

damage factors for case 2. In Figure 8(b) there 

are neighboring elements 8, 19, 44 having 

significant nonzero damage factors of actual 

damage elements 15, 27, 45. By this 

imperfection should, the studies of the effects 

of neighboring elements to the vibration 

characteristics should be investigated. 

 

6. Conclusions 

This paper proposed the probability-based 

crossover and mutation in GA for the damage 

detection in plates. The damage detection is 

formulated as an optimization problem having 

a minimized objective function numerically 

calculated from the differences between the 

experimental vibration characteristics and the 

predicted damage. This paper employs the 

approximately experimental data of vibration 

characteristics - natural frequencies and mode 

shapes - numerically evaluated from the true 

damage occurred in the plates. By the 

proposed idea, before the implementation of 

GA operators - crossover and mutation each 

decision variable, which represents the damage 

factor of a divided element, is assigned its 

corresponding probability. There are two test 

cases of damage detection in plates - (1) one 

damaged region having 4 damaged elements 

and (2) five separately damaged elements - to 

be investigated. The simulation runs show that 

GA using the probability-based crossover and 

mutation obviously outperforms normal GA 

for both two cases. For the first test case, the 

damage factors can be correctly predicted by 

the proposed idea. However, there is a 

significant difference between the damaged 

factors obtained from the proposed idea and 

the exact damage factors. The effects of 

neighbor elements should be further studied in 

order to improve solutions obtained from GA 

for damage detection in plates. 
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