

May-June 2020

ISSN: 0193-4120 Page No. 9618 – 9621

9618 Published by: The Mattingley Publishing Co., Inc.

Dr G.Vijay Kumar, B.Ankitha, G.Ramya

Department of Electronics and Computer science

Koneru Lakshmaiah Education Foundation

Green Fields, Vaddeswaram, Guntur, Andhra Pradesh, India.

Article Info

Volume 83

Page Number: 9618 – 9621

Publication Issue:

May - June 2020

Article History

Article Received: 19 November 2019

Revised: 27 January 2020

Accepted: 24 February 2020

Publication: 18 May 2020

Abstract:

Now a days we can see that the big data computing applications have been to cloud

platforms .The big data computing applications need concurrent data transfer

among different computing nodes parallel processing among the nodes. We have to

find best transfer scheduling technique that will lend to the least data retrieval time

and the maximum throughput. The methods that already exist cannot achieve the

maximum throughput due to link bandwidths ignorance and the assortment in

replication data and paths. In this paper we develop a maximum throughput data

transfer scheduling technique to reduce the data retrieval time in big data

computing with data replication diversity.

Keywords: Big data, cloud computing, Throughput, data retrieval.

INTRODUCTION

Applications which are running in cloud

environment will adopt Map reduce frame work for

data computing in parallel nodes. Data can not be

placed in one node as they are processed in the same

node due to insufficient computing capacity and load

balancing. Data blocks are maintained in triple

format along with original data block in HDFS for

robustness and redundancy[2][7]. Some times

multiple paths are available for transfer of data from

each node because of path redundancy in data center

Networks[3]. Selection of the best node along with

path is very much important for retrieval of non local

data. So this is the problem of data retrieval.

Selection of data retrieval leading is extremely

valuable task because time completion will be more

for long data retrieval task. The method proposed in

[2] can not take less time for data retrieval when non

local data is required and request is sent by the

closest data node. Tasks will execute concurrently to

retrieve data may result to serious congestions on the

same links leads to long retrieval time for data

because it pay no attention to bandwidth links and

also overlaps of paths and selected nodes. Flow

scheduling algorithms were proposed [6] to avoid

path collisions. Although, they exploited path

diversity but, not on data replication diversity.

Maximum through data transfer scheduling is

proposed [1] to reduce data retrieval time of various

applications which are consisting concurrent tasks.

Their simulated results are demonstrated for data

retrieval regardless of path diversity. We suggest a

max-throughput data transfer scheduling using

diversities in the replica direction to reduce the data

retrieval time. The problem is formulated in mixed

integer programming & suggested approximation

algorithm that can be used for multiple applications.

The rest of this paper is organized as follows.

Section 3 presents the motivation and overview the

of the problem. Section 4 presents problem

formulation for multiple applications. Section 5

presents an approximation of technique and the

analyses on its approximation ratio. Section 6

Data Transfer Scheduling for Maximizing

Throughput of Big Data computing in multiple

Applications

May-June 2020

ISSN: 0193-4120 Page No. 9618 – 9621

9619 Published by: The Mattingley Publishing Co., Inc.

presents the performance evaluation Section 7

concludes the paper.

Problem Overview and Motivation:

Although data is distributed among computer nodes

in the cloud, it is not possible to get all the data

locally, so some data from nodes can need to be

retrieved from distant nodes. You can collect a data

you need from one of the nodes where the replica is

stored. If a node is selected for data recovery, a route

for data transfer from it to the requesting node must

be specified.

Fig 1: Topology of data center network with 4 port switches

A naive approach is to pick nodes and paths

randomly, but it can lead to heavy congestion on

certain connections, resulting in long data recovery

time as it ignores bandwidths and selected paths and

nodes overlapping. The naive approach also falls

short when several applications are running in the

cloud where different applications that have different

criteria, i.e. the upper limit of data retrieval time.

Because all requirements can not be met, we're

minimizing the applications penalties. Therefore our

job is to pick nodes and paths in order to minimise

the penalties for applications for each data needed.

Problem Formulation for multiple Applications:

In this section, data recovery problem is formulated.

In the first section we explained about single

application and next deal with multiple applications.

In a graph nodes are denoted with V and edges are

denoted with E. Graph is represented as G = (V,E),

where every edge is a bi-directional link and this is a

classical network configuration in data center

network. A data center network is represented as a

combination of computing nodes and switches as

demonstrated in the graph [1].Every node has a

relation to path. The nodes are classified in to two

types one is computing nodes VC, second one is

switch nodes VX. That is V can be represented as VX

U VC. Assume the application processes a set of data

objects and all data objects are of same size S for

simplicity and it is represented as D={

od1,od2,od3,……odn} , which are placed in computing

nodes. Data Objects are replicated in multiple nodes

for data redundancy. The set of nodes which have

the data object odk is represented as Vck is a subset of

Vc[8]. Ajk represents whether Vj requires data object

odk or not to run the assigned task for this. Suppose

Vj needs odk then we have to select a node vi ∈ Vck

from this odk can be retrieved. The group of possible

flows of transferring data odk to node Vj is

represented as Fjk where possible flow specifies the

transfer of data from odk to vj. Group of all flows is

represented as

F = U ∀(j,k) where Ajk= power(1,Fjk)

In cloud platform, resources are shared by multiple

applications to run simultaneously to use available

resources more efficiently. As requesting from

every application it is essential to select nodes and

paths, it also treats all applications as a single one to

solve the problem using the above model. This is the

May-June 2020

ISSN: 0193-4120 Page No. 9618 – 9621

9620 Published by: The Mattingley Publishing Co., Inc.

same to diminish the maximum time for data

retrieval among all applications. Nevertheless, all

applications may not have same requirements on

their data retrieval time, the naive approach ignores

the difference of requirements. Thus, instead of

minimizing data retrieval time, better reduce

penalty. Assume group of applications are given U

and application u ∈ U has an upper bound t`u on its

data retrieval time tu, penalty cu as referred in [1].

When a source node is determined for each request

then the data retrieval problems for both cases are

NP-hard, a set of commodities are formed. Here we

call a triple consisting of a source, a destination, and

a demand (i.e., the amount of data to be routed) a

commodity. For the case of a single application,

given the set of commodities and a network, then our

problem is to compute the maximum value 1=t for

which there is a feasible multi commodity flow in

the network with all demands multiplied by 1=t,

which is a concurrent flow problem [5]. Since we

have the additional restriction that each commodity

must be routed on one path, the problem is an

unsplittable concurrent flow problem, which is

NPhard [5]. It is the same for the case of multiple

applications.

Max-throughput Approximation Algorithm:

An approximation algorithm is prepared for solving

the data retrieval problem.

Given a data retrieval problem and its MIP

formulation, our algorithm has three major steps:

Step 1: solve its LP relaxation

Step 2: construct an integral solution from the

relaxation solution using a rounding procedure

 Step 3: analytically compute the data sending rate of

each flow for scheduling.

we can obtain that the approximation algorithm has

the same approximation ratio of RL for the case of

multiple applications, but now the approximation

ratio affects penalty plus 1, i.e., c þ 1, rather than c,

as follows,

C
A
 +1 ≤ RL(opt(MIP)+1)

where C
A
 is the objective value of an approximation

solution, and opt(MIP) is the optimal value for an

MIP instance, means that the worst time ratio

obtained by the approximation algorithm is at most

RL times greater than the optimal value. As analyzed

previously, approximation results are upper bounded

by approximation ratio RL and the optimal value of

an MIP instance. The lower the upper bound is, the

better approximation results may be. Thus, we may

obtain better approximation results by reducing the

upper bound

Performance Evaluation

Throughout this section, we analyze the performance

extensively and demonstrate that our algorithm can

obtain near-optimal solutions with the availability of

additional data replicas and abundant paths. It show

that even an additional replica in many cases can

greatly improve the performance.

Simulation Setup

Network topologies and parameters, and then discuss

data retrieval setups. Our simulation test bed has

three types of Data Center topologies: 1) a fat-tree

topology built from 8-port switches 2) a three-tier

topology as shown in Fig. 2 in which every four

neighboring hosts are connected to a ToR switch,

and every four neighboring ToR switches are

connected to an aggregation switch, and all eight

aggregation switches are connected to each core

switch 3) a VL2 topology [7] with 8-port

aggregation and 4-port core switches, as shown in

Fig. 5. Both the fat-tree topology and the three-tier

topology have 128 computing nodes, while the VL2

topology has 160 instead[2].

we evaluate the performance of multiple

applications. Consider OPT and RND for

comparison. The worst penalty among all

applications is used for evaluation. It is directly

obtained from objective value for OPT, while for

May-June 2020

ISSN: 0193-4120 Page No. 9618 – 9621

9621 Published by: The Mattingley Publishing Co., Inc.

APX and RND it can be computed as in[1]. We also

start with running simulations to find optimal R and

L where APX performs best. Nine pairs of R and L

are tried, where R is chosen from {1, 2, 3} and L is

chosen from {1, 4, 16}. We simulate a scenario of

two applications each having 500 tasks and 100 data

objects with many-to-one access relationship under

full bandwidth. The performance of APX in nine

settings where the results of RND and OPT are

represented by red line and black line respectively. It

is observed that the APX with R ¼ 2 and L ¼ 1

performs closest to OPT. Thus we choose to evaluate

APX with this setting (i.e., APX-R2-L1), besides the

one without the preprocessing referred in [1].

The results are shown in above and It is observed

that APXR2-L1 performs almost as good as OPT

also better than RND, and a bit better than APX-

Rmax-Lmax. In the topology with full bandwidth,

the reduction ratio is around 3% 13% for one-to-one

setting; while for many-to-one setting it increases

significantly as more tasks access each data at the

same time.

Conclusion

In this paper, we discuss the question of DCN data

recovery, which is to pick data replicas and paths for

simultaneous data transfer together in order to

minimize data recovery time. The proposed

approximation algorithm is used to solve the

problem with an RL approximation ratio, where R is

the factor for data replication and L is the largest

number of candidates. It is helpful to solve the data

recovery problem in multiple applications, retaining

equity among them. The simulations show that our

algorithm can achieve near-optimal efficiency, with

the best R and L.

References

1. Ruitao Xie and Xiaohua Jia “Data Transfer

Scheduling for Maximizing Throughput of Big-

Data Computing in Cloud Systems” IEEE

Transactions on Cloud computing, volume 6 No

1 January-2018, pp. 27-38.

2. M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan,

and I. Stoica, “Managing data transfers in

computer clusters with orchestra,” in Proc.

SIGCOMM, 2011, pp. 98–109.

3. J. L. Gross, J. Yellen, and P. Zhang, Handbook of

Graph Theory, 2nd ed. London, U.K.: Chapman

& Hall, 2013.

4. M. Al-Fares, S. Radhakrishnan, B. Raghavan, N.

Huang, and A. Vahdat, “Hedera: Dynamic flow

scheduling for data center networks,” in Proc. 7th

USENIX Conf. Netw. Syst. Des. Implementation,

2010, pp. 19–19.

5. J. L. Gross, J. Yellen, and P. Zhang, Handbook of

Graph Theory, 2nd ed. London, U.K.: Chapman

& Hall, 2013

6. Vijay Kumar G., Krishna Chaitanya T., Pratap

M. “Mining popular patterns from

multidimensional database” in Indian Journal of

Science and Technology vol 9 Issue 4.

7. A. Greenberg, J. R. Hamilton, N. Jain, S.

Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel,

and S. Sengupta, “VL2: A scalable and flexible

data center network,” in Proc. SIGCOMM, 2009,

pp. 51–62.

8. Praneeth, J.N, M.Sreedevi “Detecting and

analyzing the Maliciouswindows events using

Winlogbeat and ELK stack” 2019, vol 7 Issue 6,

pp 156-160.

