

Use of Multiple Criterion Decision making Model in Lean Manufacturing for New Product Development

Adinarayanan A1*- 1Department of Mechanical Engineering, Academy of Maritime Education and Training, Chennai – 603112, India

Dinesh S2 - 2Department of Mechanical Engineering, Dhaanish Ahmed College of Engineering, Chennai – 601301, India.

A. Arul Peter3 - 3Department of Mechanical Engineering, Vels Institute of Science, Technology & Advanced Studies, Chennai, India.

A.R.Sivaram4 - 4Department of Mechanical Engineering, Academy of Maritime Education and Training, Chennai – 603112, India

Article Info Volume 83 Page Number: 9588 – 9595 Publication Issue: May - June 2020

Article History Article Received: 19 November 2019 Revised: 27 January 2020 Accepted: 24 February 2020 Publication: 18 May 2020

1.INTRODUCTION

NPD is the process of identifying the product strategy, program management, collecting the requirements, product development, sourcing for involvement of suppliers and maintaining the production ramp-up. As per Aberdeen research, the top challenges high tech companies report is cost pressure from customers. The second largest challenge reported by all companies is faster product commoditization / shorter life cycle. The different strategies that can be followed for new product development concurrent engineering, are remanufacturing, traditional new product development, and ultimately lean new product development.In this research work initially the best product development strategy is identified through a multidimensional decision making technique analytical hierarchical process (AHP). Then the case of product development of parabolic leaf spring of an automobile is considered for the analysis and

Abstract:

Lean manufacturing has the revolutionized approach of manufacturing and that can do the same for the new product development (NPD). Today 'lean culture' has become necessary and important tool in all types of industries to eliminate all kinds of wastes in the manufacturing process. In this work, a case study was carried out in an automobile industry for reducing the product development lead time. In the process of doing so, lean new product development with IT support was identified as an effective product development strategy. One of the multiple criterion decision making model namely analytical hierarchy process (AHP)is used in this application. *Keywords: Computer Aided Engineering (CAE); Lean New product Development; Traditional product development, analytical hierarchy process Remanufacturing, Multi criteria decision making model*

> optimization of design variables for demonstrating the accomplishment of lean new product development.

2.LITERATURE REVIEW

Many research projects have been done on elimination of wastes in the process, but not much of research work, on elimination of waste in new product development process. Conventional product lifecycle begins with conceptual design, engineering design, analysis, prototype modeling, estimation of designing of sequence of operations, cost, manufacture of parts, marketing the products, and selling. But it requires toomuch of time to complete the entire process from the design level to launch of product.In traditional new product development, theprocess information is not available among various groups in the process and behaves as an island of information inaccessible to those who need it. The scattered information in the NPD process leads to waste in the process and increases process time. The evolution of information technology (IT)

in general and internet technologies in particular has affected all aspects of new product development processes. In some instances these technologies result in speedy and more frequent communications within existing processes. Hence, it is necessary for all industries to adopt lean manufacturing concept in the NPD processto reduce the product development lead time. Eliminating waste within the NPD process will enhance the value and ensure full customer satisfaction and reduce the overall lead time. James – Moore and Gibbons [1997] described the principles of Lean manufacturingwhich are widely used in the aircraft manufacturing industries.Hines et.al.[2004]explained the concept of lean production(LP) since it converts complexity of the system into the easier one.Barker [1994] explained about the time based value adding framework for the development activities and continuity in improvement. Ahlstrom [1998] explained about the improvement of manufacturing performance in the industries and value stream mapping (VSM) and other lean concepts are adopted in a larger integrated steel mill.Datta et.al. [1992] studied the short comings of the existing manufacturing systems available and developed an AHP model to account for the justification of machine selection. The proposed AHP model can take into account tangible as well as intangible factors.Daugherty [1981]discussed the composite leaf spring applications in heavy duty automobiles. Breadmore and Johnson [1986] revealed the composite structure applications in an automobile structure. Hawang and Han [1986] discussed the fatigue behavior of Glass Fiber Reinforced Plastic (GFRP) epoxy composite in an automobile body structures. Yu and Kim [1988] explained the design characteristics of double tapered beam for the suspension leaf spring of the

automobile.Rajendran and Vijayarangan [2001] discussed about the composite mono leaf spring automobiles.Clarke which is used in and Borowski[2005] discussed the residual stress developed on the spring of the automobiles.Muthubhaskaran (2018 & 2019) et al have discussed about ranking of lean tools and a frame work of lean readiness evaluation. He has also analyzed the possibilities of improvement in quality using OC tools.

3.ANALYTICAL HIERARCHY PROCESS

In order to justify the selection of an effective strategy for the new product development process, a multi criteria dimensional modeling is applied for the decision making process. The AHP technique is used toidentify the effective strategy of similar requirements among different alternatives. The wastes corresponding to product development function are associated with the main wastes of lean production system. In this method, it ranks various methodologies in conjunction with various features a score which is taken from the relative of preferences of synthesis of each alternatives with respect to the other criteria at various stages by the way of individual calculation factors and sub-factors. Each and every stage, neighboring values of each candidate alternative with respect to the upper immediate values are evaluated from pair-wise comparisons. These values are compiled based on views of experts from case industry in this field. Six criteria like inventory, defects, overproduction, processing, transportation, and human are considered. By considering their sub criteria which is shown in table 1, the best strategy is selected.

Criteria	Sub Criteria	
	Development work and design work in process	
Inventory	(WIP)	
	Delays for process approvals	
	Time waiting for others inputs	
	Design & development rework	
Defects	Defects in requirements	
	Misinterpretation of information	
	Extra/Low priority features in design	
Over Production	Too much detail and Unnecessary information	

Table 1: factors contributing for product development strategy

	Redundant development		
	Excessive mental motion		
Motion	Task switching		
	Effort to find needed information		
	Excessive reviews & paperwork		
Processing	Serial process with excessive iterations		
	unnecessary data, translating data, formats		
	conversion		
	Inomplete, ambiguous, lack of direct access		
Human	information		
	Under utilization		
	Over utilization		

3.1 AHP algorithm

Stage 1: Hierarchy setting.

- Stage 2: Pair wise characteristic comparison.
- Stage 3: Identify priority vector.
- Stage 4: Alternatives comparison.

Stage 5: Evaluate priority vector for alternatives. Stage 6: Attain the overall priority vector.

The above said procedures are carried out in the following stages.

Main Criteria: Inventory

Sub Criteria: Development work and design work in process:				
	LNPD	CE	TPD	RM
LNPD	1	2	3	5
CE	1⁄2	1	3	4
TPD	1/3	1/3	1	2
RM	1/5	1⁄4	1/2	1

<u>Priority</u>	vector	·
LNPD	0.49	
CE	0.28	
TPD	0.14	
RM		0.08
		J

Sub criteria: Time waiting for others inputs:

			ing for others inpu	
	LNPD	CE	TPD	RM
LNPD	1	2	3	6
CE	1/2	1	1	3
TPD	1/3	1	1	4
RM	1/6	1/3	1⁄4	1

Priority vector:

LNPD	ر 0.50م
CE	0.23
TPD	0.19
RM	0.07
	L J

0.1

		ci i i ci i i ci i i ci i ci i ci i ci	Process approvan	
	LNPD	CE	TPD	RM
LNPD	1	2	2	4
CE	1/2	1	1	3
TPD	1/2	1	1	2
RM	1⁄4	1/3	1/2	1
Priority vector:				
LNPD0.44)			
CE	0.23			
TPD	0.22			

Sub criteria: Delays for process approvals:

INVENTORY AMONG THE SUB FACTORS:

	Development work	Time waiting for	Delays for process
	and design work in	others inputs	approvals
	process		
Development work	1	1/2	4
and design work in			
process			
Time waiting for	2	1	5
others inputs			
Delays for process	1⁄4	1/5	1
approvals			

Priority Vector:

RM

Development work and design work in process0.31 Time waiting for others inputs Delays for process approvals0.1

0.59

Main Criteria:Defects

Sub criteria: Design and development rework

Sub criteria: Defects in requirements

<u>Priority</u>	Vector:
LNPD	0.37
CE	0.29
TPD	0.25
RM	0.09

Sub criteria: Misinterpretation of information <u>Priority Vector:</u>

I HOIR TO	
LNPD	$\left(0.43 \right)$
CE	0.38
TPD	0.13
RM	0.06

Defects among subfactors:

Priority Vector: Design and development rework Defects in requirements 0.22 Misinterpretation of information

	0.63	
l	0.15	

Main Criteria: over production: Sub criteria: Extra /low priority features in

aesign		
Priority Vector:		
LNPD	ر 0.41م	
CE	0.40	
TPD	0.11	
RM	0.08	

Sub criteria: Too much detail and unnecessary information

Priority Vector:				
LNPD 0.07	()			
CE	0.12			
TPD	0.39			
RM	0.41			

Sub criteria: Redundant development

Priority Vector:

LNPD	(0.4	
CE	0.40	
TPD	0.11	
RM	0.08	

AMONG SUB FACTORS:

Priority Vector:

Extra/low priority features in design0.43 Too much detail and unnecessary infor0.44 Redundant development0.13 **Main Criteria: Motion: Sub Criteria: Excessive mental motion** <u>Priority Vector:</u> LNPD (0.54)

Sub criteria: Task switching: <u>Priority Vector:</u>

LNPD	(0.42)
CE	0.37
TPD	0.14
RM	0.07

Sub criteria: Effort to find needed information:

Priorit	<u>y vecto</u>	<u>Dr:</u>
LNPD	0.42	
CE		0.37
TPD	0.14	ŀ
RM	0.0	7 J

AMONG SUBFACTORS:

Priority Vector:
Excessive mental motion
Task switching
Effort to find needed information

Main Criteria: Processing

Sub criteria: :Serial process with excessive iterations

Priority Vector:				
(0.17)				
0.56				
0.16				
0.12				

Sub criteria: Excessive reviews and paper work <u>Priority Vector:</u>

ر ا
0.39
0.12

Sub criteria: Unnecessary/translating data, format conversion

Priority Vector:			
LNPD	(0.12)		
CE 0.	08		
TPD	0.46		
RM	0.35		
	J		

AMONG SUBFACTORS

Priority Vector: Serial process with excessive iterations0.22 Excessive reviews and paper work Unnecessary/translating data, format conversion 0.63

Main Criteria: Human

Sub criteria: Incomplete, ambiguous, lack of direct access to information

Priority	Vecto	<u>r:</u>	~
LNPD	0.38		
CE	0.39		
TPD		0.10	
RM		0.12	
			_

Sub criteria: Under utilization:

Priority Vect	t <u>or:</u>
LNPD0.39	()
CE	0.39
TPD	0.14
RM	0.08

Sub Critertia: Over utilization:

(0.09)
0.23
0.49
0.19

AMONG SUBFACTORS:

Priority Vector: Incomplete/ambiguous lack of direct access to information 0.17 Under Utilization 0.55 Over Utilization 0.29

Priority Vector:

AMONG MAIN FACTORS:

	Inventory	Defects	Over	Motion	Processing	Human
			production			
Inventory	1	2	3	5	4	4
Defects	1/2	1	2	4	3	2
Over	1/3	1/2	1	3	1	1
production						
Motion	1/5	1/4	1/3	1	7/9	2/3
Processing	1/4	1/3	1	9/7	1	2
Human	1/4	1/2	1	3/2	1/2	1

Priority Vector:
Inventory
Defects
Over production0.12
Motion 0.07
Processing0.10

0.10

Human

0.39 0.22

INVENTORY

Product	Development	Delays for	Time waiting	Among	Resultant
Development	work and	process	for others	factors	value
Strategy	design work in	approvals	inputs		
	process				
LNPD	0.49	0.44	0.5	0.31	0.4615
CE	0.28	0.23	0.23	0.59	0.2455
TPD	0.14	0.22	0.19	0.1	0.1922
RM	0.08	0.1	0.07		0.0908

DEFECTS

Product	Design and	Defects in	Misinterpretation	Among	Resultant
development	development	requirements	of information	factors	value
strategy	rework				
LNPD	0.54	0.37	0.42	0.63	0.4846
CE	0.29	0.3	0.41	0.22	0.3102
TPD	0.11	0.24	0.1	0.15	0.1371

RM	0.06	0.09	0.07	0.0681

OVER PRODUCTION

Product	Extra/low	Too much	Redundant	Among	Resultant
development	priority	detail and	development	factors	value
strategy	features in	unnecessary			
	design	information			
LNPD	0.12	0.17	0.12	0.22	0.1275
CE	0.39	0.56	0.08	0.15	0.2202
TPD	0.37	0.16	0.46	0.63	0.3952
RM	0.12	0.12	0.35		0.2649

MOTION

Product	Excessive	Task	Effort to find	Among	Resultant
development	Mental Motion	switching	needed	factors	value
strategy			information		
LNPD	0.09	0.39	0.38	0.29	0.226
CE	0.23	0.39	0.39	0.55	0.3059
TPD	0.49	0.14	0.1	0.17	0.3223
RM	0.19	0.08	0.12		0.1529

PROCESSING

Product	Excessive	Serial process	unnecessary	Among	Resultant
development	review and	with excessive	data/translating	factors	value
strategy	paper work	iterations	data,		
			formatting data		
LNPD	0.41	0.07	0.41	0.43	0.2604
CE	0.4	0.12	0.4	0.44	0.2768
TNPD	0.11	0.39	0.11	0.13	0.2332
RM	0.08	0.41	0.08		0.2252

HUMAN

Product	Incomplete/ambiguous,	Under	Over	Among	Resultant
development	lack of direct access	utilization	utilization	factors	value
strategy	information				
LNPD	0.54	0.42	0.42	0.6	0.492
CE	0.28	0.37	0.37	0.17	0.316
TPD	0.07	0.14	0.14	0.23	0.098
RM	0.11	0.07	0.07		0.094

OVERALL PRIORITY VECTOR:

Product	Inventory	Defects	Over	Motion	Processing	Human	Among	Overall
development			production				factors	priority
strategy								vector
LNPD	0.4615	0.4846	0.226	0.2604	0.1275	0.492	39%	0.393895
CE	0.2455	0.3102	0.3059	0.2768	0.2202	0.316	22%	0.273693
TPD	0.1922	0.1371	0.3223	0.2332	0.3952	0.098	12%	0.20944

LNPD	0.393895
CE	0.273693
TPD	0.20944
RM0.12	2039
	\ /

Conclusion:

In this work AHP methodology is utilized in order to select the best product development strategy by considering different criteria and sub criteria. From the result found, it is understood that overall priority vector of LNPD is attained as 39.38% followed by concurrent engineering methodology, it is suggested that lean new product development may be selected as suitable manufacturing method for the case industry and also LNPD is considered to be the best strategy for case industry as its priority vector is the highest among the various alternative.

References

- Ahlstrom, P. "Sequences in the implementation of lean production", European Management Journal, Vol. 16, No.3, pp. 327 -334, 1998.
- Breadmore P., Johnson C. F, the Potential for Composites in Structural Automotive Applications, Composite Science and Technology, 26, 1986, pp. 251 – 281.ANSYS 12.0, Ansys, Inc.,
- 3. Clarke C.K.andBorowski G.E, Evaluation of a Leaf Spring Failure, 2005.
- 4. Datta.V,Sambasivarao,KV,kodali,Deshmukh. SGMulti Attribute decision-model using the analytic hierarchy process for the justification of manufacturing systemsinternational journal of production economics, vol.28.00 issue 2,pp.227-234,1992
- Daugherty R. L. Composite Leaf Springs in Heavy Truck Applications, International Conference on Composite Materials, Tokyo 1981: pp. 529 – 538.
- 6. Hawang, W., Han, K. S., Fatigue of Composites – Fatigue Modulus Concept and

Life Prediction Journal of Composite Materials 20 1986: pp. 154 – 165.

- Hines, P., M. Holweg, and N. Rich. 2004. "Learning to Evolve. A Review of Contemporary Lean Thinking." International Journal of Operations & Production Management 24 (10): 994–1011.
- James Moore, M., and Gibbons. A., (1997), Is Lean manufacturing universally relevant. International Journal of Operations and Production Management.
- Yu, W. J., Kim, H. C. Double Tapered FRP Beam from Automotive-Suspensions Leaf Spring Composite Structures, 1988: pp. 279 – 300.
- S. MuthuBaskaran (2018). Ranking of lean tools using weighted scoring method, International Journal of Mechanical and Production Engineering Research and Development, 8(1), 1107-1112.
- S. MuthuBaskaran, A.R. Lakshmanan (2019). A framework for lean readiness evaluation using a hierarchical fuzzy system, South African Journal of Industrial Engineering, 30(1),220-234.
- S. MuthuBaskaran (2019). An analysis of casting defects and quality improvement using QC tools, International Journal of Mechanical Production Engineering Research and Development, 9(1), 405-411.