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Abstract: 

In this paper the qualitative behaviour of solutions of fractional functional 

differential and forced fractional functional differential equations with constant 

coefficients as well as constant positive and negative coefficients have been 
studied. The Riemann-Liouville definition of fractional order derivatives have been 

used throughout the paper. Several results have been obtained related to the 

oscillatory behaviour of solutions of such type of fractional functional differential 

equations and they have been justified with suitable examples. 
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Introduction: 

Fractional differential equations have 

aroused the interest of researchers since the last few 

centuries due to their widespread applications in 

various fields such as electrochemistry, 

electromagnetic field theories, control theory, fluid 

flow, optics and signal processing etc. Several 

researchers such as Chen [[1],[2]], Chen et. al.[3], 

Liu et. al.[4] have discussed and analyzed the 

oscillatory behaviour of solutions of differential 

equations of fractional order. 

 

 The qualitative behaviour of functional 

differential equations have been throughly discussed 

by Gyori and Ladas[5] and Ladde et. al.[6]. 

Furthermore, Jaros and Stavroulakis[7], Kon et. 

al.[8], Li[9], Philos[10], Sficas and Stavroulakis[11], 

Tang and Yu[12], Dorociakova et. al [13], Ladas and 

Qian[14], Elabbasy et.al[15] and Elabbasy and Saker 

[16] have studied the oscillation of delay differential 

equations with positive and negative coefficients. 

 

 Recently mathematicians have started 

investigating fractional order functional differential 

equations both qualitatively as well as quantitatively. 

Lu and Cen[17], Bolat[18], Zhu and Xiang[19] etc. 

have extensively studied the oscillation criteria for 

fractional order delay differential equations. 

 

 The main aim or objective of our work is to 

study the qualitative behaviour of solutions of 

fractional order functional differential equations with 

constant coefficients. In the present work the 

oscillation of fractional functional differential 

equations with constant coefficients as well as 

fractional functional differential equations with 

constant positive and negative coefficients have been 

discussed. Several types of fractional functional 

differential equations have been investigated for 

their oscillatory behaviour and the results have been 

justified by suitable examples.  

 

 Our work is motivated by the works of 

Gyori and Ladas[5], Ladas and Qian[14], Elabbasy 

On Oscillation of Fractional Functional 

Differential Equations with Constant 

Coefficients 
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et. al[15], Elabbasy and Saker[16], Lu and Cen[17], 

Bolat[18] and Zhu and Xiang[19]. As it is not 

always easy to find the actual solution of fractional 

functional differential equations the qualitative study 

of the solutions of these type of equations is of vast 

importance. As the mathematical models of different 

real life problems give rise to fractional functional 

differential equations the qualitative study of these 

type of equations will enable us to understand and 

analyze the behaviour of the solutions of these type 

of models. 

 

 The paper is organized in the following way. 

Section 1 is the introduction to the paper. In section 

2 some definitions and basic results are given, which 

are required in the present work. Section 3 contains 

the main results and the conclusion is given in 

section 4.  

 

 

2  Definition and Basic Results 

 

 In this section some definitions and basic results are given which will be used in our work.  

 

Definition 2.1:[18] The Riemann Liouville fractional order derivative is defined as follows  

 

 𝐷𝛼𝑓(𝑡) =
1

Γ(𝑛−𝛼)

𝑑𝑛

𝑑𝑡𝑛  
𝑡

0

𝑓(𝜏)

(𝑡−𝜏)1+𝛼−𝑛 𝑑𝜏 

 

 where 𝛼 ∈ 𝑅, 𝑛 − 1 < 𝛼 < 𝑛, 𝑛 ∈ 𝑁 and f is a continuous function. 

 

Definition 2.2:[5] Let 𝑥: [0, ∞) ⟶ 𝑅 be a real valued function with Laplace transform  

 

 𝑋(𝑠) =  
∞

0
𝑒−𝑠𝑡𝑥(𝑡)𝑑𝑡 (1) 

 

 If there exists a real number 𝜎0 such that (1) converges for all 𝑠 with 𝑅𝑒𝑠 > 𝜎0 and  

 

diverges for all s with 𝑅𝑒𝑠 < 𝜎0 then 𝜎0 is called the abscissa of convergence of 𝑋(𝑠).  

 

Theorem 2.1:[5] Let 𝑥 ∈ 𝐶[[0,∞), 𝑅+] such that the abscissae of convergence 𝜎0 of the  

 

Laplace transform 𝑋(𝑠) of 𝑥(𝑡) is finite. Then 𝑋(𝑠) has a singularity at 𝑠 = 𝜎0, i.e., there 

 

 exists a sequence  

 

 𝑠𝑛 = 𝛼𝑛 + 𝑖𝛽𝑛     𝑓𝑜𝑟    𝑛 = 1,2, . .. 

 

such that 

 

𝛼𝑛 ≥ 𝛼0 for 𝑛 ≥ 1, lim𝑛→∞𝛼𝑛 = 𝜎0, lim𝑛→∞𝛽𝑛 = 0 and lim𝑛→∞ |𝑋(𝑠𝑛)| = ∞. 
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Theorem 2.2 :[17] Let  

 

 𝑦𝛿(𝑡) + 𝑎𝑦(𝑡 − 𝜏) − 𝑏𝑦(𝑡 − 𝜎) = 0 (2) 

 

 be a fractional delay differential equation with 𝑎, 𝑏, 𝜏, 𝜎 ∈ 𝑅+. Then 

 

 𝜆 + 𝑎𝑒−𝜆𝜏 − 𝑏𝑒−𝜆𝜎 = 0 (3) 

 

 is the characteristic equation of (3). Then the following conditions are equivalent. 

 

(i) Every solution of (1) oscillates. 

 

(ii) The characteristic equation of (2) has no real roots. 

 

a. 3  Main Results 

 

Theorem 3.1: Let 𝑎𝑖 , 𝜏𝑖 ≥ 0 for 𝑖 = 1,2, . . . , 𝑛 and 0 < 𝛿 < 1, where 𝛿 =
𝑜𝑑𝑑𝑖𝑛𝑡𝑒𝑔𝑒𝑟

𝑜𝑑𝑑𝑖𝑛𝑡𝑒𝑔𝑒𝑟
. Then  

 

   𝑛
𝑖=1 𝑎𝑖 

1

𝑛   𝑛
𝑖=1 𝜏𝑖 >

1

𝑒
(𝜆𝛿−1) 

 

is a sufficient condition for the oscillation of all solutions of the fractional delay differential  

 

equation(FDDE)  

 

 𝑦𝛿(𝑡) +  𝑛
𝑖=1 𝑎𝑖𝑦(𝑡 − 𝜏𝑖) = 0. (4) 

 

Proof: The characteristic equation of (4) is given by  

 

  

   𝜆𝛿 +  𝑛
𝑖=1 𝑎𝑖𝑒

−𝜆𝜏𝑖 = 0                               (5) 

 

By applying the inequality for arithmatic mean and geometric mean, i.e., 

 

 Πi=1
n 𝑎𝑖 

1

𝑛 ≤
1

𝑛
 i=1

n 𝑎𝑖  

 

and the condition 𝑒𝑥 ≥ 𝑒𝑥 for 𝑥 ≥ 0 we get that for 𝜆 < 0, 

  

𝜆𝛿 +  i=1
n 𝑎𝑖𝑒

−𝜆𝜏𝑖 ≥ 𝜆𝛿 + 𝑛 Πi=1
n 𝑎𝑖𝑒

−𝜆𝜏𝑖 
1

𝑛  
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≥ 𝜆𝛿 + 𝑛 Πi=1
n 𝑎𝑖 

1

𝑛𝑒  −
λ

n
 i=1

n 𝜏𝑖  

  

= −𝜆𝑒  −
1

𝑒
𝜆𝛿−1 +  Πi=1

n 𝑎𝑖 
1

𝑛   i=1
n 𝜏𝑖  > 0 

 

which shows that (5) has no negative roots and furthermore as (5) has no positive roots either,  

 

every solution of (4) oscillates.  

 

Example 3.1 : Consider the FDDE  

 

 𝑦
1

3(𝑡) +
3

2
𝑦(𝑡 −

5𝜋

6
) +

1

2
𝑦(𝑡 −

𝜋

6
) = 0 (6) 

 

which satisfies the conditions of Theorem 3.1 as  

 

 (𝑎1𝑎2)
1

2(𝜏1 + 𝜏2) =
 3

2
𝜋 >

1

𝑒
(𝜆𝛿−1). 

 

𝑦(𝑡) = 𝑐𝑜𝑠𝑡 is an oscillatory solution of (6). 

 

Theorem 3.2: Let the characteristic equation (5) of the FDDE (4) has a real root. Then 

 

there exists an 𝛼0 ∈ (0,1) such that for every 𝛼 ∈ [0, 𝛼0] the FDDE  

 

 𝑦𝛿 𝑡 +  𝑛
𝑖=1  1 − 𝛼 𝑎𝑖𝑦 𝑡 − 𝜏𝑖 = 0, 𝑡 ≥ 0,     0 < 𝛿 < 1 (7) 

 

has a positive solution. 

 

Proof: The characteristic equation of (7) is given by  

 

 𝜈𝛿 +  𝑛
𝑖=1 (1 − 𝛼)𝑎𝑖𝑒

−𝜈𝜏𝑖 = 0 (8) 

 

which has a real root. It is enough to show that the following statements (i) and (ii) are  

 

equivalent. 

 

(i) Eq(5) has no real root.  

 

(ii)There exists an 𝛼0 ∈ (0,1) such that (8) has no real root for all 𝛼 ∈ [0,𝛼0]. 

 

(ii)⇒ (i) is obvious. 

 

To prove (i)⇒(ii). Let 
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 𝐺(𝜆) = 𝜆𝛿 +  𝑛
𝑖=1 𝑎𝑖𝑒

−𝜆𝜏𝑖  

 

We see that 𝐺(∞) = ∞. 

 

As 𝐺(𝜆) = 0 has no real root, we have that 𝐺(𝜆) > 0 for 𝜆 ∈ 𝑅. Furthermore, 

 

𝐺(−∞) = ∞, otherwise (5) has a real root. Therefore the 𝑚𝑖𝑛𝜆∈𝑅𝐺(𝜆) = 𝜈 exists and is  

 

positive. So 𝐺(𝜆) ≥ 𝜈 for 𝜆 ∈ 𝑅. Let 𝐻(𝜈) = 𝜈𝛿 +
1

2
 𝑛

𝑖=1 𝑎𝑖𝑒
−𝜈𝜏𝑖 , 𝜈 ∈ 𝑅. 

 

We see that 𝐻(∞) = 𝐻(−∞) = ∞. So there exists some 𝜖 > 0 such that 𝐻(𝜈) > 0 for 

 

|𝜈| > 𝜖. Choosing 𝛼0 ∈ (0,
1

2
) such that  

 

 𝛼0  𝑛
𝑖=1 𝑎𝑖𝑒

𝜖𝜏𝑖 ≤
𝛾

2
 

 

we claim that for every 𝛼 ∈ [0,𝛼0], (8) has no real roots. So if 𝜈 ∈ 𝑅 with |𝜈| > 𝜖 then 

 

 𝜈𝛿 +  𝑛
𝑖=1 (1 − 𝛼)𝑎𝑖𝑒

−𝜈𝜏𝑖 ≥ 𝜈𝛿 +
1

2
 𝑛

𝑖=1 𝑎𝑖𝑒
−𝜈𝜏𝑖 > 0. 

 

On the other hand for −𝜖 ≤ 𝜈 ≤ 𝜖,  

 

 𝜈𝛿 +  𝑛
𝑖=1 (1 − 𝛼)𝑎𝑖𝑒

−𝜈𝜏𝑖 ≥
𝜈

2
> 0. 

Hence proved. 

 

Example 3.2: It can easily be verified by choosing 𝛼 = 0.5 and forming the FDDE 

 

 𝑦
1

3(𝑡) +
3

4
𝑦(𝑡 −

5𝜋

6
) +

1

4
𝑦(𝑡 −

𝜋

6
) = 0 (9) 

 

from the FDDE (6), that every solution of (9) is oscillatory and 𝑦(𝑡) = 𝑠𝑖𝑛(𝑡 −
𝜋

2
) is an  

 

oscillatory solution of (9). 

 

Theorem 3.3: Let  

 𝑦𝛿(𝑡) + 𝑎𝑦(𝑡 − 𝜏) = 𝑓(𝑡) (10) 

 

be a forced FDDE with 0 < 𝛿 < 1 , 𝑎, 𝜏 ∈ 𝑅+. If  

 

 lim
𝑠→−∞

𝐹(𝑠) = 0 
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and 𝑠𝛼 + 𝑎𝑒−𝑠𝜏 ≠ 0 then every solution of (10) oscillates. 

 

Proof:Let on the contrary (10) has an eventually positive solution 𝑦(𝑡), that is let 𝑦(𝑡) > 0 for  

 

𝑡 ≥ −𝜏. So there exists constants 𝑀 and 𝜇 such that  

 

 |𝑦(𝑡)| ≤ 𝑀𝑒𝜇𝑡 , 𝑡 ≥ −𝜏. 

 

Thus, the Laplace transform  

 

 𝑌(𝑠) =  
∞

0
𝑒−𝑠𝑡𝑦(𝑡)𝑑𝑡 (11) 

exists for 𝑅𝑒𝑠 > 𝜇. 

 

By taking the Laplace transform of both sides in (10) we get 

 

 𝑠𝛿𝑌(𝑠) − [𝐷𝛿−1𝑦(𝑡)]𝑡=0 + 𝑎𝑒−𝑠𝜏𝑌(𝑠) + 𝑎(𝑠𝜏) = 𝐹(𝑠), 

 

where 𝐿{𝑦(𝑡)} = 𝑌(𝑠), 𝐿{𝑓(𝑡)} = 𝐹(𝑠), 𝑒−𝑠𝜏  
0

−𝜏
𝑒−𝑠𝑡𝑦(𝑡)𝑑𝑡 = (𝑠𝜏).  

So 

 

 (𝑠𝛿 + 𝑎𝑒−𝑠𝜏)𝑌(𝑠) = 𝐹(𝑠) − 𝑎(𝑠𝜏) + [𝐷𝛿−1𝑦(𝑡)]𝑡=0 

 

⇒ 𝐺(𝑠)𝑌(𝑠) = 𝑄(𝑠)                                      (12) 

 

where 𝐺(𝑠) = 𝑠𝛼 + 𝑎𝑒−𝑠𝜏  and 𝑄(𝑠) = 𝐹(𝑠) − 𝑎(𝑠𝜏) + [𝐷𝛿−1𝑦(𝑡)]𝑡=0 . 

 

Clearly 𝐺(𝑠) and 𝑄(𝑠) are entire functions and 𝐺(𝑠) ≠ 0 for all real s. So from (12) 

 

 𝑌 𝑠 =
𝑄 𝑠 

𝐺 𝑠 
,     𝑅𝑒𝑠 > 𝜎0 

 

where 𝜎0 is the abscissae of convergence of 𝑌(𝑠), i.e., 𝜎0 = inf{𝜎 ∈ 𝑅: 𝑌(𝜎)𝑒𝑥𝑖𝑠𝑡𝑠}. 

 

We claim that 𝜎0 = −∞. Otherwise 𝜎0 > −∞ and by Theorem 2.1 the point 𝑠 = 𝜎0 must be 

 

 a singularity of 
𝑄(𝑠)

𝐺(𝑠)
. But as this quotient has no singularity on the real axis 𝜎0 = −∞ and  

 𝑌 𝑠 =
𝑄 𝑠 

𝐺 𝑠 
       ∀𝑠 ∈ 𝑅 (13) 

 

Furthermore, we can observe that as 𝑠 → −∞, (13) gives us a contradiction as 𝑌(𝑠) and 𝐺(𝑠) 

 

are always positive where as 𝑄(𝑠) becomes eventually negative. Hence proved.  
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Example 3.3 : Consider the forced FDDE of the form  

 

 𝐷
1

3𝑦(𝑡) + 𝑦(𝑡 −
𝜋

6
) =  3𝑐𝑜𝑠𝑡 (14) 

 

which satisfies the conditions of Theorem 3.3 and 𝑦(𝑡) = 𝑐𝑜𝑠𝑡 is an oscillatory solution of  

 

(14).  

 

Theorem 3.4 : Let  

 𝑦𝛿(𝑡) +  𝑛
𝑖=1 𝑎𝑖𝑦(𝑡 − 𝜏𝑖) = 𝑓(𝑡) (15) 

 

be a forced delay differential equation of fractional order with 0 < 𝛿 < 1, 𝑎𝑖 , 𝜏𝑖 ∈ 𝑅+,  

 

𝑎𝑖 ≠ 0. If lim𝑠→−∞𝐹(𝑠) = 0, where 𝐹(𝑠) = 𝐿{𝑓(𝑡)} as well as 𝑠𝛿 +  𝑛
𝑖=1 𝑎𝑖𝑒

−𝑠𝜏𝑖 ≠ 0, then  

 

every solution of (15) oscillates. 

 

Proof:The proof is similar to that of Theorem 3.3. 

 

Example 3.4 : Consider the forced FDDE of the form 

 

 𝐷
1

3𝑦(𝑡) + 2𝑦(𝑡 −
5𝜋

6
) + 𝑦(𝑡 −

𝜋

6
) = 𝑠𝑖𝑛𝑡 (16) 

 

which satisfies all the conditions of Theorem 3.4 and 𝑦(𝑡) = 𝑐𝑜𝑠𝑡 is an oscillatory solution of  

 

(16). 

 

Theorem 3.5 : Let  

 𝑦𝛿(𝑡) + 𝑎𝑦(𝑡 − 𝜏) − 𝑏𝑦(𝑡 − 𝜎) = 0 (17) 

 

be a FDDE with 0 < 𝛿 < 1 and 𝑎, 𝑏, 𝜏, 𝜎 ∈ 𝑅+. Then 𝑎 > 𝑏 and 𝜏 ≥ 𝜎 is a necessary 

 

 condition for all solutions of (17) to oscillate. 

 

Proof:The characteristic equation of (17) is given by  

 

 𝐺(𝜆) = 𝜆𝛿 + 𝑎𝑒−𝜆𝜏 − 𝑏𝑒−𝜆𝜎 = 0 (18) 

 

Let every solution of (17) oscillate. So (17) has no real roots. As 𝐺(∞) = ∞, it follows that  

 

𝐺(0) = 𝑎 − 𝑏 > 0 ⇒ 𝑎 > 𝑏. 
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Also 𝜏 ≥ 𝜎 because if 𝜏 < 𝜎 and 𝑏 > 0 then 𝐺(−∞) = −∞, which is a contradiction. 

 

Example 3.5 : Consider the following FDDE   

 

 𝑦
1

3(𝑡) +
3

2
𝑦(𝑡 −

5𝜋

6
) −

1

2
𝑦(𝑡 −

5𝜋

6
) = 0 (19) 

 

𝑎 =
3

2
>

1

2
= 𝑏, 𝜏 = 𝜎 =

5𝜋

6
. 

 

It can be easily verified that 𝑦(𝑡) = 𝑐𝑜𝑠𝑡 is one of its solutions. 

 

Theorem 3.6 : If 𝑎 > 𝑏, 𝜏 ≥ 𝜎, 𝑏(𝜏 − 𝜎) ≤ 𝜆𝛿−1 and (𝑎 − 𝑏)𝜏 >
1

𝑒
[𝜆𝛿−1 − 𝑏(𝜏 − 𝜎)] 

 

then all solutions of (17) oscillate. 

 

Proof: Let on the contrary all solutions of (17) do not oscillate. So (18) has a real root say 𝜆0. 

 

Now,  

 𝜆0(𝜆0
𝛿−1 − 𝑏  

𝜏

𝜎
𝑒−𝜆0𝑠𝑑𝑠) 

 

 = 𝜆0
𝛿 + 𝑏(𝑒−𝜆0𝜏 − 𝑒−𝜆0𝜎) 

 

 = −(𝑎 − 𝑏)𝑒−𝜆0𝜏 ≤ 0 (20) 

 

 For 𝜆 ≥ 0 

 

 𝜆0
𝛿−1 − 𝑏  

𝜏

𝜎
𝑒−𝜆𝑠𝑑𝑠 ≥ 𝜆0

𝛿−1 − 𝑏 
𝜏

𝜎
𝑑𝑠 

 

 = 𝜆0
𝛿−1 − 𝑏(𝜏 − 𝜎) ≥ 0 (21) 

 So 𝜆0 < 0. 

 

Thus (20) can be written as  

 

 𝜆0[𝜆0
𝛿−1 − 𝑏(𝜏 − 𝜎)] + (𝑎 − 𝑏)𝑒−𝜆0𝜏 < 0 

  

⇒ 𝜆0 +
𝑎−𝑏

𝜆0
𝛿−1−𝑏(𝜏−𝜎)

𝑒−𝜆0𝜏 < 0 (22) 

 

 So the equation  

 𝐹(𝜆) = 𝜆 +
𝑎−𝑏

1−𝑏(𝜏−𝜎)
𝑒−𝜆𝜏 = 0 

 

has a real root in (𝜆0, 0) as 𝐹(𝜆0) < 0 by (22) and 𝐹(0) =
𝑎−𝑏

1−𝑏(𝜏−𝜎)
> 0. 
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Therefore  

 (𝑎 − 𝑏)𝜏 ≤
1

𝑒
[𝜆0

𝛿−1 − 𝑏(𝜏 − 𝜎)] 

 

which contradicts our assumption. So all solutions of (17) oscillate. 

 

Example 3.6 : Consider the FDDE given by (19) which satisfies all the assumptions of 

 

Theorem 3.6 as well and has the oscillatory solution 𝑥(𝑡) = 𝑐𝑜𝑠𝑡. 

 

Theorem 3.7 : Let  

 

 𝑦𝛿(𝑡) + 𝑎𝑦(𝑡 − 𝜏) − 𝑏𝑦(𝑡 − 𝜎) = 𝑓(𝑡),0 < 𝛿 < 1 (23) 

 

be a forced FDDE with 𝑎, 𝑏, 𝜏, 𝜎 ∈ 𝑅+. If 𝑎 > 𝑏, 𝜏 ≥ 𝜎 and lim𝑠→−∞𝐹(𝑠) = 0 as well as  

 

𝑠𝛿 + 𝑎𝑒−𝑠𝜏 − 𝑏𝑒−𝑠𝜎 ≠ 0 then every solution of (23) oscillates. 

 

Proof: Similar to the proof of Theorem 3.3. 

 

Example 3.7 : The following forced FDDE given by 

 

 𝐷
1

3𝑦(𝑡) + 3𝑦(𝑡 −
5𝜋

6
) − 𝑦(𝑡 −

𝜋

6
) =

−3 3

2
𝑠𝑖𝑛𝑡 −

1

2
𝑐𝑜𝑠𝑡 (24) 

 

satisfies all the conditions of Theorem 3.9 and 𝑦(𝑡) = 𝑠𝑖𝑛𝑡 is an oscillatory solution of (24). 

 

Theorem 3.8 : Let 

 

 𝑦𝛿(𝑡) +  𝑚
𝑖=1 𝑎𝑖𝑦(𝑡 − 𝜏𝑖) −  𝑛

𝑗 =1 𝑏𝑗𝑦(𝑡 − 𝜎𝑗 ) = 𝑓(𝑡),0 < 𝛿 < 1 (25) 

 

be a forced delayed differential equation of fractional order. If  𝑚
𝑖=1 𝑎𝑖 >  𝑛

𝑗 =1 𝑏𝑗 , 𝜏𝑖 ≥ 𝜎𝑗  for  

 

all 𝑖 = 1, . . . , 𝑚,   𝑗 = 1, . . . , 𝑛, lim𝑠→−∞𝐹(𝑠) = 0 and 𝑠𝛿 +  𝑚
𝑖=1 𝑎𝑖𝑒

−𝑠𝜏𝑖 −  𝑛
𝑗 =1 𝑏𝑗𝑒

−𝑠𝜎𝑗 ≠ 0,  

 

then every solution of (25) oscillates. 

 

Proof: The proof is similar to that of Theorem 3.3. 

 

The following example justifies the above theorem. 

 

Example 3.8 : Consider the forced FDDE of the form  
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 𝐷
1

3𝑦(𝑡) + 𝑦(𝑡 −
17𝜋

6
) −

1

5
𝑦(𝑡 − 𝜋) −

1

2
𝑦(𝑡 − 2𝜋) =

−3

10
𝑠𝑖𝑛𝑡 (26) 

 

It can be easily verified that (26) satisfies all the conditions of Theorem 3.10 and 𝑦(𝑡) = 𝑠𝑖𝑛𝑡 

 

is an oscillatory solution of (26).  

 

Theorem 3.9 : Consider the following FDDE  

 

 𝐷𝛿  𝑦(𝑡) + 𝐷𝛽𝑦(𝑡) + 𝑎𝑦(𝑡 − 𝜏) = 0 (27) 

 

where 0 < 𝛿 < 1, 0 < 𝛽 < 1, 𝑎 ∈ 𝑅 , 𝜏 ∈ 𝑅+. If 𝑠𝛿+𝛽 + 𝑠𝛿 + 𝑎𝑒−𝑠𝜏 ≠ 0 then every  

 

solution of (27) oscillates.  

 

Proof: Let on the contrary (27) has an eventually positive solution 𝑦(𝑡). So 𝑦(𝑡) > 0 for  

 

𝑡 ≥ −𝜏. So taking the Laplace transform of (27) we get  

 

 𝑠𝛿+𝛽 + 𝑠𝛿 + 𝑎𝑒−𝑠𝜏 𝑌(𝑠) = 𝑠𝛿  𝐷𝛽−1𝑦(𝑡) 
𝑡=0

+  𝐷𝛿−1(𝐷𝛽𝑦(𝑡) + 𝑦(𝑡)) 
𝑡=0

− 𝑎(𝑠𝜏) 

 

where 𝑌(𝑠) = 𝐿{𝑦(𝑡)} and (𝑠𝜏) = 𝑒−𝑠𝜏  
0

−𝜏
𝑒−𝑠𝑡𝑦(𝑡)𝑑𝑡. 

 

Proceeding as in Theorem 3.3 , we get a contradiction. So every solution of (27) oscillates. 

 

Example 3.9: It can be easily verified that the FDDE  

 

 𝐷
1

2  𝑦 𝑡 + 𝐷
1

3y(t) + 2𝑐𝑜𝑠
𝜋

12
𝑦  𝑡 −

2𝜋

3
 = 0 (28) 

 

satisfies all the conditions of Theorem 3.9 and 𝑦(𝑡) = 𝑠𝑖𝑛𝑡 is an oscillatory solution of (28). 

 

The following theorems can easily be proved.  

 

Theorem 3.10: If  

 

 𝐷𝛿  𝑦(𝑡) + 𝐷𝛽𝑦(𝑡) + 𝑎𝑦(𝑡 − 𝜏) = 𝑓(𝑡) (29) 

 

where 0 < 𝛿 < 1, 0 < 𝛽 < 1, 𝑎 ∈ 𝑅, 𝜏 ∈ 𝑅+ is a forced FDDE such that 

 

𝑠𝛿+𝛽 + 𝑠𝛿 + 𝑎𝑒−𝑠𝜏 ≠ 0 and lim𝑠→−∞𝐹(𝑠) = 0 holds where 𝐹(𝑠) = 𝐿{𝑓(𝑡)} then every  

 

solution of (29) oscillates.  
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Theorem 3.11: Let us consider a FDDE with positive and negative coefficients of the form  

 

 𝐷𝛿  𝑦(𝑡) + 𝐷𝛽𝑦(𝑡) + 𝑎𝑦(𝑡 − 𝜏) − 𝑏𝑦(𝑡 − 𝜎) = 0 (30) 

 

where 0 < 𝛿 < 1, 0 < 𝛽 < 1, 𝑎, 𝑏, 𝜏, 𝜎 ∈ 𝑅+. If 𝑠𝛿+𝛽 + 𝑠𝛿 + 𝑎𝑒−𝑠𝜏 − 𝑏𝑒−𝑠𝜎 ≠ 0 then every 

 

solution of (30) oscillates. 

 

Theorem 3.12: If  

 

 𝐷𝛿  𝑦(𝑡) + 𝐷𝛽𝑦(𝑡) + 𝑎𝑦(𝑡 − 𝜏) − 𝑏𝑦(𝑡 − 𝜎) = 𝑓(𝑡) (31) 

 

where 𝛿, 𝛽 ∈ (0,1), 𝑎, 𝑏, 𝜏, 𝜎 ∈ 𝑅+ is a forced FDDE with positive and negative coefficients 

 

such that 𝑠𝛿+𝛽 + 𝑠𝛿 + 𝑎𝑒−𝑠𝜏 − 𝑏𝑒−𝑠𝜎 ≠ 0 and lim𝑠→−∞𝐹(𝑠) = 0 then every solution of   

 

(31) oscillates. 

 

The above theorems are justified by the following examples.  

 

Example 3.10: Consider the forced FDDE  

 

 𝐷
1

2  𝑦(𝑡) + 𝐷
1

3𝑦(𝑡) +  3𝑐𝑜𝑠
𝜋

12
𝑦(𝑡 −

𝜋

2
) = 𝑐𝑜𝑠

𝜋

12
. 𝑠𝑖𝑛𝑡 (32) 

 

which satisfies all the conditions of Theorem 3.10 and 𝑦(𝑡) = 𝑠𝑖𝑛𝑡 is an oscillatory solution of  

 

(32). 

 

Example 3.11: Let 

 

 𝐷
1

2  𝑦(𝑡) + 𝐷
1

3𝑦(𝑡) + 𝑐𝑜𝑠
𝜋

12
𝑦(𝑡 − 𝜋) −  3𝑐𝑜𝑠

𝜋

12
𝑦(𝑡 −

3𝜋

2
) = 0 (33) 

 

be a FDDE. It can easily be shown that (33) satisfies all the conditions of Theorem 3.11 and has  

 

the oscillatory solution 𝑦(𝑡) = 𝑠𝑖𝑛𝑡. 

 

 

Example 3.12: The forced FDDE 

 

 𝐷
1

3  𝑦(𝑡) + 𝐷
1

5𝑦(𝑡) + 2𝑐𝑜𝑠
𝜋

20
. 𝑐𝑜𝑠

13𝜋

60
𝑦 𝑡 − 𝜋 − 2𝑐𝑜𝑠

𝜋

20
. 𝑠𝑖𝑛

13𝜋

60
𝑦  𝑡 −

𝜋

2
 =

                                                                                                                              −4𝑐𝑜𝑠
𝜋

20
. 𝑠𝑖𝑛

13𝜋

60
𝑠𝑖𝑛𝑡   (34) 
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 justifies Theorem 3.12 and has the oscillatory solution 𝑦(𝑡) = 𝑐𝑜𝑠𝑡. 

 

Remark 3.1: Theorems 3.9 to Theorem 3.12 will also hold good if 𝛼 = 𝛽.  

 

Theorem 3.13: Let us consider a fractional functional differential equation(FFDE)  

 

 𝐷𝛿  𝑦(𝑡) + 𝐷𝛽𝑦(𝑡) + 𝑎𝑦(𝑡 − 𝜏) − 𝑏𝑦(𝑡 − 𝜎) = 0 (35) 

 

where 1 < 𝛿 < 2, 0 < 𝛽 < 1, 𝑎, 𝑏, 𝜏, 𝜎 ∈ 𝑅+, 𝛿 =
𝑜𝑑𝑑𝑖𝑛𝑡𝑒𝑔𝑒𝑟

𝑜𝑑𝑑𝑖𝑛𝑡𝑒𝑔𝑒𝑟
, 𝛽 =

𝑜𝑑𝑑𝑖𝑛𝑡𝑒𝑔𝑒𝑟

𝑜𝑑𝑑𝑖𝑛𝑡𝑒𝑔𝑒𝑟
. 

 

If 𝑎 > 𝑏, 𝜏 ≥ 𝜎, 𝜆 ≥ 0, 𝜆𝛿−1 + 𝜆𝛽+𝛿−1 +
𝜆𝛽−1(−𝛿)

Γ(1−𝛿)
 

𝑡

0
𝑠−𝛿−1𝑑𝑠 ≥ 𝑏(𝜏 − 𝜎), where  

 

𝜆𝛽−1(−𝛿)

Γ(1−𝛿)
 

𝑡

0
𝑠−𝛿−1𝑑𝑠 ≤ 0 and (𝑎 − 𝑏)𝜏 >

1

𝑒
 𝜆𝛿−1 + 𝜆𝛽+𝛿−1 − 𝑏(𝜏 − 𝜎) , then every solution  

 

of (35) oscillates. 

 

Proof: The characteristic equation of (35) is  

 

 𝐹(𝜆) = 𝜆𝛿 + 𝜆𝛿+𝛽 +
𝜆𝛽 𝑡−𝛿

Γ(1−𝛿)
+ 𝑎𝑒−𝜆𝜏 − 𝑏𝑒−𝜆𝜎 = 0 (36) 

 

Let (36) have a real root 𝜆0. Then  

 

 𝜆0
𝛿 + 𝜆0

𝛽+𝛿
+

𝜆0
𝛽
𝑡−𝛿

Γ(1−𝛿)
+ 𝑎𝑒−𝜆0𝜏 − 𝑏𝑒−𝜆0𝜎 = 0 (37) 

 

 Now  

  

𝜆0  𝜆0
𝛿−1 + 𝜆0

𝛽+𝛿−1
+

𝜆0
𝛽−1

(−𝛿)

Γ(1 − 𝛿)
 

𝑡

0

𝑠−𝛿−1𝑑𝑠 − 𝑏 
𝜏

𝜎

𝑒−𝜆0𝑠𝑑𝑠  

  

= 𝜆0
𝛿 + 𝜆0

𝛽+𝛿
+

𝜆0
𝛽
𝑡−𝛿

Γ(1 − 𝛿)
+ 𝑏 𝑒−𝜆0𝜏 − 𝑒−𝜆0𝜎  

  

= −𝑎𝑒−𝜆0𝜏 + 𝑏𝑒−𝜆0𝜎 + 𝑏𝑒−𝜆0𝜏 − 𝑏𝑒−𝜆0𝜎  

 

 = −(𝑎 − 𝑏)𝑒−𝜆0𝜏 ≤ 0 (38) 

 

For 𝜆 ≥ 0 

 



 

May – June 2020 

ISSN: 0193-4120 Page No. 9507 – 9521 

 

 

9519 Published by: The Mattingley Publishing Co., Inc. 

 𝜆𝛿−1 + 𝜆𝛽+𝛿−1 +
𝜆𝛽−1(−𝛿)

Γ(1−𝛿)
 

𝑡

0
𝑠−𝛿−1𝑑𝑠 − 𝑏  

𝜏

𝜎
𝑒−𝜆𝑠𝑑𝑠 

 

 ≥ 𝜆𝛿−1 + 𝜆𝛿+𝛽−1 +
𝜆𝛽−1(−𝛿)

Γ(1−𝛿)
 

𝑡

0
𝑠−𝛿−1𝑑𝑠 − 𝑏  

𝜏

𝜎
𝑑𝑠 

 

 ≥ 0 (39) 

 

So 𝜆0 < 0 which follows from (38). 

 

From (39) 

 

 𝜆0 𝜆0
𝛿−1 + 𝜆0

𝛽+𝛿−1
− 𝑏(𝜏 − 𝜎) ≥ 0. 

 

Furthermore from (38) and (39)  

 

 𝜆0 𝜆0
𝛿−1 + 𝜆0

𝛽+𝛿−1
− 𝑏(𝜏 − 𝜎) ≤ −(𝑎 − 𝑏)𝑒−𝜆0𝜏 ≤ 0 

 

 ⇒ 𝜆0 𝜆0
𝛿−1 + 𝜆0

𝛽+𝛿−1
− 𝑏(𝜏 − 𝜎) + (𝑎 − 𝑏)𝑒−𝜆0𝜏 ≤ 0 

 

 ⇒ 𝜆0 +
(𝑎−𝑏)𝑒−𝜆0𝜏

(𝜆0
𝛿−1+𝜆0

𝛽 +𝛿−1
−𝑏(𝜏−𝜎 ))

≤ 0. 

 Thus the equation 

 

 𝜆 +
(𝑎−𝑏)𝑒−𝜆𝜏

𝜆𝛿−1+𝜆𝛽 +𝛿−1−𝑏(𝜏−𝜎)
= 0 

 

has a real root on (𝜆0, ∞) which implies that  

 

  𝑎 − 𝑏 𝜏 ≤
1

𝑒
 𝜆0

𝛿−1 + 𝜆0
𝛿+𝛽−1

− 𝑏 𝜏 − 𝜎                  [5, 𝑇𝑒𝑜𝑟𝑒𝑚2.2.3] 

 

which is a contradiction to our assumption. Hence the theorem holds. 

 

Example 3.13: The FFDE 

 

 𝐷
5

3  𝑦 𝑡 + 𝐷
1

5𝑦 𝑡  + 2𝑐𝑜𝑠
𝜋

20
𝑐𝑜𝑠

53𝜋

60
𝑦 𝑡 − 2𝜋 − 2𝑐𝑜𝑠

𝜋

20
𝑠𝑖𝑛

53𝜋

60
𝑦  𝑡 −

3𝜋

2
 = 0, 

 

𝑡 ∈  2𝜋, ∞ (40) 

 

 

justifies Theorem 3.13 and 𝑦(𝑡) = 𝑠𝑖𝑛𝑡 is an oscillatory solution of (40). 
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Furthermore, if we consider the FFDEs of the type  

 

 𝐷𝛿  𝑦(𝑡) + 𝑎𝑦(𝑡 − 𝜏) + 𝑏𝑦(𝑡 − 𝜎) = 0 (41) 

 

where 0 < 𝛿 < 1, 𝑎, 𝑏, 𝜏, 𝜎 ∈ 𝑅+ and  

 

 𝐷𝛿  𝑦(𝑡) + 𝑎𝑦(𝑡 − 𝜏) + 𝑏𝑦(𝑡 − 𝜎) = 𝑓(𝑡) (42) 

 

where 0 < 𝛿 < 1, 𝑎, 𝑏, 𝜏, 𝜎 ∈ 𝑅+ then the following theorems hold. 

 

Theorem 3.14: Every bounded solution of (41) oscillates if and only if its characteristic equation  

 

has no roots in (−∞, 0]. 

 

Theorem 3.15: If lim𝑠→−∞𝐹(𝑠) = 0, where 𝐹(𝑠) = 𝐿{𝑓(𝑡)} and 𝑠𝛿 + 𝑎𝑠𝛿𝑒−𝑠𝜏 + 𝑏𝑒−𝑠𝜎 ≠ 0,  

 

𝑠 ∈ (−∞, 0] then every bounded solution of (42) oscillates. 

 

The above two theorems are justified by the following examples. 

 

Example 3.14: The FFDE  

 𝐷
1

2 𝑦(𝑡) + 2𝑦(𝑡 − 𝜋) + 𝑦(𝑡 +
𝜋

4
) = 0 (43) 

 

illustrates Theorem 3.14 and has an oscillatory solution 𝑦(𝑡) = 𝑠𝑖𝑛𝑡.  

 

Example 3.15: The FFDE  

 𝐷
1

2 𝑦(𝑡) + 𝑦(𝑡 − 𝜋) + 𝑦(𝑡 − 2𝜋) = 𝑠𝑖𝑛𝑡 (44) 

 

satisfies all the conditions of Theorem 3.15 and 𝑦(𝑡) = 𝑠𝑖𝑛𝑡 is an oscillatory solution of (44). 

 

Conclusion 

 In this paper, several results on the 

oscillation criteria of different types fractional 

functional differential equations and forced 

fractional delay differential equations with constant 

coefficients have been established. We further intend 

to extend our work to the study of the qualitative 

behaviour of solutions of systems of fractional 

functional differential equations in future as well 

their application to real life problems.  
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