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Abstract: 

In this paper an attempt has been made to find an alternative numerical method for 

the solution of the initial value problem in ordinary differential equations. 

Previously, researchers have used Taylor’s series expansion or they have 

approximated the definite integral by different quadrature rules to develop 

numerical methods for the said purpose. We have developed a variant method using 

numerical integration based on Haar wavelet to approximate the same. The 

performance and the stability of the constructed method have been studied. The 

constructed method is found to be of second order. 

 

Keywords: Quadrature rule, Initial value problem, Euler method, Runge-Kutta 

method, stability. 

INTRODUCTION

We come across many physical problems in the 

fields of science and engineering. The solutions of 

those problems are very much desired. For that 

purpose these problems are mathematically 

formulated, called mathematical models. The models 

can be of different types, namely system of linear or 

nonlinear equations, ordinary differential equations, 

partial differential equations and many more. So we 

need to have tools to solve the models. 

Unfortunately, many of the ordinary differential 

equations do not have analytic solution and many of 

them are too difficult to be solved analytically. 

Hence we must have efficient numerical methods to 

handle them. In late 19th century and 20th century 

many a methods and algorithms were developed to 

solve the initial value problem in ordinary 

differential equations numerically. Additionally, the 

advent of electronic computers in the mid 20th has 

made the job easier for those numerical methods and 

the use of these methods became extensive. 

Let the initial value problem be 

 

𝑦 ′ = 𝑓 𝑥, 𝑦 , 𝑦 𝑥𝑜 = 𝑦0(1) 

 There are a good number of efficient methods to 

find the numerical solution of above initial value 

problem (1). Euler’ s method[4] is fundamental in 

this effort.The stability and the accuracy of Euler’s 

method is very low[6]. Runge[2], Kutta[3], Heun[1] 

and Nyström [12] are some early works with 

improved stability and accuracy. Later Butcher[7], 

Gill[8], Butcher and Warner[5] and Merson[13] have 

contributed to the advancement of those ideas.We 

are presenting a few of them.  

Variant Second order method for the numerical 

solution Initial Value Problem in Ordinary 

Differential Equations 
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    1)  1.1   Euler’s method  

 

 𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑥𝑛 , 𝑦𝑛) (2) 

 The scheme is developed by using the Newton’s forward difference interpolation. This is a first order 

method.  

    2)  1.2   Taylor’s method  

 

 𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑥𝑛 , 𝑦𝑛) +
ℎ2

2
(𝑓𝑥 + 𝑓𝑦𝑓)(𝑥𝑛 , 𝑦𝑛) + ⋯ (3) 

 

    3)  1.3   Modified Euler’s method  

 

 𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑘2 (4) 

 where 𝑘1 = 𝑓(𝑥𝑛 , 𝑦𝑛) and 𝑘2 = 𝑓(𝑥𝑛 +
ℎ

2
, 𝑦𝑛 +

ℎ

2
𝑘1). 

The scheme has been developed by using mid-point rule. This is a 2nd order method.  

    4)  1.4   Improved Euler’s method  

 

 𝑦𝑛+1 = 𝑦𝑛 +
ℎ

2
(𝑘1 + 𝑘2) (5) 

 where 𝑘1 = 𝑓(𝑥𝑛 , 𝑦𝑛) and 𝑘2 = 𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 + ℎ𝑘1) 

The scheme has been developed by using trapezoidal rule. This is a 2nd order method.  

    5)  1.5  Heun’s method  

 

 𝑦𝑛+1 = 𝑦𝑛 +
(𝑘1+𝑘2)

2
 (6) 

 where 𝑘1 = ℎ𝑓(𝑥𝑛 , 𝑦𝑛) and 𝑘2 = ℎ𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 + 𝑘1) 

The scheme has been developed by using trapezoidal rule. This is a 2nd order method.  

    6)  1.6  Runge-Kutta 2nd order method  

 

 𝑦𝑛+1 = 𝑦𝑛 +
(2𝑘1+𝑘2)

3
 (7) 

 where 𝑘1 = ℎ𝑓(𝑥𝑛 , 𝑦𝑛) and 𝑘2 = ℎ𝑓(𝑥𝑛 +
3

2
ℎ, 𝑦𝑛 +

3

2
𝑘1) 

The scheme has been developed by comparing with Taylor’s series to achieve 2nd order accuracy. 

This is a 2nd order method.  

    7)  1.7  Runge-Kutta 4th order method  

 

 𝑦𝑛+1 = 𝑦𝑛 +
(𝑘1+2𝑘2+2𝑘3+𝑘4)

6
 (8) 

where 𝑘1 = ℎ𝑓(𝑥𝑛 , 𝑦𝑛) ,𝑘2 = ℎ𝑓(𝑥𝑛 +
1

2
ℎ, 𝑦𝑛 +

1

2
𝑘1),𝑘3 = ℎ𝑓(𝑥𝑛 +

1

2
ℎ, 𝑦𝑛 +

1

2
𝑘2) 

and 𝑘4 = ℎ𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 + 𝑘3). 

 

The scheme has been developed by comparing with Taylor’s series to achieve 4th order accuracy. 

This is a 4th order method. 
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 Consequently, some modifications are also 

made to the above methods to improve the accuracy 

of the solution. Recently, Abraham O [10], [11] has 

improved the modified Euler’s method. But the 

classical Runge-Kutta 4th order method do stand 

handy to use. 

 

 Now, we have developed a variant one step 

method to solve the IVP numerically using 

numerical integration based on Haar-wavelets [9]. 

The constructed method is found to be of 2nd order. 

Further, we have found the stability region for this 

method and evaluated the error associated with the 

method . 

 

 The paper is organized as follows. In 

Section-2 a new modern one step variant method is 

developed .Section-3 presents the order of the new 

variant method. In Section-4 Stability of the method 

is studied. Numerical examples are provided in 

Section-5. The last section, Section-6 concludes the 

paper.  

 

 

2   Main results 

 New method 

Let us solve the initial value problem (1) as follows; 

 

 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) 

 i.e.  

 𝑑𝑦 = 𝑓(𝑥, 𝑦)𝑑𝑥 

 Now integrating both sides from 𝑥0 to 𝑥0 + 𝛼ℎ we have 

 

  ‍
𝑥0+𝛼ℎ

𝑥0
𝑑𝑦 =  ‍

𝑥0+𝛼ℎ

𝑥0
𝑓(𝑥, 𝑦)𝑑𝑥 

 where 0 < 𝛼 ≤ 1 

i.e.  

 𝑦(𝑥0 + 𝛼ℎ) = 𝑦(𝑥0) + 𝑓(𝑥0, 𝑦0)  ‍
𝑥0+𝛼ℎ

𝑥0
𝑑𝑥 

 (Choosing 𝑓(𝑥, 𝑦) = 𝑓(𝑥0, 𝑦0), for 𝑥0 ≤ 𝑥 ≤ 𝑥0 + 𝛼ℎ) 

So  

 𝑦(𝑥0 + 𝛼ℎ) = 𝑦(𝑥0) + 𝛼ℎ𝑓(𝑥0, 𝑦0) 

 In general, we have  

 𝑦(𝑥𝑛 + 𝛼ℎ) = 𝑦(𝑥𝑛) + 𝛼ℎ𝑓(𝑥𝑛 , 𝑦𝑛) (9) 

 Again let us solve  

 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦), 𝑦(𝑥𝑛) = 𝑦𝑛  (10) 

 as follows. 

 

 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) 

 i.e  

  ‍
𝑥𝑛+𝛼ℎ

𝑥𝑛
𝑑𝑦 =  ‍

𝑥𝑛+𝛼ℎ

𝑥𝑛
𝑓(𝑥, 𝑦)𝑑𝑥 

 Using the quadrature rule by Islam et al.[9]  
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𝑦(𝑥𝑛 + 𝛼ℎ) = 𝑦(𝑥𝑛) +
 𝑥𝑛 + 𝛼ℎ −  𝑥𝑛 

2
 ‍

2

𝑘=1

𝑓(𝑥𝑛 +
 𝛼ℎ  𝑘 − 0.5 

2
, 𝑦  𝑥𝑛 +

 𝛼ℎ  𝑘 − 0.5 

2
 

= 𝑦𝑛 +
𝛼ℎ

2
(𝑓(𝑥𝑛 +

𝛼ℎ

4
, 𝑦(𝑥𝑛 +

𝛼ℎ

4
)) + 𝑓(𝑥𝑛 +

3𝛼ℎ

4
, 𝑦(𝑥𝑛 +

3𝛼ℎ

4
))) 

 = 𝑦𝑛 +
𝛼ℎ

2
(𝑓(𝑥𝑛 +

𝛼ℎ

4
, 𝑦(𝑥𝑛) +

𝛼ℎ

4
) + 𝑓(𝑥𝑛 +

3𝛼ℎ

4
, 𝑦(𝑥𝑛) +

3𝛼ℎ

4
)) (11) 

 where 𝑓𝑛 = 𝑓(𝑥𝑛 , 𝑦𝑛) and using ( 9) 

For 𝛼 = 1, 

 

 𝑦(𝑥𝑛 + ℎ) = 𝑦(𝑥𝑛+1) 

 = 𝑦𝑛+1 

 = 𝑦𝑛 +
ℎ

2
(𝑓(𝑥𝑛 +

ℎ

4
, 𝑦(𝑥𝑛) +

ℎ

4
𝑓𝑛 ) + 𝑓(𝑥𝑛 +

3ℎ

4
, 𝑦(𝑥𝑛) +

3ℎ

4
𝑓𝑛)) (12) 

 Above method is named as Variant Method (VM) for the solution of IVP in ordinary differential equations.  

 

3   Order of the Variant method 

 Using Taylor’s formula:  

𝑦(𝑥𝑛 + ℎ) − 𝑦(𝑥𝑛) = ℎ𝑦′(𝑥𝑛) +
ℎ2

2!
𝑦′′(𝑥𝑛) +

ℎ3

3!
𝑦′′′(𝑥𝑛) +⋯ 

= ℎ𝑓(𝑥𝑛 , 𝑦𝑛) +
ℎ2

2
(𝑓𝑥 + 𝑓𝑛𝑓𝑦 ) +

ℎ3

6
(𝑓𝑥𝑥 + 2𝑓𝑛𝑓𝑥𝑦 + 𝑓𝑛

2𝑓𝑦𝑦 + 𝑓𝑥𝑓𝑦 + 𝑓𝑛𝑓𝑦
2) +⋯ (13) 

 And using the Variant method formula ( 12), we have  

 𝑦𝑛+1 − 𝑦𝑛 =
ℎ

2
[(𝑓(𝑥𝑛 , 𝑦𝑛) +

ℎ

4
𝑓𝑥 (𝑥𝑛 , 𝑦𝑛) +

ℎ

4
𝑓𝑛𝑓𝑦 (𝑥𝑛 , 𝑦𝑛) +

ℎ2

32
𝑓𝑥𝑥 (𝑥𝑛 , 𝑦𝑛) 

 +
ℎ2

16
𝑓𝑛𝑓𝑥𝑦 (𝑥𝑛 , 𝑦𝑛) +

ℎ2

32
𝑓𝑛
2𝑓𝑦𝑦 (𝑥𝑛 , 𝑦𝑛) + 𝑂(ℎ3)) 

 +(𝑓(𝑥𝑛 , 𝑦𝑛) +
3ℎ

4
𝑓𝑥 (𝑥𝑛 , 𝑦𝑛) +

3ℎ

4
𝑓𝑛𝑓𝑦 (𝑥𝑛 , 𝑦𝑛) +

9ℎ2

32
𝑓𝑥𝑥 (𝑥𝑛 , 𝑦𝑛) 

 +
9ℎ2

16
𝑓𝑛𝑓𝑥𝑦 (𝑥𝑛 , 𝑦𝑛) +

9ℎ2

32
𝑓𝑛
2𝑓𝑦𝑦 (𝑥𝑛 , 𝑦𝑛) + 𝑂(ℎ3))] 

 = ℎ𝑓(𝑥𝑛 , 𝑦𝑛) +
ℎ2

2
(𝑓𝑥 (𝑥𝑛 , 𝑦𝑛) + 𝑓𝑛𝑓𝑦 (𝑥𝑛 , 𝑦𝑛)) 

 +
5ℎ3

32
(𝑓𝑥𝑥 (𝑥𝑛 , 𝑦𝑛) + 2𝑓𝑛𝑓𝑥𝑦 (𝑥𝑛 , 𝑦𝑛) + 𝑓𝑛

2𝑓𝑦𝑦 (𝑥𝑛 , 𝑦𝑛)) + 𝑂(ℎ4) 

 = ℎ𝑓(𝑥𝑛 , 𝑦𝑛) +
ℎ2

2
𝑓′(𝑥𝑛 , 𝑦𝑛) 

 +
5ℎ3

32
(𝑓𝑥𝑥 (𝑥𝑛 , 𝑦𝑛) + 2𝑓𝑛𝑓𝑥𝑦 (𝑥𝑛 , 𝑦𝑛) + 𝑓𝑛

2𝑓𝑦𝑦 (𝑥𝑛 , 𝑦𝑛)) + 𝑂(ℎ4) (14) 

 From the equations (13) and (14), we see that  

 𝐸𝑅𝑅𝑂𝑅 =
ℎ3

6
(𝑓𝑥𝑥 + 2𝑓𝑛𝑓𝑥𝑦 + 𝑓𝑛

2𝑓𝑦𝑦 + 𝑓𝑥𝑓𝑦 + 𝑓𝑛𝑓𝑦
2) 

 −
5ℎ3

32
(𝑓𝑥𝑥 + 2𝑓𝑛𝑓𝑥𝑦 + 𝑓𝑛

2𝑓𝑦𝑦 ) + 𝑂(ℎ4) 

 =
ℎ3

6
(𝑓𝑥𝑥 + 2𝑓𝑛𝑓𝑥𝑦 + 𝑓𝑛

2𝑓𝑦𝑦 + 𝑓𝑦 (𝑓𝑥 + 𝑓𝑛𝑓𝑦 )) + 

 −
5ℎ3

32
(𝑓𝑥𝑥 + 2𝑓𝑛𝑓𝑥𝑦 + 𝑓𝑛

2𝑓𝑦𝑦 ) + 𝑂(ℎ4) 

 = ℎ3(
1

96
𝑓𝑥𝑥 +

1

48
𝑓𝑛𝑓𝑥𝑦 +

1

96
𝑓𝑛
2𝑓𝑦𝑦 +

1

6
𝑓𝑦 (𝑓𝑥 + 𝑓𝑛𝑓𝑦 )) + 𝑂(ℎ4) 

 = 𝑂(ℎ3) (15) 
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 It is seen that the variant method agrees upto 𝑂(ℎ2). 

Hence we affirm that the constructed method is of 

second order and the local error is 𝑂(ℎ3).  

4   Stability of the Variant method 

 In this section the numerical stability of the 

proposed method is discussed. And it is compared 

with the stability of the contemporary methods. 

 

 It is quite possible that the numerical 

solution of a differential equation may grow 

unbounded even though its exact solution is well-

behaved. To analyze this let us consider the initial 

value problem : 

 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦), 𝑦(𝑥𝑛) = 𝑦𝑛  

 

 Our objective is to get a numerically stable 

solution to the given initial value problem and this 

can be achieved by determining the range of the step 

size such that the numerical solution remains 

bounded. 

Now we consider the Taylor’s series for a 

function of two-variables:  

 

 𝑓(𝑥, 𝑦) = 𝑓(𝑥𝑛 , 𝑦𝑛) + (𝑥 − 𝑥𝑛)
𝜕𝑓

𝜕𝑥
(𝑥𝑛 , 𝑦𝑛) + (𝑦 − 𝑦𝑛)

𝜕𝑓

𝜕𝑦
(𝑥𝑛 , 𝑦𝑛) 

 +
1

2!
[(𝑥 − 𝑥𝑛)

2 𝜕
2𝑓

𝜕𝑥2
(𝑥𝑛 , 𝑦𝑛) 

 +2(𝑥 − 𝑥𝑛)(𝑦 − 𝑦𝑛)
𝜕2𝑓

𝜕𝑥𝜕𝑦
(𝑥𝑛 , 𝑦𝑛) 

 +(𝑦 − 𝑦𝑛)
2 𝜕2𝑓

𝜕𝑦2
(𝑥𝑛 , 𝑦𝑛)] + ⋯ (16) 

 Considering only the linear terms of the above series and substituting the same in the given IVP, we get  

 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥𝑛 , 𝑦𝑛) + (𝑥 − 𝑥𝑛)

𝜕𝑓

𝜕𝑥
(𝑥𝑛 , 𝑦𝑛) + (𝑦 − 𝑦𝑛)

𝜕𝑓

𝜕𝑦
(𝑥𝑛 , 𝑦𝑛) 

 = 𝑓(𝑥𝑛 , 𝑦𝑛) + 𝑥
𝜕𝑓

𝜕𝑥
(𝑥𝑛 , 𝑦𝑛) + 𝑦

𝜕𝑓

𝜕𝑦
(𝑥𝑛 , 𝑦𝑛) 

 −[𝑥𝑛
𝜕𝑓

𝜕𝑥
(𝑥𝑛 , 𝑦𝑛) + 𝑦𝑛

𝜕𝑓

𝜕𝑦
(𝑥𝑛 , 𝑦𝑛)] 

 = 𝑦
𝜕𝑓

𝜕𝑦
(𝑥𝑛 , 𝑦𝑛) + 𝑥

𝜕𝑓

𝜕𝑥
(𝑥𝑛 , 𝑦𝑛) 

 +𝑓(𝑥𝑛 , 𝑦𝑛) − [𝑥𝑛
𝜕𝑓

𝜕𝑥
(𝑥𝑛 , 𝑦𝑛) + 𝑦𝑛

𝜕𝑓

𝜕𝑦
(𝑥𝑛 , 𝑦𝑛)] 

 = 𝛼𝑦 + 𝛽𝑥 + 𝛾 (17) 

 where  

 𝛼 =
𝜕𝑓

𝜕𝑦
(𝑥𝑛 , 𝑦𝑛), 𝛽 =

𝜕𝑓

𝜕𝑥
(𝑥𝑛 , 𝑦𝑛), 𝛾 = 𝑓(𝑥𝑛 , 𝑦𝑛) − [𝑥𝑛

𝜕𝑓

𝜕𝑥
(𝑥𝑛 , 𝑦𝑛) + 𝑦𝑛

𝜕𝑓

𝜕𝑦
(𝑥𝑛 , 𝑦𝑛)] 

 are constants. 

Now we take the model problem 
𝑑𝑦

𝑑𝑥
= 𝜆𝑦, where 𝜆 = 𝑝 + 𝑖𝑞 and 𝑝 ≤ 0. and solve it using our 

variant method as follows: 

 

 𝑦𝑛+1 = 𝑦𝑛 +
ℎ

2
(𝑓(𝑥𝑛 +

ℎ

4
, 𝑦(𝑥𝑛) +

ℎ

4
𝑓𝑛) + 𝑓(𝑥𝑛 +

3ℎ

4
, 𝑦(𝑥𝑛) +

3ℎ

4
𝑓𝑛 )) 

 = 𝑦𝑛 +
ℎ

2
(𝑓(𝑥𝑛 +

ℎ

4
, 𝑦𝑛 +

ℎ

4
𝜆𝑦𝑛) + 𝑓(𝑥𝑛 +

3ℎ

4
, 𝑦𝑛) +

3ℎ

4
𝜆𝑦𝑛)) 

 = 𝑦𝑛 +
ℎ

2
(𝜆(𝑦𝑛 +

ℎ

4
𝜆𝑦𝑛) + (𝑦𝑛) +

3ℎ

4
𝜆𝑦𝑛)) 

 = 𝑦𝑛 +
ℎ

2
(2𝜆𝑦𝑛 + ℎ𝜆2)𝑦𝑛) 

 = 𝑦𝑛 + (ℎ𝜆𝑦𝑛 +
ℎ2𝜆2𝑦𝑛

2
) 
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 = (1 + ℎ𝜆 +
ℎ2𝜆2

2
)𝑦𝑛  

 = 𝜎𝑦𝑛  (18) 

 where 𝜎 = (1 + ℎ𝜆 +
ℎ2𝜆2

2
) Now for the stability of the method, we must have  

 |𝜎| ≤ 1 (19) 

 i.e.  

 |1 + ℎ𝜆 +
ℎ2𝜆2

2
| ≤ 1 (20) 

 And we will consider the following equation to get the region of stability  

 |1 + ℎ𝜆 +
ℎ2𝜆2

2
| = 1 = |𝑒𝑥𝑝(𝑖𝜃)| (21) 

 i.e.  

 (1 + ℎ𝜆 +
ℎ2𝜆2

2
) − 𝑒𝑥𝑝(𝑖𝜃) = 0 (22) 

 The above polynomial equation is solved for 0 ≤ 𝜃 ≤ 2𝜋 the stability region is shown in the Figure-1.  

 

 
Figure  1: Stability region 

 

 It is observed from the figure-1 that the boundary of the stability region on the real axis is |ℎ𝜆𝑅| ≤

2. This is very same as that of the 2nd order RK method. The stability region does not include the entire left 

half plane. So, this method is not A-stable.  

5   Numerical examples 

Problem-1: 

 

 
𝑑𝑦

𝑑𝑥
= 1 −

𝑦

𝑥
, 𝑦(2) = 2. (23) 

  Problem-2: 

 

 
𝑑𝑦

𝑑𝑥
= 1 − 𝑦, 𝑦(0) = 0. (24) 
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  Problem-3: 

 

 
𝑑𝑦

𝑑𝑥
=

𝑥

𝑦
, 𝑦(0) = 0.5. (25) 

  Problem-4: 

 

 
𝑑𝑦

𝑑𝑥
= −𝑦, 𝑦(0) = 1. (26) 

 

Above four problems are solved numerically using 

the constructed variant method(VM) (12) . The exact 

solutions are evaluated analytically and the 

corresponding absolute errors are computed too. 

Finally the errors are compared with some of the 

same class of methods ,namely Euler(E),Modified 

Euler(ME),Improved Euler(IE), Improved modified 

Euler(IME), Modified improved modified 

Euler(MIME) and Runge-Kutta second order 

method(RK-2).And those are shown in Figure-2, 

Figure-3,Figure-4 and Figure-5 respectively. In the 

the above list of methods, Euler’s method is an 

exception of being a first order method unlike other 

second order methods. 

 

 
Figure  2: Error comparison for Problem-1 

 

 From the figure-2 it is found that the 

absolute error in the Problem-1 using the variant 

method is less than that of all other methods except 

that of the Improved Euler method (IE).  

 

 
Figure  3: Error comparison for Problem-2 
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From the figure-3 it is found that the absolute 

error in the Problem-2 using the variant method is 

less than or equal to that of all other methods except 

that of the Modified Improved Modified Euler 

method (MIME).  

 
Figure  4: Error comparison for Problem-3 

 

 From the figure-4 it is found that the 

absolute error in the Problem-3 using the variant 

method is less than that of all other methods except 

that of the Improved Euler method (IE) and 

Improved Modified Euler Method (IME).

 

 
Figure  5: Error comparison for Problem-4 

 

From the figure-5 it is found that the absolute error 

in the Problem-4 using the variant method is less 

than or e that of all other methods except that of the 

Modified Improved Euler method (MIME) .  

 

6   Conclusion 

 In this paper, we have developed a new 

variant one step method to find the numerical 

solution of the Initial Value Problem in ordinary 

differential equation of all type. The error expression 

of the method is derived to ensure that the 

constructed method is of order 2.The stability 

stability regon of the Variant Method (VM) is 

studied and found to be the same as that of RK 2nd 

order method. Hence can be used as an alternative to 

RK 2nd order method. Numerical examples show 

that the Variant Method (VM) gives better result 
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than most of the methods of the same class.This 

mehod gives a very good imprssion of becoming a 

handy tool to solve ordinary differential equations of 

all order.  
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