

May – June 2020

ISSN: 0193-4120 Page No. 8228 - 8232

8228

Published by: The Mattingley Publishing Co., Inc.

Memory Management Unit and its Performance

Enhancement Techniques

Divya Jamakhandi
(1)

, Sowmya K B
(2)

1,2
Electronics and Communication Dept., R V College of Engineering

1
divyaaj.ec16@rvce.edu.in

2
sowmyakb@rvce.edu.in

Article Info

Volume 83

Page Number: 8228 - 8232

Publication Issue:

May - June 2020

Article History

Article Received: 19 November 2019

Revised: 27 January 2020

Accepted: 24 February 2020

Publication: 18 May 2020

Abstract:

Memory management unit (MMU) is a computer hardware through which address

references are passed for translation of virtual memory addresses to physical addresses

for effective access of physical memory. An MMU also performs memory protection,

cache control and bus arbitration managing the virtual space. While the processor

addresses a larger address space the actual available memory in physical may be

variant. Hence it becomes important to have a system that converts the address (virtual

address) provided by the processor for accessing a certain location to an address that

maps it into the physical memory. While Processors are becoming faster, one major

bottleneck to this increasing performance is memory access latency. MMU also

performs many accesses into memory slowing down the processor. Therefore, this

literature presents a detailed review and analysis of Memory Management Unit

applications and various ways to improve its performance.

Keywords: Memory Management Unit (MMU), Virtual Address, Physical Address,

Address Translation, Page Table, Memory Access.

I. Introduction

In all systems, every processor or IO device

which accesses memory needs a Memory

Management Unit of its own. This MMU has a

page table residing in memory which has a

translation reference from virtual address to

physical address. MMUs use a table called page

table stored in memory which contains page table

entries which are reference from in-memory table

of items called a "page table", containing one

"page table entry" (PTE) per page, to map virtual

page numbers to physical page numbers in main

memory. Page Walk is the process of

converting virtual addresses to physical addresses

by traversing various page tables. The page walk

has high latency when compared to the processor

speed, as it involves multiple memory access and

using them to compute the physical address. The

page walk stages, and memory access duration

depends on page size. As small page size leads to

many accesses to memory, it causes large latency

in address translation. But the holes present in

memory are usually of small size due to random

allocation and deallocation of memory by the

operating system. Hence the opting of large sized

page sizes may give invalid spaces in memory

causing high unreliability with MMU. Optimal

page size is very important for better performance

of MMU. Virtual address gives a continuous

memory space available for the processor while

the physical memory may have discontinuous

memory allocation.

Memory access is one of the bottlenecks in

improvement of speed of any system due to high

latency in access of memory bank. A fast and

optimized MMU which converts virtual address to

physical address with minimum access to memory

during page walk will increase the speed of the

system. This is the motivation to study MMU and

present the review.

II. Literature Review

The understanding of any system performance

requires a detailed study of its memory access

pattern. Therefore, it is important to study the

efficiency and memory management unit

performance and various factors that affect it. One

such study and improvement technique is

proposed by Vasileios Karakostas and team in the

May – June 2020

ISSN: 0193-4120 Page No. 8228 - 8232

8229

Published by: The Mattingley Publishing Co., Inc.

paper [1]. This literature states in numbers the

MMU overhead for real time scale out

applications that use performance counters. The

numbers state that about 16% of execution time

which are a result of miss rates occurring in TLB

and clashes between page walks and data access

in the cache. It gives proof that large pages may

improve MMU overheads and performance of

application by about 13.9%. Due to low memory

locality even when large pages are enabled the

performance may not improve drastically. About

3.8% performance gap is seen with increased page

size. But there is high scope for improvement, as

even with large pages the MMU overheads are

still very high.

The work by Antoine Faravelon and team in

the research [2], gives an Optimization technique

in which the translation technique being used is

Dynamic Binary Translation which optimizes the

memory accesses done by MMU during the Page

table walk making it efficient. As processor speed

is largely slowed down by memory access,

Dynamic Memory Translation proves to be

increasing the simulation of SOCs to greater

extent as it hits at this bottleneck. A hardware

MMU based emulation in software is needed for

every load and store issued by the processor. In

recent times this software emulation is performed

on hardware and used the capabilities of

hardware-based virtualization. For running the

entire simulation on virtual CPU, firstly a

hardware-based shadow page tables are setup are

like any other usual hypervisor. The second step is

the compression of multiple load and store

instruction to a smaller number, to avoid

emulation overheads. The work also explains in

detail how this technique is implemented to

improve the memory access efficiency by MMU

implemented by a DBT engine speeding up the

performance by about 40% by changing the

translation technique.

The Research by Xiantao Zhang and team [3]

presents a Hash Translation Lookaside Buffer

technique for MMU optimization and

virtualization. Virtualization is a technique in

which the access to hardware resources which are

expensive is shared using virtualization techniques

assisted completely by hardware. Virtual machine

monitor that uses system virtualization is observed

to be a great optimization technique. Firstly, the

virtual hash table-based implementation in TLB is

studied. The studies show that this technique can

improve virtual system performance by a margin

of about 5%. Th implementation of this work

starts with the design of hash TLB algorithm and

its optimization on guest virtual machines.

Second, is to study the performance benefits of

hash TLB approach and its effect on the walker.

This research also extends its study into the

scalability of this approach for implementation in

various systems. The work implements two

techniques, the Single table-based VT and Hash

table-based VT each giving a performance

improvement of about 0.42 and 3.66%

respectively. Figure 1 gives the comparison of

Single Table VT and Hash table VT for different

systems. For kernel build which have high disk

reads and writes a maximum performance

improvement of 44.34% is observed.

Figure 1: Performance Graphs of Hash TLB

Implementation.[3]

Memory is one of the vital components of a

Processor. The design of memory system for a

multicore processor is of great importance as the

high speed achieved by the addition of additional

processors should not be bottlenecked by the

memory system. The literature by Jianjun Guo

and team about the work [4] gives design

methodology for an efficient and optimized

memory system design as shown in Figure 2.

Multi-core processor design has turned into a

large research area in recent times. Cache are

highly expensive memory storage units, and not

fit to be used to store multiple copies of data in

any processor. The MMU efficiency is largely

affected by memory architecture design and this

research concentrates on design of a hybrid and

efficient memory hierarchy. This splits the locality

May – June 2020

ISSN: 0193-4120 Page No. 8228 - 8232

8230

Published by: The Mattingley Publishing Co., Inc.

of instruction and data storage by use of

hierarchical cache. This system includes various

levels of storage elements which include L1

instruction cache, local data storage, DMA engine,

L2 cache. The MMU is designed accordingly as

per the levels of memory and optimized. One

more optimization step is the replacement

strategies used at L2 Cache Level to reduce miss

rate.

Figure 2: Memory System for Multicore Processor.[4]

The research work by Yonghwan Lee and

team [5] proposes a technique in which the MMU

and Cache share a common shared tag. Both the

area of memory and speed of cache system that

used convention tag system are improved using

this shared tag based architecture. The proposed

architecture shown in Figure 3 is validated by

simulations and VLSI circuits are used to estimate

its speed and area. Two tag memories and cache

memories are concurrently accessed using the

virtual tag of TLB. For a hit occurring with the

virtual tag in TLB, a physical page is read from

memory into the TLB. The cache hit is decided

based on the comparison between the physical

page numbers and cache tag that have been

already read. On cache hit the processor is

returned with the requested data. Using this

technique, a maximum of 8% reduction of miss

rates is achieved.

Figure 3: Creation of Tagged address space.[5]

The Literature [6] by Jae Young Hur provides a

contiguity-based page table method to improve

performance Memory Management Unit. The

major overheads in conventional pages is the page

table walks which affect the system performance.

This scheme introduces a method to represent

contiguity in pages that can improves performance

by reducing the number of page table walks.

Certain physical memory used by the system is

allocated continuously without any holes. Hence

this continuous page can be resolved with a

smaller number of walks. The conventional page

method and contiguity-based method are

compared to get performance numbers. The

Figure 4 shows the implementation of the new

page table where new bit is added to represent the

contiguity and the continues pages lead to single

walk leading the improvement in efficiency. For

100% implementation of Contiguity matrix a

performance improvement of 10-50% can be got

for different access patterns with minimum of

10% at least.

Figure 4: Contiguity Page Tables.[6]

The literature [7] by Robert Witting and team

propose an efficient Queue based Memory

Management Unit which tries to combine the

flexibility of traditional methods with the low

latency property of tightly coupled memory. The

major idea is to reduce critical path by the conflict

detection method without disturbing the flexibility

of the dynamic system of memory allocation and

data widths that are heterogeneous. To implement

this hybrid a queue-based memory controller is

used. This design of Q-MMU is such that it

May – June 2020

ISSN: 0193-4120 Page No. 8228 - 8232

8231

Published by: The Mattingley Publishing Co., Inc.

pipelines all masters to have same delays in

access. Figure 5 shows the architecture of the

QMMU system. This connect gives an

improvement of over 20% than the AXI-interface

in critical path, which can increase up to 60% in

other paths.

Figure 5: Q-MMU Architecture.[7]

III. Inference

The literatures above show the various

roles that MMU plays in the system and its

importance for any system performance. The

literatures studied above have opted several

different methods to improve efficiency of MMU

unit. The literature [1] gives the effect of page size

on performance of MMU and how ideal design

between page size and performance needs to be

designed based on analysis of design

requirements. Other optimization techniques

include Binary Translation Tables[2], Hash-TLB

Approach[3], Shared tag based MMU and Cache

implementation[5], Coalesced and Shared

Memory Management Unit Caches for the

purpose of accelerating TLB Miss handling[9] and

adaptive memory allocation for better page table

allocation[8]. The improvements in performance

provided by these implementations are compile in

the Table below in Table 1.

Table 1: Performance Comparison of

different implementations.

Sl.

No.

Method of

Implementation

Percentage

Performance

improvement.

1. Large Page Size

usage.

16

2. Dynamic Binary

Translation

40

3. Hash TLB 44

4. Shared Tag based 8

MMU

5. Contiguity Based

Page Table.

10

6. Queue Based MMU 20

IV. Conclusion

Memory Management unit is a computer

hardware which converts virtual address into

physical address. It functions as interface for both

the processor and IO devices to the memory. As

memory access is one of the major bottlenecks in

system performance enhancement, this review

looks at the various ways in which the MMU

operation can be optimized. Faster walks, lesser

memory access and elimination of memory access

during walks are performed in the various

literatures reviewed in this survey. The review

presents a comprehensive look at the MMU

functionality and improvement techniques and

their impact on the system performance. It helps

to choose among the various implementations

based on their performance enhancement.

References

[1] V. Karakostas, O. S. Unsal, M. Nemirovsky, A.

Cristal and M. Swift, "Performance analysis of
the memory management unit under scale-out

workloads," 2014 IEEE International

Symposium on Workload Characterization
(IISWC), Raleigh, NC, 2014, pp. 1-12.

[2] A. Faravelon, O. Gruber and F. Pétrot,

"Optimizing Memory Access Performance

Using Hardware Assisted Virtualization in
Retargetable Dynamic Binary Translation," 2017

Euromicro Conference on Digital System Design

(DSD), Vienna, 2017, pp. 40-46.
[3] Xiantao Zhang, A. X. F. Xu, Qi Li, D. K. Y. Yau,

Sihan Qing and Huanguo Zhang, "A hash-TLB

approach for MMU virtualization in
xen/IA64," 2008 IEEE International Symposium

on Parallel and Distributed Processing, Miami,

FL, 2008, pp. 1-8.

[4] J. Guo et al., "Memory System Design for a
Multi-core Processor," 2008 International

Conference on Complex, Intelligent and

Software Intensive Systems, Barcelona, 2008, pp.
601-606.

[5] Yonghwan Lee, Wookyung Jeong, Sangjun Ahn

and Yongsurk Lee, "Shared tag for MMU and
cache memory," 1997 International

Semiconductor Conference 20th Edition. CAS

May – June 2020

ISSN: 0193-4120 Page No. 8228 - 8232

8232

Published by: The Mattingley Publishing Co., Inc.

'97 Proceedings, Sinaia, Romania, 1997, pp. 77-
80 vol.1.

[6] J. Y. Hur, "Representing Contiguity in Page

Table for Memory Management Units," 2017

IEEE 11th International Symposium on
Embedded Multicore/Many-core Systems-on-

Chip (MCSoC), Seoul, 2017, pp. 21-28.

[7] R. Wittig, M. Hasler, E. Matus and G. Fettweis,
"Queue Based Memory Management Unit for

Heterogeneous MPSoCs," 2019 Design,

Automation & Test in Europe Conference &
Exhibition (DATE), Florence, Italy, 2019, pp.

1297-1300.

[8] I. Deligiannis and G. Kornaros, "Adaptive

memory management scheme for MMU-less
embedded systems," 2016 11th IEEE Symposium

on Industrial Embedded Systems (SIES),

Krakow, 2016, pp. 1-8.
[9] A. Bhattacharjee, "Large-reach memory

management unit caches: Coalesced and shared

memory management unit caches to accelerate
TLB miss handling," 2013 46th Annual

IEEE/ACM International Symposium on

Microarchitecture (MICRO), Davis, CA, 2013,

pp. 383-394.
[10] A. Khaled and Q. Zhang, "An Energy Aware

Mass Memory Unit for Small Satellites Using

Hybrid Architecture," 2017 IEEE International
Conference on Computational Science and

Engineering (CSE) and IEEE International

Conference on Embedded and Ubiquitous

Computing (EUC), Guangzhou, 2017, pp. 210-
213.

[11] Y. Hao, Z. Fang, G. Reinman and J. Cong,

"Supporting Address Translation for

Accelerator-Centric Architectures," 2017 IEEE
International Symposium on High Performance

Computer Architecture (HPCA), Austin, TX,

2017, pp. 37-48.
[12] J. Y. Hur, "Representing Contiguity in Page

Table for Memory Management Units," 2017

IEEE 11th International Symposium on
Embedded Multicore/Many-core Systems-on-

Chip (MCSoC), Seoul, 2017, pp. 21-28.

[13] N. R. Saxena, C. -. D. Chang, K. Dawallu, J.

Kohli and P. Helland, "Fault-tolerant features in
the HaL memory management unit," in IEEE

Transactions on Computers, vol. 44, no. 2, pp.

170-180, Feb. 1995.

[14] K. Vimal and A. Trivedi, "A memory

management scheme for enhancing performance
of applications on Android," 2015 IEEE Recent

Advances in Intelligent Computational Systems

(RAICS), Trivandrum, 2015, pp. 162-166.

[15] F. Shamani, V. F. Sevom, J. Nurmi and T.

Ahonen, "Design, implementation and analysis

of a run-time configurable Memory Management
Unit on FPGA," 2015 Nordic Circuits and

Systems Conference (NORCAS): NORCHIP &

International Symposium on System-on-Chip

(SoC), Oslo, 2015, pp. 1-8.

