

Some Properties of G_{δ} - e^* -locally Closed Sets via Intuitionistic Fuzzy Topological Spaces

S. Sivasangari¹, R. Balakumar² and G. Saravanakumar³

^{1,2}Department of Mathematics, Prist University, Tanjore, Tamil Nadu,India
³Department of Mathematics, M. Kumarasamy College of Engineering (Autonomous), Karur - 639 113, India
¹sivasangarimaths2020@gmail.com, ²balaphd@gmail.com, ³saravananguru2612@gmail.com

Article Info Volume 83 Page Number: 7450 - 7454 Publication Issue: May - June 2020

Abstract:

This paper is devoted to the study of new class of sets called an intuitionistic fuzzy e^*-locally closed sets, intuitionistic fuzzy e^* G_ δ -set, intuitionistic fuzzy e^* G_ δ -locally closed sets and intuitionistic fuzzy G_ δ -locally closed sets are introduced and studied. Also the concepts of an intuitionistic fuzzy G_ δ -e^*-locally closed set, intuitionistic fuzzy subspace, intuitionistic fuzzy G_ δ -e^*-local- δ -semi (resp., δ -pre and β) spaces are introduced and interesting properties are established. In this connection, interelations are discussed. Examples are provided where necessary.

Article History Article Received: 19 November 2019 Revised: 27 January 2020 Accepted: 24 February 2020 Publication: 18 May 2020 interelations are discussed. Examples are provided where necessary. **Keywords:** Intuitionistic fuzzy $-e^{\star}$ -locally closed set, Intuitionistic fuzzy e^{\star} G_{δ} -sets, Intuitionistic fuzzy $e^{\star} \in G_{\delta}$ -locally closed set, Intuitionistic fuzzy G_{δ} - e^{\star} -locally closed set, intuitionistic fuzzy G_{δ} - e^{\star} -local- $T_{(1/2)}$ - spaces and intuitionistic fuzzy G_{δ} - e^{\star} - δ semi(resp., δ -pre and β) spaces. **AMS (2010) subject classification:** 54A40, 54A99, 03E72, 03E99

I. Introduction The concept of fuzzy sets was introduced by Zadeh [15] and Atanassov [1] introduced and studied intuitionistic fuzzy sets (briefly, \mathcal{IFS}). On the other hand, Coker [4] introduced the notions of an intuitionistic fuzzy topological spaces (briefly, IFTS), intuitionistic fuzzy continuity and some other related concepts. The concept of an intuitionistic fuzzy α -closed set was introduced by Biljana Krsteshka and Erdal Ekici [9]. The first step of locally closedness was done by Bourbaki [3]. Ganster and Relly used locally closed [8] to define LC-continuity sets in and LC-irresoluteness. Roja, Uma and Balasubramanian [2] discussed fuzzy G_{δ} continuous functions. The initiations of e^* -open sets, e^* -continuity and e^* -compactness in topological spaces are due to Ekici [5, 6, 7]. In fuzzy topology, e^* -open sets were introduced by seenivasan in 2014 [12]. Sobana et.al [13] were introduced the concept of fuzzy e^* -open sets, fuzzy e^* -continuity and fuzzy e^* -compactness in intuitionistic fuzzy topological spaces (briefly., IFTS's). In this paper we introduce the concepts of an intuitionistic fuzzy e^* -locally closed sets, intuitionistic fuzzy e^*G_{δ} -sets, intuitionistic fuzzy $e^{\star}G_{\delta}$ -locally closed sets and intuitionistic fuzzy G_{δ} - e^* -locally closed sets in IFTS's. Also the concepts of an intuitionistic fuzzy $G_{\delta} - e^*$ -locally closed intuitionistic fuzzy subsapce, intuitionistic

Published by: The Mattingley Publishing Co., Inc.

fuzzy $G_{\delta} - e^*$ -local $T_{\frac{1}{2}}$ space, intuitionistic fuzzy $G_{\delta} - e^*$ -local δ -semi (resp., δ -pre and β) spaces are introduced and studied. Some interesting properties and interrelations among sets and spaces are discussed with necessary examples.

II. Preliminaries

Definition 2.1 [1] Let X be a nonempty fixed set and I the closed interval [0, 1]. An JFS A is an object of the following form $\mathfrak{A} =$ $\{\langle x, \mu_{\mathfrak{A}}(x), \gamma_{\mathfrak{A}}(x) \rangle : x \in X\}$, where the mapping $\mu_{\mathfrak{N}}: X \to I \text{ and } \gamma_{\mathfrak{N}}: X \to I \text{ denote the degree of }$ membership (namely $\mu_A(x)$) and the degree of non membership (namely $\gamma_{\mathfrak{A}}(x)$) for each element $x \in$ X to the set \mathfrak{A} , respectively, and $0 \leq \mu_{\mathfrak{A}}(x) +$ $\gamma_{\mathfrak{N}}(x) \leq 1$ for each $x \in X$. Obviously, every fuzzy set \mathfrak{A} on a nonempty set X is an IFS of the following form, $\mathfrak{A} = \{ \langle x, \mu_{\mathfrak{A}}(x), 1 - \mu_{\mathfrak{A}}(x) \rangle : x \in X \}.$ For the sake of simplicity, we shall use the symbol $\mathfrak{A} = \{ \langle x, \mu_{\mathfrak{A}}(x), \gamma_{\mathfrak{A}}(x) \rangle \text{ for the } \}$ $\mathfrak{A} =$ IFS $\{\langle x, \mu_{\mathfrak{A}}(x), \gamma_{\mathfrak{A}}(x) \rangle \colon x \in X\}.$

Definition 2.2 [1] Let \mathfrak{A} and \mathfrak{B} be JFS's of the form $\mathfrak{A} = \{\langle x, \mu_{\mathfrak{A}}(x), \gamma_{\mathfrak{A}}(x) \rangle : x \in X\}$ and $\mathfrak{B} = \{\langle x, \mu_{\mathfrak{B}}(x), \gamma_{\mathfrak{B}}(x) \rangle : x \in X\}$. Then

1. $\mathfrak{A} \subseteq \mathfrak{B}$ if and only if $\mu_{\mathfrak{A}}(x) \leq \mu_{\mathfrak{B}}(x)$ and $\gamma_{\mathfrak{A}}(\underline{x}) \geq \gamma_{\mathfrak{B}}(x)$;

2.
$$\mathfrak{A} = \{ \langle x, \gamma_{\mathfrak{A}}(x), \mu_{\mathfrak{A}}(x) \rangle \colon x \in X \};$$

3. $\mathfrak{A} \cap \mathfrak{B} = \{ \langle x, \mu_{\mathfrak{A}}(x) \land \\ \mu_{\mathfrak{B}}(x), \gamma_{\mathfrak{A}}(x) \lor \gamma_{\mathfrak{B}}(x) \rangle : x \in X \};$ 4. $\mathfrak{A} \cup \mathfrak{B} = \{ \langle x, \mu_{\mathfrak{A}}(x) \lor \\ \mu_{\mathfrak{B}}(x), \gamma_{\mathfrak{A}}(x) \land \gamma_{\mathfrak{B}}(x) \rangle : x \in X \};$

Definition 2.3 [1] The JFS's 0 $_{\sim}$ and 1 $_{\sim}$ are defined by , 0 $_{\sim} = \{ < x, 0, 1 > : x \in X \}$ and 1 $_{\sim} = \{ < x, 1, 0 > : x \in X \}.$

Definition 2.4 [4] An intuitionistic fuzzy topology (JFT) in Coker's sense on a nonempty set X is a family Γ of JFS 's in X satisfying the following axioms:

1. 0 $_{\sim}$, 1 $_{\sim} \in \Gamma$;

2. $\mathfrak{G}_1 \cap \mathfrak{G}_2 \in \Gamma$, for any $\mathfrak{G}_1, \mathfrak{G}_2 \in \Gamma$;

3. $\bigcup \mathfrak{G}_i \in \Gamma$ for any arbitrary family $\{\mathfrak{G}_i : i \in \mathfrak{J}\} \subseteq \Gamma$.

In this paper by (X, Γ) or simply by X we will denote the \mathcal{IFTS} . Each \mathcal{IFS} which belongs to Γ is called an \mathcal{IF} open set (\mathcal{IFOS}) in X. The complement $\overline{\mathfrak{A}}$ of an \mathcal{IFOS} \mathfrak{A} in X is called an \mathcal{IF} closed set (\mathcal{IFCS}) in X.

Definition 2.5 [4] Let (X, Γ) be an IFTS and $\mathfrak{A} = \{ \langle x, \mu_{\mathfrak{A}}, \nu_{\mathfrak{A}} \rangle : x \in X \}$ be an IFS in X. Then the IF closure and IF interior of \mathfrak{A} are defined by

1. $cl(\mathfrak{A}) = \bigcap \{\mathfrak{C}: \mathfrak{C} \text{ is an } IFCS$ in X and $\mathfrak{C} \supseteq \mathfrak{A}\};$

2. $int(\mathfrak{A}) = \bigcup \{\mathfrak{D}: \mathfrak{D} \text{ is an IFOS} in X \text{ and } \mathfrak{D} \subseteq \mathfrak{A}\};$

It can be also shown that $cl(\mathfrak{A})$ is an \mathcal{IFCS} , $int(\mathfrak{A})$ is an \mathcal{IFOS} in X and \mathfrak{A} is and \mathcal{IFCS} in X if and only if $cl(\mathfrak{A}) = \mathfrak{A}$; \mathfrak{A} is an \mathcal{IFOS} in X if and only if $int(\mathfrak{A}) = \mathfrak{A}$

Definition 2.6 [14] Let \mathfrak{A} be JFS in an JFJS (X, Γ) . \mathfrak{A} is called an

1. \mathcal{IF} regular open set (briefly *IFROS*) if $\mathfrak{A} = intcl(\mathfrak{A})$

2. \mathcal{IF} regular closed set (briefly *IFRCS*) if $\mathfrak{A} = clint(\mathfrak{A})$

Definition 2.7 [2] Let (X, Γ) be a fuzzy topological space and \mathfrak{A} be a fuzzy set in X. \mathfrak{A} is called G_{δ} set if $\mathfrak{A} = \bigcap_{i=1}^{\infty} \mathfrak{A}_{i}$ where each $\mathfrak{A}_{i} \in T$. The complement of fuzzy G_{λ} is fuzzy F_{σ}

Definition 2.8 [14] Let (X, Γ) be an *JFTS* and $\mathfrak{A} = \langle x, \mu_{\mathfrak{A}}(x), \nu_{\mathfrak{A}}(x) \rangle$ be a *JFS* in X. Then the fuzzy δ closure of \mathfrak{A} are denoted and defined by $cl_{\delta}(\mathfrak{A}) = \cap \{\mathfrak{K}: \mathfrak{K} \text{ is an } JFRCS \text{ in } X$ and $\mathfrak{A} \subseteq \mathfrak{K}\}$ and $int_{\delta}(\mathfrak{A}) = \cup \{\mathfrak{G}: \mathfrak{G} \text{ is an } JFROS$ in X and $\mathfrak{G} \subseteq \mathfrak{A}\}.$

Definition 2.9 [13] Let \mathfrak{A} be an JFS in an JFTS (X, Γ). \mathfrak{A} is called an JF δ -semiopen (resp.

 δ -preopen, β -open) set $(\Im F \delta SO (resp. \Im F \delta PO, \Im F \beta O)$, for short), if $\mathfrak{A} \subseteq cl(int_{\delta}(\mathfrak{A}))$ (resp. $\mathfrak{A} \subseteq int(cl_{\delta}(\mathfrak{A}))$, $\mathfrak{A} \subseteq cl(int(cl(\mathfrak{A})))$). \mathfrak{A} is called an $\Im F \delta$ -semiclosed (resp. δ -preclosed, β -closed) set $(\Im F \delta SC (resp. \Im F \delta PC, \Im F \beta C)$ (for short)) if $\mathfrak{A} \supseteq int(cl_{\delta}(\mathfrak{A}))$ (resp. $\mathfrak{A} \supseteq cl(int_{\delta}(\mathfrak{A}))$, $\mathfrak{A} \supseteq int(cl(int(\mathfrak{A}))))$.

Definition 2.10 [13] Let \mathfrak{A} be an JFS in an JFTS(X, Γ). \mathfrak{A} is called an JF e^* -open set (JF e^* OS, for short) in X if $\mathfrak{A} \subseteq clintcl_{\delta}(\mathfrak{A})$

Definition 2.11 [10] Let (X, Γ) be an *JFTS* and Y be any *JF* subset of X. Then $\Gamma_Y =$ $(\mathfrak{A}/Y|\mathfrak{A} \in \Gamma)$ is an *JFT* on Y and is called the induced or relative *JFT*. The pair (Y, Γ_Y) is called an *JF* subspace of $(X, \Gamma): (Y, \Gamma_Y)$ is called an *JF* open/*JF* closed subspace if the *JF* characteristic function of (Y, Γ_Y) viz χ_Y is *JF* open/*JF* closed.

III. Intuitionistic fuzzy $G_{\delta} - e^*$ -locally closed sets in an intuitionistic fuzzy topological spaces

Definition 3.1 Let (X, Γ) be an $\Im FTS$. Let $\mathfrak{A} = \{\langle x, \mu_{\mathfrak{A}}(x), \gamma_{\mathfrak{A}}(x) \rangle : x \in X\}$ be an $\Im FS$ on an $\Im FTS$ (X, Γ) . Then \mathfrak{A} is said to be $\Im F$ e^{*}-locally closed set (in short, $\Im F - e^* - lcs$) if $\mathfrak{A} = \mathfrak{C} \cap \mathfrak{D}$, where $\mathfrak{C} = \{\langle x, \mu_{\mathfrak{C}}(x), \gamma_{\mathfrak{C}}(x) \rangle : x \in X\}$ is an $\Im F$ e^{*}-open set and $\mathfrak{D} = \{\langle x, \mu_{\mathfrak{D}}(x), \gamma_{\mathfrak{D}}(x) \rangle : x \in X\}$ is an $\Im F$ e^{*}-closed set in (X, Γ) .

Definition 3.2 Let (X, Γ) be an $\Im FTS$. Let $\mathfrak{A} = \{\langle x, \mu_{\mathfrak{A}}(x), \gamma_{\mathfrak{A}}(x) \rangle : x \in X\}$ be an $\Im FS$ on an $\Im FTS X$. Then \mathfrak{A} is said to be an $\Im F e^*G_{\delta}$ - set if $\mathfrak{A} = \bigcap_{i=1}^{\infty} \mathfrak{A}_i$, where $\mathfrak{A}_i = \{\langle x, \mu_{\mathfrak{A}_i}(x), \gamma_{\mathfrak{A}_i}(x) \rangle : x \in X\}$ is an $\Im F e^*$ -open set in an $\Im FTS (X, \Gamma)$.

Definition 3.3 Let (X, Γ) be an $\Im FTS$. Let $\mathfrak{A} = \{\langle x, \mu_{\mathfrak{A}}(x), \gamma_{\mathfrak{A}}(x) \rangle : x \in X\}$ be an $\Im FS$ on an $\Im FTS$ (X, Γ) . Then \mathfrak{A} is said to be an $\Im F$ e^*G_{δ} -locally closed set (in short, $\Im F$ - e^*G_{δ} -lcs) if $\mathfrak{A} = \mathfrak{C} \cap \mathfrak{D}$, where $\mathfrak{C} = \{\langle x, \mu_{\mathfrak{C}}(x), \gamma_{\mathfrak{C}}(x) \rangle : x \in X\}$ is an $\Im F$ e^*G_{δ} set and $\mathfrak{D} = \{\langle x, \mu_{\mathfrak{D}}(x), \gamma_{\mathfrak{D}}(x) \rangle : x \in X\}$ is an $\Im F$ e^* -closed set in (X, Γ) .

Definition 3.4 Let (X, Γ) be an $\Im FTS$. Let $\mathfrak{A} = \{\langle x, \mu_{\mathfrak{A}}(x), \gamma_{\mathfrak{A}}(x) \rangle : x \in X\}$ be an $\Im FS$ on an $\Im FTS$ (X, Γ) . Then \mathfrak{A} is said to be an $\Im F$ G_{δ} -e^{*}-locally closed set (in short, $\Im F$ G_{δ} -e^{*}-lcs) if $\mathfrak{A} = \mathfrak{B} \cap \mathfrak{C}$, where $\mathfrak{B} = \{\langle x, \mu_{\mathfrak{B}}(x), \gamma_{\mathfrak{B}}(x) \rangle : x \in X\}$ is an $\Im F$ G_{δ} set and $\mathfrak{C} = \{\langle x, \mu_{\mathfrak{C}}(x), \gamma_{\mathfrak{C}}(x) \rangle : x \in X\}$ is an $\Im F$ e^{*}-closed set in (X, Γ) .

The complement of an \mathcal{IF} G_{δ} - e^{\star} -locally

closed set is said to be an \mathcal{IF} G_{δ} - e^* -locally open set (in short, \mathcal{IF} G_{δ} - e^* -los).

Definition 3.5 Let (X, Γ) be an $\Im FTS$. Let $\mathfrak{A} = \{\langle x, \mu_{\mathfrak{A}}(x), \gamma_{\mathfrak{A}}(x) \rangle : x \in X\}$ be an $\Im FS$ on an $\Im FTS$ (X, Γ) . The $\Im F$ G_{δ} - e^* -locally closure of \mathfrak{A} is denoted and defined by IFG_{δ} - e^* -lcl(\mathfrak{A}) = $\cap \{\mathfrak{B} : \mathfrak{B} = \{\langle x, \mu_{\mathfrak{B}}(x), \gamma_{\mathfrak{B}}(x) \rangle : x \in X\}$ is an $\Im F$ G_{δ} - e^* -locally closed set in X and $\mathfrak{A} \subseteq \mathfrak{B}$.

Proposition 3.1 Let (X, Γ) be an \mathcal{IFTS} . For any two \mathcal{IFS} 's $\mathfrak{A} = \{\langle x, \mu_{\mathfrak{A}}(x), \gamma_{\mathfrak{A}}(x) \rangle : x \in X\}$ and $\mathfrak{B} = \{\langle x, \mu_{\mathfrak{B}}(x), \gamma_{\mathfrak{B}}(x) \rangle : x \in X\}$ of an \mathcal{IFTS} (X, Γ) then the following statements are true.

1. $IFG_{\delta} - e^* - lcl(0_{\sim}) = 0_{\sim}$

2. $\mathfrak{A} \subseteq \mathfrak{B} \Rightarrow IF\widetilde{G_{\delta}} - e^{\star} - lcl(\mathfrak{A}) \subseteq IFG_{\delta} - e^{\star} - lcl(\mathfrak{A})$

3. $IFG_{\delta} - e^* - lcl(IFG_{\delta} - e^* - lcl(\mathfrak{A})) = IFG_{\delta} - e^* - lcl(\mathfrak{A})$

4. $IFG_{\delta} - e^* - lcl(\mathfrak{A} \cup \mathfrak{B}) = (IFG_{\delta} - e^* - lcl(\mathfrak{A} \cup \mathfrak{B})) \cup (IFG_{\delta} - e^* - lcl(\mathfrak{B}))$

Definition 3.6 Let (X, Γ) be an $\Im FTS$. Let $\mathfrak{A} = \{\langle x, \mu_{\mathfrak{A}}(x), \gamma_{\mathfrak{A}}(x) \rangle : x \in X\}$ be an $\Im FS$ on an $\Im FTS$ (X, Γ) . The $\Im F$ G_{δ} - e^* -locally interior of \mathfrak{A} is denoted and defined by IFG_{δ} - e^* -lint(\mathfrak{A}) = $\bigcup \ \{\mathfrak{B}: \mathfrak{B} = \{\langle x, \mu_{\mathfrak{B}}(x), \gamma_{\mathfrak{B}}(x) \rangle : x \in X\}$ is an $\Im F$ G_{δ} - e^* -los in X and $\mathfrak{B} \subseteq \mathfrak{A}$.

Proposition 3.2 Let (X, Γ) be an *JFTS*. Let $\mathfrak{A} = \{\langle x, \mu_{\mathfrak{A}}(x), \gamma_{\mathfrak{A}}(x) \rangle : x \in X\}$ and $\mathfrak{B} = \{\langle x, \mu_{\mathfrak{B}}(x), \gamma_{\mathfrak{B}}(x) \rangle : x \in X\}$ are *JFS* 's in an *JFTS* (X, Γ) . Then the following statements are true.

1. $IFG_{\delta} - e^* - lcl(\mathfrak{A})$ is the largest \mathcal{IF} $G_{\delta} - e^* - los$ contained in \mathfrak{A}

2. If \mathfrak{A} is an $\mathcal{IF} \ G_{\delta}-e^*$ -los then $\mathfrak{A} = IFG_{\delta}-e^*$ -lint(\mathfrak{A})

3. IF \mathfrak{A} is an \mathcal{IF} $G_{\delta} - e^* - los$ then $IFG_{\delta} - e^* - lint(IFG_{\delta} - e^* - lint(\mathfrak{A})) =$ $IFG_{\delta} - e^* - lint(\mathfrak{A})$

4. $IFG_{\delta} - e^* - lint(\mathfrak{A}) = IFG_{\delta} - e^* - lcl(\overline{\mathfrak{A}})$ 5. $IFG_{\delta} - e^* - lcl(\mathfrak{A}) = IFG_{\delta} - e^* - lint(\overline{\mathfrak{A}})$ 6. If $\mathfrak{A} \subseteq \mathfrak{B}$ then $IFG_{\delta} - e^* - lint(\mathfrak{A}) \subseteq$ $IFG_{\delta} - e^* - lint(\mathfrak{B})$

7. $(IFG_{\delta} - e^* - lint(\mathfrak{A})) \cap (IFG_{\delta} - e^* - lint(\mathfrak{A})) \supseteq IFG_{\delta} - e^* - lint(\mathfrak{A} \cap \mathfrak{B}).$

Remark 3.1

1. $IFG_{\delta}-e^*-lcl(\mathfrak{A}) = \mathfrak{A}$ if and only if \mathfrak{A} is an $\mathcal{IF} \ G_{\delta}-e^*-lcs$

2. $IFG_{\delta} - e^{\star} - lint(\mathfrak{A}) \subseteq A \subseteq IFG_{\delta} - e^{\star} - lcl(\mathfrak{A})$

3.
$$IFG_{\delta}-e^{\star}-lint(1 \ \sim)=1 \ \sim$$

4. $IFG_{\delta}-e^{\star}-lint(0 \ \sim)=0 \ \sim$

5. $IFG_{\delta}-e^{*}-lcl(1 \ _{\sim})=1 \ _{\sim}$

Proposition 3.3 Every $JF e^*$ -lcs is an $JF e^*G_{\delta}$ -lcs.

Remark 3.2 The converse of the Proposition 3.3 need not be true as show in Example 3.1.

Example 3.1 Let $X = \{a, b\}$ be a nonempty set. Let $\mathfrak{A} = \left\langle x, \left(\frac{a}{0.3}, \frac{b}{0.3}\right), \left(\frac{a}{0.6}, \frac{b}{0.6}\right) \right\rangle$, $\mathfrak{B} = \left\langle x, \left(\frac{a}{0.3}, \frac{b}{0.1}\right), \left(\frac{a}{0.5}, \frac{b}{0.4}\right) \right\rangle$, $\mathfrak{A} \cup \mathfrak{B} = \left\langle x, \left(\frac{a}{0.3}, \frac{b}{0.3}\right), \left(\frac{a}{0.5}, \frac{b}{0.4}\right) \right\rangle$ and $\mathfrak{A} \cap \mathfrak{B} = \left\langle x, \left(\frac{a}{0.3}, \frac{b}{0.3}\right), \left(\frac{a}{0.5}, \frac{b}{0.4}\right) \right\rangle$ be JFS 's of X. Then the family $\Gamma = \{0, 1, 2, \mathfrak{A}, \mathfrak{B}, \mathfrak{A} \cup \mathfrak{B}, \mathfrak{A} \cap \mathfrak{B}\}$ is an JFT on X. Now $\mathfrak{C} = \left\langle x, \left(\frac{a}{0}, \frac{b}{0.1}\right), \left(\frac{a}{0.9}, \frac{b}{0.9}\right) \right\rangle$ be JF e^*G_{δ} - set let $\mathfrak{D} = \left\langle x, \left(\frac{a}{0}, \frac{b}{0.1}\right), \left(\frac{a}{1}, \frac{b}{1}\right) \right\rangle$ be an JF e^* -closed set. Hence $\mathfrak{E} = \mathfrak{C} \cap \mathfrak{D} = \left\langle x, \left(\frac{a}{0}, \frac{b}{0.1}\right), \left(\frac{a}{1}, \frac{b}{1}\right) \right\rangle$ is JF e^*G_{δ} -lcs. But, \mathfrak{E} is not an JF e^* -lcs. Hence, JF e^*G_{δ} -set need not be an JF e^* -lcs.

Proposition 3.4 Every \mathcal{IF} G_{δ} -lcs is an \mathcal{IF} G_{δ} -e^{*}-lcs.

Remark 3.3 The converse of the Propositionn 3.4 need not be true as shown in Example 3.2.

Example 3.2 In Example 3.1 $\mathfrak{A} \cap \mathfrak{B}$ is an $\mathcal{IF} \ G_{\delta}$ -set. Let $\mathfrak{F} = \left\langle x, \left(\frac{a}{0}, \frac{b}{0.1}\right), \left(\frac{a}{0.7}, \frac{b}{0.7}\right) \right\rangle$ be an \mathcal{IF} e^* -closed set. Hence $\mathfrak{E} = (\mathfrak{A} \cap \mathfrak{B}) \cap \mathfrak{F} = \left\langle x, \left(\frac{a}{0}, \frac{b}{0.1}\right), \left(\frac{a}{0.7}, \frac{b}{0.7}\right) \right\rangle$ is G_{δ} - e^* -lcs. But, \mathfrak{E} is not an $\mathcal{IF} \ G_{\delta}$ -lcs. Hence, $\mathcal{IF} \ G_{\delta}$ - e^* -lcs need not be an $\mathcal{IF} \ G_{\delta}$ -lcs.

Remark 3.4 *JF* e^* - *lcs and JF* G_{δ} - e^* -*lcs's are independent of each other as shown by the following Example 3.3.*

Example 3.3 In Example 3.1 $\mathfrak{A} \cap \mathfrak{B}$ is an \mathcal{IF} G_{δ} -set. Let $\mathfrak{G} = \left\langle x, \left(\frac{a}{0.1}, \frac{b}{0.2}\right), \left(\frac{a}{0.5}, \frac{b}{0.5}\right) \right\rangle$ be an \mathcal{IF} e^* -closed set. Hence $\mathfrak{E} = (\mathfrak{A} \cap \mathfrak{B}) \cap \mathfrak{G} = \left\langle x, \left(\frac{a}{0.1}, \frac{b}{0.1}\right), \left(\frac{a}{0.6}, \frac{b}{0.6}\right) \right\rangle$ is G_{δ} - e^* -lcs. But, \mathfrak{E} is not an

 $\begin{aligned} \mathcal{IF} \ e^* \text{-lcs and } \mathfrak{H} &= \left(x, \left(\frac{a}{0}, \frac{b}{0.1}\right), \left(\frac{a}{0.5}, \frac{b}{0.4}\right)\right) \text{ be an } \mathcal{IF} \\ e^* \quad \text{-open} \quad \text{set} \quad \text{Hence} \quad \mathfrak{E} &= \mathfrak{G} \cap \mathfrak{H} \\ \left(x, \left(\frac{a}{0}, \frac{b}{0.1}\right), \left(\frac{a}{0.5}, \frac{b}{0.5}\right)\right) \text{ is } \mathcal{IF} \quad e^* \text{-lcs. But, } \mathfrak{E} \text{ is not} \\ G_{\delta} \text{-} e^* \text{-lcs.} \end{aligned}$

Proposition 3.5 Every $J\mathcal{F}$ G_{δ} - e^* -lcs is an $J\mathcal{F}$ e^*G_{δ} -lcs.

Remark 3.5 The converse of the Proposition 3.5 need not be true as shown in Example 3.4.

Example 3.4 In Example 3.1 $\mathfrak{C} = \left\langle x, \left(\frac{a}{0}, \frac{b}{0.1}\right), \left(\frac{a}{0.9}, \frac{b}{0.9}\right) \right\rangle$ be $\Im \mathcal{F} = e^* G_{\delta}$ - set and $\mathfrak{G} = \left\langle x, \left(\frac{a}{0.1}, \frac{b}{0.2}\right), \left(\frac{a}{0.5}, \frac{b}{0.5}\right) \right\rangle$ be an $\Im \mathcal{F} = e^*$ -closed set. Hence $\mathfrak{E} = \mathfrak{C} \cap \mathfrak{G} = \left\langle x, \left(\frac{a}{0}, \frac{b}{0.1}\right), \left(\frac{a}{0.9}, \frac{b}{0.9}\right) \right\rangle$ is $e^* G_{\delta}$ -lcs. But, \mathfrak{E} is not an $\Im \mathcal{F} = G_{\delta}$ -lcs. Hence,

JF e^*G_{δ} -lcs need not be an *JF* G_{δ} - e^* - lcs. **Remark 3.6** *JF* G_{δ} - lcs and *JF* e^*G_{δ} -lcs's are independent of each other as shown

 e^*G_{δ} -lcs's are independent of each other as shown by the following Example 3.5. Example 3.5 In Example 3.1 $\mathfrak{C} =$

 $\left\{ \begin{array}{l} x, \left(\frac{a}{0}, \frac{b}{0.1}\right), \left(\frac{a}{0.9}, \frac{b}{0.9}\right) \right\} \ be \ \mathcal{IF} \ e^*G_{\delta} - set \ and \ \mathfrak{G} = \\ \left\{ x, \left(\frac{a}{0.1}, \frac{b}{0.2}\right), \left(\frac{a}{0.5}, \frac{b}{0.5}\right) \right\} \ be \ an \ \mathcal{IF} \ e^* - closed \ set. \\ Hence \qquad \mathfrak{E} = \mathfrak{C} \cap \mathfrak{G} = \left\{ x, \left(\frac{a}{0}, \frac{b}{0.1}\right), \left(\frac{a}{0.9}, \frac{b}{0.9}\right) \right\} \ is \\ e^*G_{\delta} - lcs. \ But, \ \mathfrak{E} \ is \ not \ an \ \mathcal{IF} \ G_{\delta} - lcs \ and \ \mathfrak{A} \wedge \mathfrak{B} \\ is \ an \ \mathcal{IF} \ G_{\delta} - set \ let \ \mathfrak{IF} = \left\{ x, \left(\frac{a}{0.6}, \frac{b}{0.6}\right), \left(\frac{a}{0.3}, \frac{b}{0.1}\right) \right\} \ be \\ an \ \mathcal{IF} \ closed \ set. \ Hence \ \mathfrak{E} = \left(\mathfrak{A} \cap \mathfrak{B} \cap \mathfrak{B} \cap \mathfrak{B} \cap \mathfrak{S} = \\ \left\{ x, \left(\frac{a}{0.3}, \frac{b}{0.4}\right), \left(\frac{a}{0.6}, \frac{b}{0.6}\right) \right\} \ is \ G_{\delta} - lcs. \ But, \ \mathfrak{E} \ is \ not \ an \ \mathcal{IF} \ e^*G_{\delta} - lcs. \\ \end{array}$

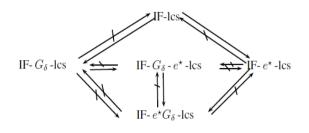
Proposition 3.6 Every JF lcs is an JF e^* -lcs.

Remark 3.7 The converse of the Proposition 3.6 need not be true as shown in Example 3.6

Example 3.6 In Example 3.1 Let $\mathfrak{J} = \left\langle x, \left(\frac{a}{0}, \frac{b}{0.1}\right), \left(\frac{a}{0.5}, \frac{b}{0.4}\right) \right\rangle$ be $\Im \mathcal{F}$ e^{*}-open set and $\mathfrak{H} = \left\langle x, \left(\frac{a}{0.1}, \frac{b}{0.2}\right), \left(\frac{a}{0.4}, \frac{b}{0.4}\right) \right\rangle$ be an $\Im \mathcal{F}$ e^{*}-closed set. Hence $\mathfrak{E} = \mathfrak{J} \cap \mathfrak{H} = \left\langle x, \left(\frac{a}{0}, \frac{b}{0.1}\right), \left(\frac{a}{0.5}, \frac{b}{0.4}\right) \right\rangle$ is e^{*}-lcs. But, \mathfrak{E} is not an $\Im \mathcal{F}$ lcs.

Remark 3.8 Every JF lcs is an JF Published by: The Mattingley Publishing Co., Inc. G_{δ} -lcs but the converse need not be true as shown in [10].

Remark 3.9 *Clearly the followinng diagram holds.*



Definition 3.7 Let (X, Γ) be an JFTS and Y be any JF subset of X. Then $\Gamma_Y =$ $(\mathfrak{A}/Y|\mathfrak{A} \in \Gamma)$ is an JFT on Y and is called the induced or relative JFT. The pair (Y, Γ_Y) is called an JF subspace of $(X, \Gamma): (Y, \Gamma_Y)$ is called an JF $G_{\delta} - e^* - lc$ JF subspace if the JF characteristic function of (Y, Γ_Y) viz χ_Y is JF $G_{\delta} - e^* - lcs$.

Proposition 3.7 Let (X, Γ) be an JFTS. Suppose $Z \subseteq Y \subseteq X$ and (Y, Γ_Y) is an JF $G_{\delta} - e^*$ -locally closed JF subspace of an JFTS (X, Γ) . If (Z, Γ_Z) is an JF $G_{\delta} - e^*$ -lc JF subspace in an JFTS $(X, \Gamma) \Leftrightarrow (Z, \Gamma_Z)$ is an JF $G_{\delta} - e^*$ -lc JF subspace in an JFTS (Y, Γ_Y) .

Definition 3.8 An JFTS (X, Γ) is said to be an JF $G_{\delta} - e^*$ -local- $T_{\frac{1}{2}}$ space if for every JF $G_{\delta} - e^*$ -lcs is an JF closed set in an JFTS (X, Γ) .

Definition 3.9 An JFTS (X, Γ) is said to be an JF G_{δ} -e^{*}-local- δ -semi (resp., δ -pre and β) space if for every JF G_{δ} -e^{*}-lcs is an JF δ -semi (resp., δ -pre and β) closed set in an JFTS (X, Γ) .

Proposition 3.8 Every $JF \ G_{\delta} - e^* - local - T_{\frac{1}{2}}$ space is an $JF \ G_{\delta} - e^* - local - \delta$ -semi (resp., $G_{\delta} - e^* - local - \delta$) space.

Remark 3.10 The converse of the Proposition 3.8 need not be true as shown in Examples 3.7 and 3.8.

Example 3.7 Let $X = \{a, b\}$ be a nonempty set. Let $\mathfrak{A} = \left\langle x, \left(\frac{a}{0.3}, \frac{b}{0.3}\right), \left(\frac{a}{0.6}, \frac{b}{0.6}\right) \right\rangle$, $\mathfrak{B} = \left\langle x, \left(\frac{a}{0.3}, \frac{b}{0.1}\right), \left(\frac{a}{0.5}, \frac{b}{0.4}\right) \right\rangle$, $\mathfrak{A} \cup \mathfrak{B} = \left\langle x, \left(\frac{a}{0.3}, \frac{b}{0.3}\right), \left(\frac{a}{0.5}, \frac{b}{0.4}\right) \right\rangle$ and $\mathfrak{A} \cap \mathfrak{B} = \left\langle x, \left(\frac{a}{0.3}, \frac{b}{0.1}\right), \left(\frac{a}{0.6}, \frac{b}{0.6}\right) \right\rangle$ be \mathcal{IF} sets of X. Then the family $\Gamma = \{0, ., 1, ., \mathfrak{A}, \mathfrak{B}, \mathfrak{A} \cap \mathfrak{B}, \mathfrak{A} \cup \mathfrak{B} \}$ is an 7453

 $\begin{array}{l} \mathcal{IFT} \ on \ X. \ Now, \mathfrak{A} \cap \mathfrak{B} \ is \ an \ \mathcal{IF} \ G_{\delta}\text{-set. Let } \mathfrak{C} = \\ \left\langle x, \left(\frac{a}{0.3}, \frac{b}{0.1}\right), \left(\frac{a}{0.5}, \frac{b}{0.5}\right) \right\rangle \ be \ an \ \mathcal{IF} \ e^{\star} - \ closed \ set. \\ Hence \quad \mathfrak{E} = \left(\mathfrak{A} \cap \mathfrak{B}\right) \cap \mathfrak{C} = \left\langle x, \left(\frac{a}{0.3}, \frac{b}{0.1}\right), \left(\frac{a}{0.6}, \frac{b}{0.6}\right) \right\rangle \\ is \ \delta \ -semi\text{-closed. Hence} \ (X, \Gamma) \ is \ an \ \mathcal{IF} \\ G_{\delta} - e^{\star} - local \cdot \delta - semi \ space. \ But, \ \mathfrak{E} \ is \ not \ an \ \mathcal{IF} \\ closed \ set. \ Thus, \ (X, \Gamma) \ is \ not \ an \ \mathcal{IF} \ G_{\delta} - e^{\star} - local \\ T_{\frac{1}{2}} \ space. \ Hence, \ \mathcal{IF} \ G_{\delta} - e^{\star} - local \ T_{\frac{1}{2}}. \end{array}$

Example 3.8 In Example 3.7 Let $\mathfrak{D} = \left\langle x, \left(\frac{a}{0}, \frac{b}{0}\right), \left(\frac{a}{0.5}, \frac{b}{0.5}\right) \right\rangle$ be an \mathcal{IF} e- closed set. Hence

$$\mathfrak{E} = (\mathfrak{A} \cap \mathfrak{B}) \cap \mathfrak{D} = \left(x, \left(\frac{a}{0}, \frac{b}{0}\right), \left(\frac{a}{0.6}, \frac{b}{0.6}\right) \right) \qquad is$$

 δ -pre-closed(resp., β -closed). Hence (X, Γ) is an $J\mathcal{F}$ G_{δ} - e^* -local- δ -pre $(G_{\delta}$ - e^* -local- β -space). But, \mathfrak{E} is not an $J\mathcal{F}$ closed set. Thus, (X, Γ) is not an $J\mathcal{F}$ G_{δ} - e^* -local $T_{\frac{1}{2}}$ space. Hence, $J\mathcal{F}$ G_{δ} - e^* -local- δ -pre $(G_{\delta}$ - e^* -local- β)space need not be an $J\mathcal{F}$ G_{δ} - e^* -local $T_{\frac{1}{2}}$.

Remark 3.11 Clearly the following diagram holds.

References

- [1] K. T. Atanassov, *Intuitionistic fuzzy sets*, Fuzzy Sets and Systems, **20**,(1986),87-96.
- [2] G. Balasubramanian, *Maximal fuzzy topologies*, Kybernetika, **31**,(1995),459-465.
- [3] N. Bourbaki, *General topology*, Part 1, Addison-Wesley, Reading, Mass (1966).
- [4] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88,(1997),81-89.
- [5] E. Ekici, On e^* -open sets, DP^* -sets and $DP\epsilon^*$ -sets and decompositions of continuity, Arabian Journal for Science and Engineering, **33** (2A)(2008), 269-282.
- [6] E. Ekici, Some generalizations of almost contra-super-continuity, Filomat, 21 (2) (2007), 31-44.
- [7] E. Ekici, *New forms of contra-continuity*, Carpathian Journal of Mathematics, bf 24 (1) (2008), 37-45.
- [8] M. Ganster and I. L. Relly, Locally closed sets and

and LC-continous functions, Intr., J. Math and Math. Sci., **12**(3),(1989),417-424.

- [9] B. Krsteska and E. Ekici, *Intuitionistic fuzzy contra* strong precontinuity, Faculty of Sciences and Mathematics University of Nis, Serbia, Filomat,. 21(2),(2007),273-284.
- [10] R. Narmada Devi, E. Roja and M. K. Uma, On Some Applications of Intuitionistic Fuzzy G_{δ} - α -locally Closed Sets, The Journal of Fuzzy Mathematics, **21**(1),(2013),85-98.
- [11] E. Roja and G. Balasubramanian, On fuzzy β - $T_{\frac{1}{2}}$ spaces and its generalizations, Bull. Cal. Math. Sco., **94**,(2002),1-9.
- [12] V. Seenivasan and K. Kamala, *Fuzzy* e^{*}-continuity and fuzzy e^{*}-open sets, Annals of Fuzzy Mathematics and Informatics, 8, (1) (2014), 141-148.
- [13] D. Sobana, V. Chandrasekar and A. Vadivel, On Fuzzy e-open Sets, Fuzzy e-continuity and Fuzzy e -compactness in Intuitionistic Fuzzy Topological Spaces, Sahand Communications in Mathematical Analysis, 12 (1) 2018, 131-153.
- [14] S. S. Thakur and S. Singh, On fuzzy semi-pre open sets and fuzzy semi-pre continuity, Fuzzy Sets and Systems, (1998), 383-391.
- [15] L. A. Zadeh, *Fuzzy Sets*, Information and Control, 8,(1965),338-353.