

May-June 2020

ISSN: 0193-4120 Page No. 6227 - 6234

6227 Published by: The Mattingley Publishing Co., Inc.

Menachem Domb and Guy Leshem

Ashkelon Academy College, Ashkelon, Israel

Article Info

Volume 83

Page Number: 6227 - 6234

Publication Issue:

May-June 2020

Article History

Article Received: 19 November 2019

Revised: 27 January 2020

Accepted: 24 February 2020

Publication: 18 May 2020

Abstract:

The recent increase of devices connected to the Internet and the introduction of new

paradigms; Internet of Things [IoT] and Cloud computing], exposes the Internet to

sever security risks, especially malicious alteration of the application software code

or utilizing malfunction codes to attack the system. Such attack can change the

behavior and the outcome of the system. This work proposes a rule-based technique

for substituting suspicious-code by secure-code. The technique scans over source

code using parsing techniques and identifies key patterns. These patterns are

matched against a dictionary which stores mappings from suspicious to secure

code. For practical purposes we suggest using the proposed technique in

conjunction with a secure execution environment, implemented by Intel Software

Guard Extension (SGX). The proposed system may also be helpful at the execution

environment by transforming the executable code back to its source code and then

apply the proposed system to discover vulnerable code and even correct it. This

may also be used to discover code anomalies or security issues and activate the

appropriate warning preventing damage to the production environment.

Keywords: Software vulnerabilities, Rule based system, Software Development Kit (SDK),

Intel® Software Guard Extensions (SGX)..

1. Introduction

The recent advancement of IoT, Cloud computing

and the significant increase of devices connected to

the Internet, exposes it to severe security risks. One

of the common security risks is malicious alteration

of critical software components or the utilization of

unsecured codes to generate a cyber security attack.

This work introduces a comprehensive system which

accepts undetected program codes and outputs safe

security- codes. It comprises two components: a

system that scans and detects suspicious codes and

replaces them with safe codes, and secured software

development and execution environment in which

the proposed system is executed. The system scans,

analyzes, detects and removes suspicious codes and

replacing them with equivalent safe codes, while

keeping the same functional capabilities it is

expected to perform. To ensure a secure

development and deployment environment we

adopted the Intel Software Guard Extensions (SGX)

environment; an isolated and secure environment

equipped with a set of instructions providing

complete protection from disclosure or modification.

The advantage of using the Intel SGX is to execute

code snippets in a protected execution area, which

can assure that the code is not modified by an

external party.

Vulnerable/suspicious code detection is done by

scanning the source code and searching for code

patterns that comply with one or more predefined

rules stored in a ruleset table. The table consists of

three columns, the rule id, the rule notation and the

proposed safe code replacing the suspected code.

Vulnerable/Suspicious events are situations that can

be utilized by malicious agents to change the

behavior of the program causing wrong results and

dangerous impacts. For example, stack overflow or

functions that run correctly with input X but are

dangerous with input Y. After identifying the

Suspected Software-Code Restoration Using a

Dictionary Led System

May-June 2020

ISSN: 0193-4120 Page No. 6227 - 6234

6228 Published by: The Mattingley Publishing Co., Inc.

suspicious code, the system replaces the relevant

code with a safe code, preventing the system from

entering a potentially dangerous situation. The safe

code is taken from the corresponding rule entry.

To protect the proposed system execution from any

external interruptions and intrusions, we selected the

Software Guard extensions (SGX) module [1]

allowing programs to be executed inside logically

separated segments of the CPU called enclaves. An

enclave is a general-purpose module used for any

kind of program. SGX provides a hardware-based

guarantee that the programs and memory inside an

enclave cannot be read or modified by any program

outside of the enclave. Any type of special access

permission can access the memory inside an enclave.

It uses special libraries provided by the SGX

Software Development Kit (SDK) solely applying C

and C++ languages. An adversary is not able to

discover what is accessed inside the enclave or what

is written back to the RAM when the cache is full.

Any data in the enclave that must be written back to

the main memory is encrypted and signed so that it

cannot be altered by any other program. Fig. 1

depicts the threats an executable application may

experience. However, these threats are not effective

when the executable application is stored in the SGX

environment.

Fig. 1: The processor with the protected area (in the upper left square)

2. Related work

The risk of utilizing malfunction software codes to

intentionally change the system's behavior or its

outcome is known and appears in many publications.

However, the idea of protecting software codes from

such situations and proposing active actions to avoid

it has increased and various standards have been

proposed. The basic idea of defining and enforcing

standard coding which blocks common security

holes preventing malicious programs from utilizing

it is described in [2,3]. A more specific guidelines

for the automobile domain appear in [4,5]. Several

examples of security-focused coding practices and

standards: CERT, OWASP, CWE, MISRA,

AUTOSAR, and IEC 61508-based standards. David

Svoboda [6] provides secured development training

sets intended for software developers. Indeed, this

approach prevents some of the security risks but

does not provide an automatic way to enforce it.

Several commercial security code testing tools are

available [7] providing an automatic scan of the code

to identify and remediate vulnerabilities. However,

the proposed solutions do not cope with the

possibility of a malicious altering the executable

software code to change its behavior to support its

needs.

Intel introduced a new hardware extension SGX

(Software Guard Extensions) [8,9] in their CPUs,

starting with the Skylake microarchitecture. SGX is

an isolated mechanism, aiming to protect codes and

data from modification or disclosure [10]. This

protection uses special execution environments,

called enclaves, which work on memory areas that

are hardware-isolated from the operating system.

The memory space used by the enclaves is encrypted

to protect the application’s secrets from hardware

attackers. Typical use-cases include password input,

password managers, and cryptographic operations. It

is recommended that cryptographic keys are stored

inside enclaves [11]. Apart from protecting software,

the hardware supports isolation due to fear of super

malware inside enclaves. Rutkowska [12] outlined a

scenario where a benign looking enclave fetches

encrypted malware from an external server and

May-June 2020

ISSN: 0193-4120 Page No. 6227 - 6234

6229 Published by: The Mattingley Publishing Co., Inc.

decrypts and executes it within the enclave. In this

scenario, it is impossible to debug, reverse engineer,

or in any other way analyze the executed malware.

Aumasson and Merino [13] eliminated this fear by

arguing that enclaves always run with user space

privileges and can neither issue syscalls nor perform

any I/O operations. Moreover, SGX is a highly

restrictive environment for implementing cache side-

channel attacks. Both state-of-the-art malware and

side-channel attacks rely on several primitives that

are not available in SGX enclaves. Consequently,

hitherto no enclave malware has been demonstrated

on real hardware.

To adequately address the issue of malware and

innocent software that can be exploited or other

vulnerabilities, it all executable files need to be

transformed to their equivalent source-code in C

language using a reverse-engineering tool and then

scanned to discover potential threats and correct

them with safe codes. Once this is completed, the

corrected source code files are compiled back into an

executable file replacing the original executable file.

The entire process is done in the Intel® SGX

environment.

The rest of the paper is organized as follows: in the

next section we outline the literature review. Then

we proceed with a detailed explanation of the

proposed solution. In the dictionary section we

describe the dictionary operation by means of a case

study. We continue with the details of an experiment

we are conducting and preliminary results. We

conclude with a summary and recommendations for

future work.

3. Proposed System

The solution is based on two main components: a.

Rule based vulnerable code detection and cleanup,

and b. A strictly secured development and

deployment environment [SGX].

Fig. 2 describes in detail the elements and the

process-flow of component a. The input to the

process is an exe file. In step 1 the exe file is de-

compiled to generate the equivalent source code

program in the C programing language. The C

source code is then loaded to the vulnerable

discovery process; an automatic system to detect

suspicious operations and convert them into safe

actions. The discovery is based on applying a set of

predefined rules and each code section that complies

with any rule is designated as a suspicious code. The

discovered vulnerable code is loaded to the cleanup

process for removal of the suspicious code and

replaced with a corrected code. The output file is

then compiled to generate the exe file, which is

deployed to the target computer for production

processing.

Fig. 2: The proposed system components and

process

Fig. 3 details the flow operation of the proposed

system. It starts [upper left box] with accepting an

executable file, decompiling it to C code, parsing it

and checking if it matches any function in the

dictionary. If it does, the code is replaced with a safe

code. Once the entire code is completed the revised

C code is compiled and the new executable file is

tested and saved with an indication that it is a safe

executable file until the next cycle.

May-June 2020

ISSN: 0193-4120 Page No. 6227 - 6234

6230 Published by: The Mattingley Publishing Co., Inc.

Fig. 3: Flow chart of the proposed system

Fig. 4 outlines the sequence of events in a self-explanatory flowchart diagram.

Fig. 4: Sequence diagram of the proposed system

4. Experiment

The experiment was done using the Visual Studio

environment with Intel® SGX SDK plugin that

enables the enclave functions to run even without the

appropriate processor. The system receives an

executable file (xxx.exe) and executes all of the

stages (as described above) automatically.

Below are the data items we use to demonstrate the

system functionality.

The suspicious actions identified in this research are:

1) The strcpy operation – which can cause buffer

overflow in some cases.

2) Division by zero – division where the divisor

(denominator) is zero.

3) Recursion - which can result in stack

overflow.

For the strcpy operation and division by zero, safe

operation was identified and replaced. For the

recursion operation, detection was performed, and a

safe operation was investigated that would prevent

the recursion from causing stack overflow. After

investigating this case and writing a safe operation

for the recursion operation, the recursion operation

was replaced by a safe operation. Intel® SGX

technology protects the code and the data from

exposure or modification by placing parts of the

code in special areas of the processor.

May-June 2020

ISSN: 0193-4120 Page No. 6227 - 6234

6231 Published by: The Mattingley Publishing Co., Inc.

Below are the process stages, from loading the

executable file to replacing it with a safe code:

Stage 1: Searching – The system scans looking for

executable files in the computer system.

The scan is performed on two levels:

a. Scan the computer recursively looking for

executable files.

b. Checking access permissions for each executable

file found.

The function accepts the following parameters:

a. The folder name to scan

b. A filter on a file name

c. Pointer to the file list that is returned

Fig. 5 describes the file scanning process.

Fig. 5: Scanning methods that search for exe files

Stage 2: De-compilation – we used the Retargetable

Decompiler system to transform the executable file

to a code in C programming language. The function

returns a path to the C file received after the de-

compilation.

Stage 3: Identify suspicious situations – The C

code file is parsed, and its function names are

searched against the dictionary; a table containing

unsafe functions, such as the strcpy function which

may cause buffer overflow. Table 1 lists examples of

suspected strings and the associated action to

perform.

Table 1: The string/characters found and the action that needs to be taken to prevent dangerous situations

Explain Action String

include - Go to the next line break #

go to the next line isComment = true

break

// , /* */

for adding rows to enable

Enclave

isMain = true main

adding the rows required to

create the enclave link to the

rows below

q.push(‘{‘)

if (q.size() == 1)

{ && isMain

May-June 2020

ISSN: 0193-4120 Page No. 6227 - 6234

6232 Published by: The Mattingley Publishing Co., Inc.

the end of the main, adding the

lines needed to destroy the

enclave link to the lines below

q.pop()

if (q.size() == 0)

} && isMain

sending a function to replace

the suspicious operation to

ensure a safe operation.

isSuspiciousFuncFound = true

replaceLineInTempFile

dictionary.co

unt(str)>0

Stage 4: Replacing the 'suspicious' functions with

'safe' functions –

The "safe" functions perform the same actions as the

"suspicious" functions. In this experiment we

focused on 3 examples. For example, the strcpy

operation is replaced by the enclaveStrcpy operation.

Fig. 6 depicts the process of identifying a suspected

function and handling it based on its recursion

functionality. In the experiment of replacing a

suspicious operation with a safe operation, we use

the replaceLineInTempFile function, as follows:

1) Replace strcpy operation - The call to the strcpy

function is replaced by the enclaveStrcpy function.

The function expects that both parameters will be

sent to the original strcpy function. Hence, the

parameters sent to the strcpy function are used for

the new function. This is done with the

getFuncParams function which returns the

parameters.

2) Replace Divided by Zero operation – When a

division action is found in the file, it is converted to

the enclaveDevideByZero function. Because a value

cannot be returned from the enclave by the "return"

command, an out-of-size * byte size pointer is sent

to this function as well as the parameters sent to the

original function. After the division has been copied,

the memcpy is copied into the pointer.

3) Replacing the recursion operation – The

recursion call is switched to enclaveRecursive.

At this stage the updated C code file contains safe

actions only.

Stage 5: Compilation – The updated file is

compiled.

Once all changes are done, the executable file is

generated by compiling the C code file accepted in

Stage 4. Since the above files may contain secured

functions that run only in the enclave section of the

processor, the output executable is stored in the same

project that would contain the settings allowing

enclave to run.

Stage 6: Replacing – The original file is replaced

with the new executable file. To place the new

executable file in the original file location the

original executable file needs to be "cancelled" so

that it is discontinued (unreadable), and then the new

file is renamed so that its name and location are the

same as the original.

May-June 2020

ISSN: 0193-4120 Page No. 6227 - 6234

6233 Published by: The Mattingley Publishing Co., Inc.

Fig. 6: Activity diagram of investigation of the recursion operation

The Dictionary (containing suspicious functions)

The dictionary contains all the functions known to

be vulnerable, such as: all types of overflow (e.g.,

heap, Buffer, Stack, Integer), Format string, and C

language functions, such as: strcpy(), sprintf(),

vsprintf(), strcat(), scanf(), bcopy(), gets()),

recursive. Each vulnerable function must have a safe

function that will replace the vulnerable one.

Example: Stack Overflow, a software vulnerability

that causes the program to crash due to stack

overflow. The common cause of stack overflow is

infinite or excessively deep recursion, because the

recursion process in some cases requires vast

memory allocation while running. In some cases, the

stack may grow significantly causing the program to

run slower or even crash. It may be replaced by "tail

recursion" where it is performed by tail reading

optimization TCO. This is a process where a smart

compiler may call a function without requesting

additional stack space.

The replacement is performed as follows:

1) The file is scanned for a recursive function.

2) If a recursive function was found, it was

"converted" into a tail recursion by replacing its

signature, stopping conditions, and reading

lines.

When a recursive function is found in the executable

file (after de-compilation) the function is replaced by

the enclaveRecursive function. The function is

defined as ECALL, enclave functions that the user

can access.

Experiment Summary

In order to create an automatic system that

adequately addresses these problems, all the

executable files on the computer need to be scanned

to ensure there is no threat. Since there are

executables with access privileges that do not allow

the file to be read, the system will fail in these cases.

Thus access permissions of the file need to be

checked before the system performs its actions. The

file scan should contain all possible end cases for a

suspicious action to be replaced by an appropriate

'safe' action. After replacing the 'suspicious'

operation with the 'safe' operation, the file needs to

be converted back to the executable file to replace

the original executable file. This assumes that the

May-June 2020

ISSN: 0193-4120 Page No. 6227 - 6234

6234 Published by: The Mattingley Publishing Co., Inc.

compilation will run with the special settings of Intel

SGX projects.

5. Conclusions and future work

In this paper we demonstrate the feasibility of a

system that protects software systems by making

them immune to code alteration attacks by detecting

and replacing existing vulnerable codes with

equivalent safe codes using SGX and the relevant

enclave functions.

Future work will focus on expanding the dictionary

and writing additional functions that address

software vulnerabilities.

REFERENCES

1. Intel Corp., "Intel® 64 and IA-32 Architectures

Software Developer’s Manual," April 2016.

[Online]. Available:

http://www.intel.com/content/dam/www/public/u

s/en/docum ents/manuals/64-ia-32-architectures-

software-developersmanual.pdf. [Accessed 7

May 2016].

2. White paper, Addressing Security vulnerabilities

in embedded applications using best practice

software development processes and standards,

an introduction to applying CWE coding

guidelines and achieving CERT security

compliance using static analysis tools

3. PRQA, Programming Research,

www.programmingresearch.com

4. Richard Bellairs, CWE List & CERT Secure

Coding Standards-An Overview, Security &

compliance static analysis, , Oct 8.2018

5. Priyasloka Arya, Software Vulnerability Analysis

& Secure Coding in Vehicle Systems, Auto tech

review, Technology, 17 July 2017

6. R. Kurachi et al., "Improving secure coding rules

for automotive software by using a vulnerability

database," 2018 IEEE International Conference

on Vehicular Electronics and Safety (ICVES),

Madrid, 2018, pp. 1-8

7. David Svoboda, Using the SEI CERT Coding

Standards to Improve Security of the Internet of

Things, Carnegie Mellon University, Software

Engineering Institute blog, Feb 2019

8. Kiuwan web site, Secure Coding Testing Tool,

Identify Security Risks Faster, https:

//www.kiuwan.com/code-security-sast

9. F. McKeen, I. Alexandrovich, I. Anati, D. Caspi,

S. Johnson, R. Leslie-Hurd and C. Rozas, "SGX

Instructions to Support Dynamic Memory

Allocation Inside an Enclave," in HASP, Seoul,

South Korea, 2016.

10. Intel Corporation (2016a) Intel Software Guard

Extensions (Intel® SGX). https://

software.intel.com/en-us/sgx. Accessed 7 Nov

2016

11. Costan V, Devadas S (2016) Intel sgx explained.

Technical report. Cryptology ePrint Archive,

Report 2016/086.

12. Intel Corporation (2016b) Hardening Password

Managers with Intel Software Guard Extensions:

White Paper.

https://pdfs.semanticscholar.org/ec40/

833215b3d415c9525940690d0a94d2a178ca.pdf

13. Rutkowska J (2013) Thoughts on Intel’s

upcoming Software Guard Extensions (Part 2).

http://theinvisiblethings.blogspot.co.at/2013/09/th

oughts-onintels-upcoming-software.html.

Accessed 20 Oct 2016

14. Aumasson J-P, Merino L (2016) SGX Secure

Enclaves in Practice: Security and Crypto

Review. In: Black Hat 2016 Briefings.

https://www.blackhat.com/ docs/us-

16/materials/us-16-Aumasson-SGX-Secure-

Enclaves-In-PracticeSecurity-And-Crypto-

Review-wp.pdf

