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Abstract 

 Words occur in sequence over time, and the words encountered constrain the meaning 

of the words that follow, rendering it critical in texts written or spoken in English, 

Spanish, etc. This makes finite-state machines effective at simulating the sequential 

property of a language. Having said that, this does not rule off other types of automata 

such as but not limited to, deterministic pushdown automaton and Turing machines, as 

these were shown to be useful in both transformational and generative grammars. The 

theory of automata has a rich literature in providing efficient and convenient tools for 

several branches of computational linguistics. This paper highlighted the significant 

works on that domain and presented some of the influential breakthroughs of the 

automata theory in the analysis of both syntax and semantics of the natural language. 
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1. Introduction 

Automata theory and natural language processing 

were once tightly bounded disciplines [1]. Russian 

mathematician Andrey Markov used finite-state 

processes to predict sequences of vowels and 

consonants in novels by Alexander Pushkin [2], 

emanating a technique now known as the Markov 

Chain. Claude Shannon continued this concept by 

using Markov processes to predict letter sequences 

of English words [3]. While most theorems about 

finite state machines were Automata theory and 

natural language processing were once tightly 

bounded disciplines [1]. Russian mathematician 

Andrey Markov used finite-state processes to 

predict sequences of vowels and consonants in 

novels by Alexander Pushkin [2], emanating a 

technique now known as the Markov Chain. Claude 

Shannon continued this concept by using Markov 

processes to predict letter sequences of English 

words [3]. While most theorems about finite state 

machines were proven in the 1950’s, Noam 

Chomsky disputed that such devices were too 

simple to adequately interpret the natural language 

[4]. To deal with this, Chomsky suggested the use 

of context-free grammars and introduced the more 

powerful trans-formational grammars for the task at 

hand [5].  

 

Having said that, the mainstream literature in 

automata theory and natural language processing 

eventually drifted apart. Automata theorists 

preferred theory-driven generalizations [6], [7] 

while linguists went the other way and abandoned 

formalism [7]. Although, some natural language 

processes still concentrated on context-free 

grammars extensions for a time [8], [9]. 

 

Eventually, speech recognition researchers returned 

to processing natural language grammar with finite-

state machines by using transition weights that 

could be trained on machine-readable text datasets. 

These had algorithms that were efficient enough for 

practical computers back in the 1970’s and were 

remarkably successful at determining correct from 

incorrect speech transcriptions [10], [11]. The 

interest in automata theory among computational 

linguists was brought back in the 21st century [12] 

– [14], specifically for problems like automatic 

language translation, wherein the transformations 

are sensitive to syntactic structure. It is without a 
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doubt that natural language processing is one of the 

major fields of application of this ideology [15]. 

   

The goal of this paper is to discuss the applications 

of automata theory in each level of natural language 

processing by surveying some of the significant 

literatures on the topic at hand. The history of 

natural language processing had begun way back in 

the 1950s, when the Georgetown experiment 

successfully developed a fully automatic translation 

of Russian sentences into English [1] but it wasn’t 

until 2017 that Amazon’s Jeff Bezos asserted that 

artificial intelligence, which strands include natural 

language processing, is entering its golden age, 

being able to solve problems that were just once 

seen as science fiction. An example of this feat is 

Amazon’s voice assistant Alexa, which is an echo 

speaker that relies heavily on natural language 

processing to enable machines to understand human 

speech [16]. For this reason, the author of this paper 

confined this review to literatures published from 

1956 until 2017, and had been indexed by INSPEC, 

Scopus, Web of Science (WoS), or DBLP. 

2. LEXICONS: 

Lexicons deal with the vocabulary of a person, 

group, or language in linguistics. It processes all the 

minimal grammatical elements of a language, which 

represents the speaker’s knowledge of the 

vocabulary. It is comparable to a dictionary but 

without the definitions of the entries and instead, 

carries only part of words such as suffixes [15]. 

Fig. 1 shows the actual word and its grammatical 

information. The grammatical information can be 

its infinitive, past participle, or present form. It can 

also be its homonyms, adjective, noun or plural 

derivatives. These are useful when automatically 

processing a text since it allows automatic tagging 

of the text using only a simple text comparison. 

This naïve approach of representing a lexicon by 

simply enumerating the entry in a file is very 

expensive in terms of memory and computing usage 

[15]. 

 

 
Fig. 1. A sample lexicon of the word “do”. 

An intuitive solution to optimize this is to sort the 

entries alphabetically to fasten the lookup but 

Revuz in his PhD thesis [17], showed that the 

efficient representation of lexicons is possible using 

some Boolean finite-state automata. His work 

proved that it is possible to attain a good 

compromise between the automaton size and speed 

of the access. Apart from the chosen representation 

for the automaton, determining it can significantly 

improve the access and minimizing it can reduce 

the number of states considerably. This algorithm 

becomes useful when the automata is handcrafted 

[17]. The process of building the automaton in this 

case is natural, and the determined and minimized 

automaton performs well in terms of processing 

time and memory consumption. Fig. 2 illustrates the 

automaton constructed for the lexicon Fig. 1. 

 

 
 

                                  Fig. 2. The automaton 

equivalent of the lexicon in Fig. 1 

 

Mohri in [15] reinforced this by replicating Revuz’s 

thesis and by using lexicons in French, German and 

English. The study proved that using the more 

efficient finite-state machine implementation of 

lexicon lookup can improve the memory 

consumption by a factor of up to 18 [15]. 

 

3. MORPHOLOGY AND PHONOLOGY: 

Morphology is the branch of linguistics that focuses 

on the study of the internal structure of a word and 

is considered as the smallest unit of syntax [18]. It 

analyzes the word production rules that are common 

to the speakers of a language. Phonology resembles 

morphology in the sense that it also studies the 

structure of a word, the difference is that it 

concentrates only on the spoken aspect or the sound 

patterns of the language. Both are based on the 

neologism phenomenon, which follows a wide 

range of rules such as the following: 
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Noun +” s” for the plural form (example: car, 

cars) 

 Verb + “s” for the present form (example: 

swim, swims) 

 Verb + “ed” for the past participle form 

(example: park, parked) 

 Verb + “er” to identify who (example: 

gamble, gambler) 

 Adjective + “ly” to qualify a way of doing 

things (example: gentle, gently) 

 Political figure + “ism” to refers to the 

ideology of a political figure (Example: Bush, bush-

ism). 

 

Some of the resulting words are not defined in most 

dictionaries but their meanings can be understood 

clearly as they are based on existing rules known 

innately by human [15]. 

 

This framework of the morphological ruling is quite 

similar to lexical semantics. Which means, its 

building process can also be intuitive, and its 

execution performance can be improved by the 

determinize and minimize algorithms. 

 

Geyken and Hanneforth in [18] used finite-state 

automata to describe the morphological ruling for 

the German language. Named as “TAGH”, the 

project achieved a 99% recognition rate based on 

80,000 stem lexicon that was compiled within 5 

years of German newspaper corpora and literary 

texts. It showed that the number of analyzable word 

forms in-crease considerably by more than 1,000 

different rules for both compositional and 

derivational word formation. 

 

Complete phonological rules could be easily 

defined using a finite-state machine as exemplified 

by the re-searches at the Xerox Alto Research 

Center [19]. The authors were able to simplify the 

evaluation of a grammar to the point of triviality 

using finite-state transducers. Without regards to the 

grammar complexity, the interpreter is said to be 

resistant to changes and the compiler becomes 

easier to implement [19].  

 

Transducers are also useful to translation systems to 

represent their intermediate data as demonstrated by 

[20]. Their experiments consist of speech-input 

translations from Spanish to English and from 

Italian to English from telephone conversations 

between customers and front-desk of a hotel. The 

authors built a lexical automaton derived into a 

phonological representation as a pre-processing, 

which boasts of only 7.6% translation word error 

rate and 8.4% source-language speech decoding 

word error rate. 

Unitex is another example of a program that 

embeds transducers representing word inflections. 

Fig. 3 is a sample automaton representation of word 

inflections in French, which can be combined with 

other lexical automaton to generate some part of the 

lexicon. 

 

 
Fig. 3. Sample morphological inflection rule of 

French adjectives. 

 

4. PART OF SPEECH TAGGING: 

Part of speech tagging is the association of 

grammatical categories to words. It is usually 

performed first in a natural language process since 

most systems rely on its output to continue. Having 

said that, it usually suffers from various 

ambiguities, which is hardly resolved without the 

context of each word. The reason for this is that 

there is not just one correct tagging for a sentence, 

with each of the tags lead to different analyses of 

the sentence. An example would be the sentence “I 

read his book”. The “I” in that sentence can either 

be a noun or a pronoun, both the “read” and “book” 

can be either be a noun or a verb, and the “his” can 

be an adjective, a pro-noun, or a noun. The problem 

arises when each word gives off a different meaning 

to the sentence depending on how it is used. A 

typical solution to this is to rely on the data 

provided by the lexicon but this could still be 
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problematic since the ambiguities are never solved 

and the system must handle these constantly. 

 

Halteren, et al. in [21] used Hidden Markov Models 

to aid this problem. The main feat of their work is 

that it only required minimal resources and work 

while achieving 97.55% accuracy using only 

trigrams. Their work utilized three bench-mark 

datasets namely, the LOB corpus, which had proved 

to be a good testing ground for their task at hand, 

Wall Street Journal tagged with the Penn Treebank 

II tag set which is composed of roughly 1 million 

words and finally, the Eindhoven corpus tagged 

with the Wo-tan tag set, which is slightly smaller 

than the former, containing only around 750 

thousand words. Although their results are positive, 

there are still a lot of research directions remain to 

be explored in their work. One of which is that 

better results can be obtained using the probability 

distributions generated by the component systems 

rather than just their best guesses. The other 

criticism is that there seems to be a disagreement on 

their paper be-tween a fixed set of component 

classifiers. But this pro-vides motivation for further 

extension of their work as there exist some 

dimensions of disagreement that may fruitfully 

searched to yield a larger ensemble of modular 

components that are evolved for a more optimal 

accuracy. 

 

Shamsfard and Fadaee in [22] combined both 

probabilistic features and rule-based taggers to tag 

unknown Persian words. The distinction of this 

work is that their algorithm deals with the internal 

structure of the words and does not require any 

built-in knowledge. It is also domain independent 

since it uses morphological rules. To prove their 

work, the authors employed 300,000 words to 

calculate the morphological rules probabilities 

which were scraped from “Hamshahri” newspaper 

with a tag set containing 25 tags. Although this 

eliminates the bottleneck of the lexicon acquisition 

and the need to a preconstructed lexicon, the 

tradeoff for this is that it makes the tagger’s work 

more difficult. If some entries were entered in the 

lexicon then there would be probably fewer 

ambiguities in the tagging. It is also worth noting 

that although this work was done in Persian, the 

authors assured that it can also be applied to other 

languages as well. 

 

Overall, the results of these probabilistic methods 

are good and comparable to the applications of the 

linguistic ruling that are exhibited by a linguist after 

months of analysis [21]. The amount is also 

comparable in terms of work. The linguist usually 

works on a dataset for months to write emphasis on 

the phenomenon [21], [22]. On the other side, the 

learning process can also be just as long on a real 

dataset, which can take up to months depending on 

the n-grams size considered [22]. N-grams are 

succession of N words commonly used with 

automatic systems to define the perspective of the 

learning process. It usually takes week when using 

bigrams and months when using trigrams [22]. 

Having said all of these, probabilistic system carries 

one major step back. The lack of readability in the 

systems produced hinders a more fruitful analysis. 

This is the main reason why most of the linguistic 

community prefer working on rules. 

 

6. SYNTAX: 

 

Syntax is the study of the rules that guide the 

correctness of a sentence in a language. Noam 

Chomsky implied a strong statement on his 1956 

paper [4] “A properly formulated grammar should 

determine unambiguously the set of grammatical 

sentences”. This denotes that not only syntax should 

allow to decide if a sentence is grammatically 

correct, but it should also allow to define clearly if a 

sentence is semantically incorrect. However, this 

has not fully been attained yet as of this writing 

because of the irregularities which exists in the 

natural language [15]. There are several approaches 

that have been developed, most of which rely on 

lexicon. These are Lexical-Functional Grammars 

[23], Lexicalized Tree Adjoining Grammars [24], 

and Head-driven Phrase Structure Grammars [25]. 

These employ formalisms that associate grammar to 

the words, for instance, a verb learns whether it is 

transitive, etc. This paper will focus only on 

transformational and generative grammars since 

these are the most appropriate for automata 

application [4]. 
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A.  REGULAR GRAMMARS: 

Regular grammars are defined by {Σ,V,P,S} where 

Σ is the alphabet of the language, V is a set of 

variables or non-terminals, P is a set of production 

or rewriting rules, and S is a symbol that represents 

the first rule to apply [26]. Fig. 4 presents an 

automaton for a regular grammar. 

The rule for regular grammars is defined as follows, 

let α be a string of Σ^*, and let X, Y, and Z be a 

triplet of non-terminals. Any rules of P can be 

formed as follows [26]: 

 

                                          X→Y Z 

                                          X→αY 

                                          X→Y 

                                          X→α 

These have a small power of expression because of 

its restrictiveness. Thus, it can be utilized to handle 

small artificial languages or some restricted part of 

a natural language. It is also worth noting that these 

are totally equivalent to finite-state automata which 

makes it easy to use [26]. 

 

 
Fig. 4. A regular grammar and its corresponding 

automaton. 

 

B. CONTEXT FREE GRAMMAR: 

Context free grammars are like regular grammars, 

the only difference is that it does not have any 

restrictions on the length of the rules. These were 

first described by No-am Chomsky in [5]. What was 

interesting is that he developed this grammar to 

prove that it was insufficient for natural language 

processing. However, it became novel on the years 

that followed since it was the only implementable 

system that provided acceptable results. The 

expressiveness of these grammars remains 

acceptable if these are not used to describe the 

language with its whole complexity [5]. Fig. 5 

presents a simple context free grammar that can 

perceive basic sentences like “the man loves the 

music, a firefighter risked his life, cat meows, or 

boy loves girls”. 

 

 
                                 Fig. 5. A simple context free 

grammar and its corresponding automaton. 

 

It is important to remember that context free 

grammars are not equivalent to finite-state automata 

[4]. Even though Fig. 6 insinuates that it may be 

represented by one, context free grammars are more 

synonymous to pushdown automata, but that will 

not be discussed on this paper as it does not hold 

any relevance. The reason for this is that context 

free grammars can generate languages like an bn 

which are not regular. An alternative is recursive 

transition network [27], which rely on the use of 

automata network and are equivalent to pushdown 

automata. This allows one automaton for each rule 

and evaluate this whenever a rule is reached on the 

transition. When the accepting state has been 

reached in the sub-automaton, it can go back to the 

previous automaton and resume treatment. This 

enables the automata in Fig. 5 to be translated into 

Fig. 6. 

 

 
     Fig. 6. Automata translation of Fig. 5. 

 

To test this concept, an experimental parsing system 

was implemented in BBN LISP on the SDS 940 

time-sharing systems at Harvard University and at 

Bolt by Beranek & Newman, Inx [27] and used for 

several of experiments in grammar development 

and parsing strategies for natural language analysis. 

The main criticism of this work though, is that the 

report of its results was not included in the paper as 

it was still in preparation as mentioned by the 

authors [27]. 
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VI. INDEXING: 

It is common to handle an enormous dataset of texts 

when working with natural languages. To work 

efficiently, it is imperative to have a fast access to 

the information required. To illustrate this, imagine 

the World Wide Web, which has billions of texts, 

but search engines can browse through it in only a 

few milliseconds to generate the queried 

information. 

 

This can be achieved in natural language processing 

through a technique called indexing. The basic idea 

be-hind this is to create a database of text 

containing all the word occurrences and then 

instead of combing through the raw text data, the 

search is performed through the index assigned, 

which would be quicker. 

 

Crochemore in [28] devised an algorithm using a 

finite-state transducer that allows a representation in 

a linear space of the text’s index. The sum of the 

label weights during the recognition provides the 

first occurrence of a word in this algorithm, which 

then requires a specific path to retrieve all the other 

references. The author considered both the 

transducer and the automata to distinguish whether 

they deal with the suffixes or factors of the string. 

The size of the minimal automation is not the same 

in both cases in general. This is also to prevent the 

consideration of a marker at the end of a word. 

This algorithm has been improved in [15], which 

stores the list of the current recognized word on 

each node. These word occurrences are then 

retrieved in linear time while maintaining the 

linearity of the storage space as well. Fig. 7 

illustrates the automaton of the string “aabba”. The 

length of the word must be subtract-ed to the list 

associated to that node to get the start of the current 

word. 

 
Fig.7. Indexing of the string “aabba” using an 

automaton. 

VII. TRANSLATIONS: 

 

Translation is the most complicated task in natural 

language processing as it suffers from the 

confluence of all the problems in linguistics [29]. 

To enumerate a few, one of these is the problem of 

lexical ambiguity in semantics. The word “bank” is 

a noun which has two distinct meanings: it may 

refer to a financial institution and it may also refer 

to the edge of a river. This is more complicated in 

translation because it combines the ambiguities of 

the two meanings at once. 

 

This also poses a problem if part-of-speech tagging 

is to be applied in the translation process. The word 

“bank” can be either a verb or a noun, with each 

lead to different translation. Part of this problem 

stems from a syntactic point of view. It would be 

impossible to pro-duce the correct translation if a 

certain word has been perceived with the wrong 

category. Furthermore, even with the correct 

category, some of the syntactic structures are not 

well formalized yet. As an example, connecting a 

relative clause to its correct reference can become 

difficult when there are multiple relative clauses 

that are intertwined. 

 

Problem in alignments also exists in the translation 

process. Most word and its translations vary in 

length tremendously. Take the word “potato” as an 

example, this word is translated to French as 

“pomme de terre”. This brings up the problem of 

compound words and its detection. Although this 

can be solved using a lexicon, but some 

composition should be detected automatically 

because these are part of a regular construction, for 

instance, the use of "machine à + verb” in French. 

 

This can be solved by using two lexicons, one in 

each language or by using hidden Markov models. 

Alshawi, et al in [29] proposed an algorithm based 

on a probabilistic transducer, which builds up a 

translation in three steps. First, it learns the 

alignment by using a bilingual dataset, after which, 

it creates the transducer using the same dataset and 

finally, the created transducer generates the 

translated version of the input. This has been 

developed by the authors to create an English to 
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Spanish translation model for a speech translation 

application, which achieved an accuracy of over 

75% via string-distance comparison to three 

reference translations [29]. The training and test 

data for this experiment were taken from 

transcribed utterances from the Air Travel 

Information System (ATIS) corpus with a translated 

utterance in Spanish. An utterance is synonymous 

to a single sentence but can be more than one 

sometimes in a sequence [29].  

 

This alignment algorithm has also been used in 

[30], the difference is that the authors based their 

experiment on N-grams translation models and 

variable n-gram stochastic automaton proposed in 

[31]. It uses a stochastic finite-state machine 

translation trained automatically from pairs of 

source and target utterances. This was developed 

for English-Japanese and Japanese-English 

translation. The main idea of this is to obtain the 

lexical translations through alignments algorithms 

and then to generate a variable n-gram stochastic 

automaton that will be transformed into a stochastic 

transducer which can reorder the output according 

to the language specifications. The data for their 

experiments were obtained from the customer side 

of an operator-customer conversation of a 

customer-care application. Each of the customer’s 

utterance transcriptions were manually translated 

into Japanese. A total of 15,457 English-Japanese 

sentence pairs was split into 12,204 and 3,253 

training and test sentence pairs, respectively.  The 

main objective of their experiment is to measure the 

performance of their translation system in the 

context of an application. The number of sentences 

correctly translated on the number of expected 

sentence is 43.7, 62.5, and 65.5 on unigram, bi-

gram, and trigram phrases respectively while the 

precision rate is 80.3, 86.3 and 85.5, respectively. 

Overall, the authors were successful at developing 

an architecture for speech translation in a limited 

domain based on the simple machinery of stochastic 

finite-state transducers. They have implemented a 

stochastic finite-state models for English to 

Japanese and Japanese to English translation, which 

have been trained automatically from source-target 

utterance pairs and evaluated in the context of a 

call-type classification task [30]. 

7. CONCLUSION 

 

Natural language processing is a discipline which 

encompasses both computer science and linguistics. 

As automata theory is a significant component of 

theoretical computer science, it is only instinctive 

that it holds some use in processing natural 

language data. This paper bolstered that claim and 

exhibited how the automata theory can be applied in 

some of the stages in natural language processing. It 

discussed how it can efficiently represent both 

morphological and phonological rules, how useful 

regular and context free grammars are in confirming 

the correctness of a sentence in a language, how 

much memory and time it can save on indexation, 

and how it can solve the alignment problem during 

translation. There is a vast literature available on 

this topic, but the author of this paper chose only to 

highlight the important milestones in this field. A 

potential extension of this work is to explore its 

other facets, which have not been tackled on this 

paper, such as but not limited to automated speech 

recognition and information extraction. This is 

imperative to garner more appreciation and interest 

in the topic of the automata, as well as to epitomize 

its importance. 
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