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Abstract  

Developing a robotics system is one of the greatest challenges that are 

able to interact with unpredictable environments in real-time. A possible 

solution may be to use swarm robots behaving in a self-organized 

manner, similar to an ant colony. Efficient mechanisms of division of 

labour, parallel operation and share of information among group 

members are key components of the tremendous ecological success of 

ants. Inspired by the ant colony, indeed allows the design of robust, 

effective and flexible robotic system. A single robot is insufficient to 

process information and many other aspects, thus cooperation of multi-

robot are needed to complete a task in an efficient way which results in 

the swarm robotics (SR) system. The aim of this paper is to review 

significant literature on collective behaviours and methods in the SR. 

 

This paper will review recent accomplishments in SR and analyse 

existing literature. It begins with a brief overview of swarm robot, 

classification of behaviour and then a discussion of the importance of SR 

by explaining various tasks in swarm robotics. This paper described and 

identified the challenges that should be resolved in the SR system and 

their applications for real-world. Finally, this paper provided possible 

directions for future research and discussed the relevant challenges to be 

addressed in order to push forward the study based on our extensive 

analysis of the reviewed literature. 

 
Keywords: Swarm Robotics, Swarm Behaviour, Collective Behaviour, 

Autonomous System, Human-Swarm Interaction.  

 

 

1. Introduction 

Swarm robotics is mostly inspired from the nature 

swarms. In nature, there are a set of rules, pattern can be 

noticed that make seemingly chaotic processes logical [1]. 

The research inspiration of swarm robotics comes from 

observing the social behaviour of insect colonies, schools 

of fish, flocks of birds, bacteria colonies and groups of 

amoeba [2]. Inspiration is taken from nature as it is shown 

to support the development of novel rule sets that can be 

used to solve difficult problems and might be impossible 

to solve with traditional techniques [3], [4]. For example, 

ants show an incredible ability to collectively transport 

irregularly shaped objects without prior knowledge of 

object shape and mass. This allows an ant colony to 

collectively achieve a task that is beyond the capabilities 

of a single individual, as well as faster transport, 

robustness to individual failure and better adaptability to 

varying object size. The central idea of this collective 

behaviour is to perform a complex task by dividing it into 

simpler tasks that are easily performed by individuals [5]. 

 

 Human-Swarm Interaction (HSI) comprises 

understanding human interaction with the swarm of robots 

and an assessment of the human responses during that 

interaction. In such systems, human operators use the 

information sent by agents and issue new commands to 

them [6]. The presence of human operators can provide 

recognition, mitigation of the shortcoming of autonomy, 
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failure repair, new goals changes, decision making and 

information for better swarm performance. Therefore, to 

influence the swarm of robots to be goal-directed in 

dynamic and complex environments human assistance is 

essential. It may useful in several real-world applications 

such as urban search and rescue, surveillance, oil spill 

recovery, plume tracing, autonomous construction and 

military operations. Additionally, human interaction 

provides abilities to control swarm robots. For example, a 

human operator can switch swarm behaviour, change 

overall location or inject new objectives into the agent’s 

low-level control. However, knowledge of a limited 

number of robots only can be preserved by a human [7]. It 

is widely agreed that there is limited value in an 

autonomous system that cannot be controlled. 

 

The purpose of our research on swarm robotics is to 

explore such mechanisms for real-life applications and 

design a comprehensive framework for humans interacting 

with swarm robots using the handheld device as shown in 

Fig. 1. 

 

Figure 1: Human Swarm Interaction via a handheld 

device 

 

2. Background of the Study   

In the last few decades, there has been a considerable 

amount of theoretical research on swarm robotics and 

deployed in several scopes of applications including 

localization, surveillance, medical operations, sensing, 

and search-rescue operations [13]. These tasks are very 

sophisticated and hard to propose a direct solution due to 

collective behaviour. Behaviour control is a challenge for 

any swarm robotics system. Individual control rules must 

be found that result in the desired collective behaviour. 

To solve this issue, swarm robotics researchers proposed 

various tasks such as flocking, navigating, path planning, 

motion coordination, obstacle avoidance etc. Among 

these, flocking is the most significant task [10]. 

Apparently, coordinating a large number of robots with 

individual rules is not an easy job. Therefore, interactions 

of a group of robots within an environment have been the 

main interest of the research. In this section, several tasks 

for corresponding solutions using swarm intelligence 

approach are surveyed.  

 

Behavioural Classification 

Behavioural-based architectural designed are commonly 

used to control robots. However, flexibility often comes at 

the cost of difficulty in reusing existing behaviours for 

new application domains and unanticipated interferences 

among behaviours. Therefore, categorization is important 

for those behaviours in SR.  

 

The classification of SR systems was introduced by [15], 

who identified research domain into five areas such as 

swarm size, communication topology, communication 

range, bandwidth, swarm unit processing ability and 

swarm reconfigurability. Luca Iocchi et al. [16] illustrated 

multi-robot systems by looking at their cooperative 

characteristics. With different perspectives, many 

classification criteria had been proposed successively to 

summarize the research area of SR into a classification of 

cooperating systems [2, 10, 15-22]. According to 

Brambilla et al. [8] analysed literature from SR 

engineering perspective view as shown in Fig. 2.  

 

Figure 2:  Classification of Collective Behaviour of 

Swarm Robotics 

 

 Spatially-organize behaviours: Spatially organizing 

behaviours focus on how to organize and distribute robots 

and objects in search space. There are several possible 

ways robots can be organized and distributed such as 

aggregation, patterns and physically connected robots etc. 

 

 Navigation behaviours: Navigation behaviours are 

coping with the problem of coordinating the movements 

of a swarm of robots such as collective exploration, 

coordinate motion, collective transportation etc. 

 

 Decision-Making behaviours: Decision-making 

behaviour deals with how robots influence each other 

when making choices. It can be used to answer two 

opposite needs—agreement and specialization. 

 

 Others: This described as significant works in SR 

that did not mention in the above categories. Such as 

collective fault detection, human-swarm interaction etc. 
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3. Literature Review    

 A number of studies [1, 9-13] have explored HSI with 

few or many agents. According to Kolling et. al [9], HSI 

systems can be divided into six components. These are- 

cognitive complexities, interaction, swarm state 

visualization, levels of autonomy and input timing as 

shown in Fig. 3. 

 

Figure 3: Key Components of Human-Swarm System 

 

As shown in Fig. 3, an operator interacts with swarm 

robots through an interface that is constrained by the 

means of communication. It relies on control methods that 

visualize and estimate state information of the swarm 

robots. It facilitates the interaction between human and 

swarm robots. The entire system is influenced by levels of 

autonomy, input timing and neglect benevolence. Neglect 

benevolence is the time a human can neglect tolerance the 

swarm to allow for stabilization before issuing new 

commands [29]. 

 

There is a need for human operators to oversee swarm 

operations and give both goal-directed input and correct 

unforeseen errors in the swarm’s operation. The problem 

is controlling the swarm system through direct 

teleoperation of individual agents. Before sending a 

command to a swarm robotics system, a human operator 

needs to know what state the system currently in. 

Therefore, swarm robotics system should provide 

feedback about the state of the individual agents to the 

human operator. Kolling et. al  [9] identified two 

challenges when agents send state information to the 

human operator. The first challenge is due to the small 

size of agent’s hardware and its simplicity. Individual 

agents may not be equipped with the dedicated hardware 

required to provide meaningful feedback to the human 

operator. The second challenge is due to the large swarms 

of robots. Even if an agent can interact with a human 

operator(s) meaningfully, it does not mean that each agent 

can do so. Hence, the state of the individual agents and 

composite information of swarm robots need to be 

delivered to the operator. 

 

Another study [51] presents two control methods—

selection and beacons for a human operator to control a 

foraging swarm of robots. The selection control requires 

an active selection of a sub-swarm of robots while the 

beacon control exerts an influence on nearby agents. Both 

methods are implemented in a testbed in which operators 

solve the foraging problem by utilizing a set of swarm 

behaviours. In addition, performance benchmarks are 

compared through five variations of swarms. The first 

variation uses random motion and agents turn into a new 

direction each time they collide with another agent or 

obstacles. The second variation uses random motion 

except when an agent is within sensing range. In this case, 

the agent moves forward to the closet object until all 

information is collected. The third variation uses a 

potential-field-based approach algorithm, in which agents 

are repulsed by each other. The fourth variation uses the 

same approach, but an agent moves forward until 

neighbours transmit no more messages. The fifth variation 

uses a pheromone-based approach for a foraging task. The 

result of their study [51] showed that human operators 

perform better with selection control. However, one of the 

main problems to be tackled to enable human control of 

swarms is scaling the controls to larger numbers of agents, 

larger environment and more complex tasks. In such a 

case, beacon control may more scalable if used to its full 

potential.  

 

Reynolds [42] works is influenced by collective 

animal behaviour in nature. The paper created a virtual 

flock of birds to model the local rules governing flocking 

behaviour in animals. Couzin et. al [44] introduced leaders 

into a swarm and investigated how leaders within such 

groups can influence the overall movement of the swarm 

without directly telling the followers what to do. These 

authors also make use of swarm “leaders” and “predators” 

which can pull and push other members of the swarm, 

respectively. Although the authors found the leaders more 

effective, there are still cases where predators can be 

beneficial, such as scenarios where it is necessary to break 

up the swarm into separate smaller groups. In addition, the 

study showed that only a small number of swarm 

members need to be knowledgeable for this to work and it 

lower the control requirements for any human using this 

model.  

 

A follow-up study [19] conducted a user study of 

swarm control with dynamically selected leaders. This 

paper investigates the use of a small subset of the swarm 

as leaders that are dynamically selected during execution 

using a flocking-style algorithm. The authors identified 

three different aspects of dynamic leader-based swarm 

control and interactions namely: Leader density, sensing 

error and method of information propagation on system 

performance and human control of the swarm. The leaders 

passively influence the consensus of the swarm similar to 

the Couzin model [44] as shown in Eq.1.       (1) 

 

where  is the position vector at discrete-time,   is the unit 

direction vector,  is the time step length,  is the constant 

speed and  is initial direction and position. Their results 

show that it is possible for a human to control a simulated 

swarm of robots and different numbers of leaders can be 

selected effectively.  
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4. Behaviour of Swarm Robotics  

To analyse the potential capabilities of robot swarms, 

swarm robotics had been studied in the context of 

producing different collective behaviours as shown in Fig. 

2. The following section will be discussed in more detail 

on swarm behaviours. 

 

Aggregation  

Aggregation is referred as the gathering of spatially 

distributed robots. It is one of the most fundamental and 

useful behaviours in swarm robotics. It is a crucial task 

due to it combines several aspects of multi-robot tasks 

including cooperation and precursor of collective 

behaviours for the accomplishment of many complex 

tasks that rely on local interactions [27]. For example, 

self-assembly, collective movement, pattern formation, 

exchange information and pulling heavy objects require 

prior aggregation.  

 

Figure 4: Aggregation of Swarm of Robots 

 

Fig. 4 shows the aggregation of a swarm of robots. 

Aggregation process is not the formation of a collection of 

individuals in nearness of each other, but it describes in 

terms of density of robots in a given space. The objective 

of aggregation is to group individual robots into a cluster 

without using any environmental clues and use as a 

starting point of performing task [17]. Aggregation is a 

very useful building block; it allows swam of robots to get 

sufficiently close one another so that they can interact 

locally without central control or global information 

exchange. 

 

Source of Inspiration: Aggregation behaviour can 

observe in almost all social insects such as ants, fishes, 

bees, bacteria, sheep, penguins and cockroaches etc. [28]. 

Aggregation helps them to avoid predators, increase 

chances of survival, build nests or find food. Some of the 

aggregation behaviours are known to be facilitated by 

environmental clues; flies use light and temperature, and 

sowbugs use humidity for aggregation. Other aggregations 

are self-organized. Aggregation of cockroaches, penguins 

and fish do not use such environmental clues but are 

resulting in the emergent cooperative decision [11, 29]. 

Challenges in this Behaviour: There are a few key 

challenges in aggregation. Firstly, robots use on-board 

sensors for robot-to-robot interaction and move forward. 

Whenever a robot encounters an element, sensors 

differentiate it from any other type of elements whether it 

is a robot, obstacle or target object. The main issue is that 

a swarm robot has limited sensing capabilities, visibility 

and is unable to communicate with other robots in large 

space due to the shorter frequency range. Cortes et al. [31] 

explored how to control and coordinate a team of mobile 

robots, sensor responsible, distributed and adaptive. 

Moreover, another study [32] proposed colours, luminance 

and relative positions can be used for sensing and are able 

to provide information. However, their study failed to 

provide evidence of different illumination conditions.  

 

According to Arvin et al. [33] analysed BeeClust 

algorithm in a light distribution environment and provided 

evidence that aggregation relies on the interaction between 

individuals and the mechanism of amplification. The study 

indicates that individuals without global information can 

implement collective decision-making through dynamic 

interaction. Another study [34] shown that aggregating 

robots with limited information are challenging. This is 

due to the robots are not being controlled properly and 

maybe forming a separate cluster because of mechanical 

constraints such as sensor and controller complexity. The 

mechanical constraints determine saturation effect in robot 

actuators and amplitude of the control inputs which 

regulate robot motion. For this reason, only a limited 

number of studies have been considered for swarm 

aggregation. Additionally, authors [35] made a 

comprehensive investigation between hardware quality 

and swarm performance. Their study observed that 

hardware imperfection can led inaccurate movement of 

robots and delay to identify the target as well as decrease 

performance. They suggested high quality sensors, 

actuators, design fitness function and genetic encoding are 

required when constructing swarm robots.  

 

Implementing self-organizing aggregation behaviour is 

crucial that relies only on local information. Typically, it 

requires an appropriate choice of waiting times for how 

long to stay in a cluster in order to avoid deadlocks. This 

study [34, 37] is a good example that robots achieve 

aggregation using finite-state characterized by “walk, 

approach, wait and leave”, where robots continuously 

search for target (walk) within its sensing range, it detects 

other robots, it moves towards the nearest robot 

(approach) and stay in cluster (wait). Otherwise, robots 

keep moving (leave) randomly with a predefined 

probability. Using this approach, global aggregation is 

controlled by probability for robots to detect other robots 

after random walking. Nevertheless, authors did not 

consider that small aggregates prevent the formation of 

larger aggregate due to robots can leave their aggregate at 

any time.  

 

Dispersion  

Dispersion can be considered as the opposite of 

aggregation behaviour. Almost every application of 

swarms of robots requires dispersing throughout the 

unknown environment as a means for exploration. In 
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dispersion, each individual robot has to maintain a 

predefined distance from its nearest neighbour and cover a 

large area while preserving the connectivity within the 

swarm [38]. It is one of the basic manoeuvres applicable 

such as planetary exploration, surveillance, nuclear 

decontamination after a disaster, collect samples from the 

unknown surface, reconnaissance in various hazardous, 

detect the victims or chemical leaks. 

 

Figure 5: Dispersion of Swarm of Robots 

 

Fig. 5 shows the dispersion behaviour of a swarm of 

robots. In the point of SR views, the robot moves forward 

in a certain direction. If sensor intensity decreases during 

its move, it can be assumed that the robot is moving away 

from other robots. However, if intensity increases, the 

robot is most probably towards other robots and it should 

change its route to enable dispersion. The objective of 

dispersion behaviour is not only gradually expanding in an 

environment maximizing the area covered, but it also 

stays connected at all times through some form of a 

communication channel.  

 Source of Inspiration: Dispersal behaviour is found in 

social insects those colonies are initiated by swarms 

comprising one or more queens and numerous workers 

such as honey bee, bacteria, amoebas. In the honey bee, 

quorum sensing is used for nest-site selection when a 

strong colony divides by swarming. The mother queen 

leaves parental nest, widely dispersed by a sufficient 

number of scouts to find future nest-site, while daughter 

queen and rest of the bee workers remain in parental nest. 

Upon departing its parental nest, scout bees search for a 

nest-site and recruit other honey bees to newly discovered 

nest-site. Once, suitable nest-site is selected, the swarm 

decamps in coordinate group behaviour and fly together 

with scouts guiding to their new place [39]. 

 

The above honey bee scenario, this study can perceive that 

it is a remarkable phenomenon in biological systems and 

effective way of communication. There are three basic 

behaviours that are most effective for a swarm of robot 

dispersion. These are random walk behaviour, find 

opening behaviour, and comparison behaviour [40]. In 

random walk behaviour, a robot moves on a slightly 

curved path by turning 10
0
 per step. When a robot detects 

an obstacle, it stops, turns and then resumes moving. On 

the other hand, find opening behaviour uses sensors to 

locate openings such as doorways or halls. Finally, 

comparison behaviour is able to recognize another robot 

that is nearby and move away from it.  

 

Challenges in this Behaviour: There are three 

quantitative goals in dispersion behaviour that are 

expected to fulfil by a swarm of robots. First, robots 

should move outward quickly to a maximum coverage of 

the area as much as possible. Second, robots need to move 

effectively that does not lead to any large gaps or overlap 

and maintain distance between them [24]. Third, while 

robots are moving forward, they need to stay within 

communication range. Due to communication range and 

sensing limitations, it is often necessary to execute 

dispersion task with little or no communication between 

robots.  

 

According to Ludwig and Gini [41] cited that 

problems of area coverage categorized into three—blanket 

coverage to maximize the total detection area, barrier 

coverage to minimize the possibility of undetected 

penetration of a defined barrier, and sweep coverage 

where to cover an area with a moving barrier. Their study 

uses wireless signal intensity and through an experiment 

authors claim that swarm of robots can be dispersed 

without knowing the relative locations of neighbouring 

robots. It is agreed that signal intensity is proportional to 

the inverse square of the distance robots travel. Intensity 

does not depend on the distance between robots, it 

depends on the structure of the antenna that is used and the 

surrounding environment. As a result, limited distance of 

wireless signal intensity and environmental obstacles that 

causes noise in the signal may not disperse the swarm of 

robots effectively.  

 

Much of prior works on swarm dispersion has been 

studied like uniform random walks, repulsive forces with 

a variety of combinations and models. For example, 

flocking, potential fields, diffusion-limited aggregation 

and springs. All of these generally perform poorly for 

large swarms of robots. More recently a study [24] was 

introduced reactive levy walks where scale-free particles 

motion processes formulated as models. In their study, a 

swarm of UAVs used to deploy over a large wilderness 

area and able to tolerate a transient gap during its initial 

deployment.  

 

Flocking  

Flocking task represents moving together as a single entity 

while maintaining predetermined formation or pattern and 

avoiding collisions with obstacle and other members of 

the flock. Flocking behaviour does not involve central 

coordination. This behaviour emerges at the collective 

level in a distributed manner, as a consequence of local 

interactions between autonomous agents. Through 

flocking, they gain several advantages such as higher 

survival rate, more precise navigation with and reduced 

energy consumption, exploration, object transportation 
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and shepherding (guiding). In addition to aggregation, 

flocking has an important characteristic at the swarm level 

know as alignment, which allows a group to move 

collectively in a given direction. 

 

Figure 6: Flocking behavior 

 

Fig. 6 shows that a group of a swarm of robots navigating 

in an arena with limited or no collisions between robots. 

They adjust their physical movement to avoid predators, 

seek food and mates, optimize environmental parameters 

such as temperature, etc. The objective of flocking 

behaviour is a swarm of robots are supposed to keep a 

constant distance from one another and a uniform 

alignment while moving using the “Boids” model 

proposed by [42]. 

 

Source of Inspiration: Flocking is a behaviour observed 

in nature in many species. In particular, flocking in a 

group of birds, school of fish are impressive examples of 

flocking, which form large groups of individuals moving 

together toward a common target location. Through 

flocking, they gain several advantages such as higher 

survival rate, more precise navigation with and reduced 

energy consumption. 

 

There are three fundamental rules for simulating flocking 

and herding behaviours. These are (i) separation: when 

the flock members get very close to each other, they must 

move away from each other via a repulsive force. As a 

result, sufficient free space around each member is 

guaranteed; (ii) alignment: each member should be 

moving along the general direction of its neighbouring 

members and (iii) cohesion: each member should be move 

towards the centre of its local neighbours so that they stay 

close to the group until sense repulsive forces. The logic 

behind these rules is that while each individual follows 

relatively simple rules when taken as a whole, they move 

as an organized group [42].  

 

Challenges in this Behaviour: The motion of flocking 

robots is a result of integrated actions of all members in 

the group that each member acts based on a local 

perception of its surroundings. Any geometrical or 

topological shape that is used to determine the positions of 

flocking robots is called a formation, which consists of 

three elements. These are pattern generation, flocking and 

pattern switching. According to [43] establishing a pattern 

can be separated into two sub problems: (i) identification 

of robots in the flock, which depends on their 

communication ability in forming an integrated network; 

(ii) position of the robots in the pattern, which needs a 

referencing mechanism such as leader-follower.  

In Boids, the behaviour is implemented through the 

summation of vector forces acting on each agent. As such 

as the number of agents in a swarm increases the amount 

of computation required for each time instant increase by 

an order of ; where  is the number of agents in the Swarm. 

Couzin model [44] suggested a more accurate 

mathematical description of Reynolds model [42] in three-

dimensional space referred as Couzin model. It is assumed 

that a group of agents are moving together under control 

or self-organized manner. All agents determine its next 

position according to the neighbours' situations, with the 

same constant speed but in varying directions. It is 

reasonable and efficient to represent a team of agents for 

their flocking behaviour in environment.  

 

A self-organized flocking behaviour for a swarm of robots 

was presented by [45] without using the emulated sensors 

or the prior knowledge of the destination. The simulation 

shows that with only local interactions robots can share a 

common flocking direction in a self-organized process 

until the sensing noise exceeds to a certain extent. In the 

follow-up work, the authors studied how the swarm can be 

steered toward the desired direction by guiding some of 

the individuals externally. The results are qualitative in 

accordance with the ones that were predicted using in Ref. 

model [44]. 

 

Foraging  

Foraging behaviour also is known as prey retrieval or 

gathering task. It can be viewed as a subset of object 

clustering where swarm robots cluster preys at the nest. 

Foraging efficiency is a key factor influencing colony 

productivity and mechanism of task allocation. The 

potential applications of foraging are demining, planetary 

exploration, hazardous waste clean-up, search and rescue 

operations.  

 

Figure 7:  Foraging behaviour  

 

The Fig. 7 illustrated resource allocation problem. It can 

be decomposed into a sequence of sub-tasks of two types- 

(i) ants are looking for prey in the environment (ii) 

carrying an item to bring to the nest. Execution of each 

task facilitated by mechanisms of cooperation between 

members of the swarm. In order to achieve cooperation, 

communication between individuals is vital. This 

communication can be via shared memory, the direct 

exchange of information or through the environment. The 

objective of foraging behaviour is locating resource 
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deposits, gathering performance and signaling to guide 

others.  

 

Source of Inspiration: Foraging is most common in social 

insects and appears either in the form of stigmergy or 

direct signaling. The collective foraging task is inspired by 

the behaviour of ants, which search for food sources 

distributed around their nest. They are able to efficiently 

exploit food sources using local interactions between 

individuals. Ants utilize stigmergy and termites when they 

lay pheromone trails that lead to food, changing their 

environment such that is stores useful information that 

guides the behaviour of recruited conspecifics [47]. In 

other hand, honeybee relies on directly influencing their 

nestmates. They use waggle dance that communicates 

both food quality and location. Flexibility and 

sophistication are achieved by both scoutings for new food 

sources and re-evaluation of old foraging sites, allowing 

bee colonies to rapidly adapt to changing quality [48]. A 

number of approaches have been taken to implementing 

foraging in swarm robot, including random walking, 

bucket brigading, uniform random distribution.  

 

Foraging strategies divided into three- Individual 

foraging, Behavioural matching, Recruited foraging, 

cooperative hunting. Individual foraging is a simple 

implementation where individual searches for food alone 

and does not receive any information about food other 

than what it can itself acquire. Behavioural matching, an 

individual follows successful foragers and thus utilises 

social information about where food could be located. 

During recruited foraging, an individual that is a part of a 

colony obtains food either for itself or for other colony 

members. Various tactile, chemical (stigmergy) or visual 

cues are passed between group members in order to 

distribute knowledge about the direction and quality of 

food. Bees use waggle dance in order to know the newly 

discovered and better food sources. 

 

Challenges in this behaviour: In foraging, the challenge 

is to find the optimum search strategies that maximize the 

ratio of discovering a place of interests and returned to the 

resources committed in the arena. This paper explored and 

analysed different foraging strategies in terms of 

performance and the modelling of foraging were 

developed. While foraging is a task experimented with in 

swarm robotics, it is often the case that foraging strategies 

inspired by nature.  

 

The study [49] reviews how food acquisition is solved 

by various biological species including ants termites, bees, 

dolphins, whales and humans. The authors described that 

the choice of how to obtain food does not depend as much 

on species as it depends on the niche the organisms find 

themselves in. on occasions when food is hard to obtain 

for an individual. Group foraging occurs and its benefit 

grows with group size until a threshold is reached when a 

large aggregate cannot obtain enough food and it needs to 

split up.  

According to [50] presented that it is possible to 

understand swarms by studying how they behave in 

various environments. However, it is often difficult to 

intuitively predict the aggregate results of systemic 

properties of swarm behaviour because of the non-trivial 

nature of inter-robot interactions and interaction between 

robots and their environment. The authors implemented B-

Swarm for recruitment in a foraging task. B-Swarm were 

not better equipped than I-Swarms to selectively forage 

from more energy-efficient deposits. Since B-Swarm 

robot was recruited to any deposit with an energy 

efficiency higher than the lowest known Ee, a larger 

proportion of the swarm would collect from ordinary 

locations instead of exploring the environment. However, 

it was observed that unemployed B-Swarm robots could 

target higher Ee deposits as a consequence of receiving 

information from a large number of returning foragers.  

 

Collective Transport 

Collective or cooperative transport/movement of an object 

by two or more individuals is an impressive example of 

collaboration among individuals. However, this 

behavioural mechanism that leads to cooperation in social 

insects are often unknown or poorly understood. 

Cooperative transport is one of the more distinctive 

collective behaviours in which a group of individuals has 

to cooperate in order to collect and retrieve an object that 

is too heavy to be transported by an individual. For 

example, carry large food items by groups of ants from 

one location to another. This technique is also known as 

group prey retrieval. Cooperative transport does not 

include behaviour where individuals separately move an 

object, which known as foraging. 

 

One major benefit of cooperative transport appears to 

be that it allows a colony to utilize large food items in an 

environment with aggressive or dominant competitors by 

quickly moving the item to the nest rather than having to 

cut it up or consume it on the spot [60]. Additionally, it 

increases the speed of transportation or efficiency. Swarm 

robotics aims to mimic the behaviour of the natural swarm 

by looking for the individual rule that generates robust 

group-level response.   

 

Source of Inspiration: Social insects such as ant show 

incredible and remarkable cooperation in diverse tasks. A 

small prey or food item is easily carried by a single ant. 

When an ant finds a prey item, physically attaches to it 

and then tries to pull or push it alone. When successful, 

the ant moves the prey item back to the nest. If an item 

does not perceive any movement after a while, the ant 

changes the orientation of the body, re-attach at a different 

point and try again. Finally, even not able to move the 

prey item because of its weight or size; ant recruits 

nestmates through direct contact, trail laying and 

pheromone [25, 61]. Other ants sensing the presence of 
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pheromone move along this trail, going towards the item 

to be transported. On the other hand, ants may not 

synchronise their pulling efforts and pulled in opposite 

directions. This task often accomplished without a leader.  

 

From the above scenario, cooperative transport in ants 

could be categorized into three general syndromes. The 

first syndrome is uncoordinated transport, in which 

individuals push or pull the object in multiple directions. 

In [61] noted that uncoordinated efforts are interrupted by 

deadlocks where ants pull in opposite directions. Each 

attempting drags the food item backwards from its current 

position, meaning that no forward motion. The second 

syndrome is encircling coordinated transport, ants are 

recruited to a food item, encircle it and quickly transport 

the item back to the nest once a sufficient number of ants 

have assembled to move it. The third syndrome is 

forward-facing coordinated transport without deadlocks 

and all individual ants face the direction of travel to the 

nest.  

 

 Challenges in this Behaviour: According to [62], there 

are four major techniques to produce cooperative transport 

behaviour in swarm robotic systems such as grasping, 

pushing, caging and tool-using. Initially, in grasping, 

multiple robots grasp an object using manipulators and 

then transport it to a goal. This technique enables robust 

transportation as the authors claim. However, a large or 

irregular-shaped object cannot be transported because of 

robots should tightly grasp an object in advance. 

Secondly, pushing behaviour enables swarm robots to 

transport irregular-shaped objects that cannot be grasped. 

However, a drawback with pushing is that it is hard to 

predict the movement of the robots and object being 

pushed over uneven terrain. Thirdly, robots wrap and 

transport an object to a goal by maintaining a regular 

formation known as caging. This technique allows for 

transporting an object without having to maintain direct 

contact with the object. However, this requires caging 

identification, positions of the object and its shape in real-

time. In contrast to grasping, pure caging does not enable 

objects to be lifted. Finally, there are diverse tools that can 

be used for transportation such as a stick or a rope. 

 

A complementary approach has been pursued by SR 

research, where decentralized transport strategies have 

been developed using evolutionary computation algorithm 

[56]. This algorithm relies on simple local sensing by 

individual robots, with no explicit knowledge of the 

object’s shape or coordination between robots. A 

disadvantage of the decentralized method is that it has not 

been theoretically analysed and evaluation is done only in 

simulation or through limited robot experiments. In one 

interesting exception, cooperative behaviour is analysed 

but requires a leader-follower strategy [63]. The lack of 

analysis makes it unclear whether the ant-inspired 

decentralized approaches generalize to more complex 

object geometries or larger numbers of robots.  

 

5. Human-Swarm Interaction   

Human-Swarm Interaction (HSI) is defined as 

collaboration between human operators and semi-

autonomous teams of robots. It involves understanding 

how humans interact with swarm robots and an 

assessment of the human responses during that interaction. 

In such a system, a human operator uses the information 

sent by the swarm and issue new commands to the swarm 

[65]. It is useful in several real-world applications such as 

urban search and rescue, surveillance, oil spill recovery, 

plume tracing, autonomous construction and military 

operations.  

 

Swarm robotics systems are considered to be 

autonomous and to make decisions in a distributed way. 

Most autonomous systems required some degree of 

interaction with human operators to achieve a desired 

behaviour. It is an essential component in the successful 

operation of a system for the cooperation of swarm robots 

in an unstructured environment. The presence of human 

operator provides recognition and mitigation shortcoming 

of the autonomy, repair failures, impart a new goal to the 

system, convey changes in intent as mission, decision 

making and inaccessible information can be utilized to 

increase performance. Therefore, these real-world 

applications require a need for human assistance to 

influence the swarm to become more goal-directed in 

complex and changing environment.  

 

 Challenges in HSI: A number of studies [65, 67-71] 

focused on supporting autonomous HSI with one or few 

robots. However, autonomous technology to permit such 

systems to work on their own is lacking. While good 

progress is being made in swarm autonomy, a little 

attention has been paid to swarm interaction with human 

operators and how to issue commands and get feedback 

from individuals. The problem arises when an operator 

trying to interact with a swarm. Individual robot in a 

swarm system interacts with its neighbours only which is 

low-level dynamics. By contrast, the human operator is 

not aware of it and they only can see global behaviours 

that emerge through self-organised interaction between 

individual robot [26]. This is an extremely challenging 

task of decoding low-level swarm dynamics and need to 

be resolved programmatically. Human operators are not 

capable to understand this. In addition, such system 

interfaces could be complex, unusable or less effective 

when then number of robots involved in the task grows 

larger.  

 

Some existing studies have investigated on haptic 

interfaces. According to [67] suggests that to enable 

effective HSI, interfaces must be designed systematically. 

Authors focus on leader-follower networks. In their 

experiment, the human operator controls one robot (the 

leader) and that robot influences the swarm locally. The 

leader robot controlled by a haptic device such as joystick. 

Whereas the remaining robots maintaining distances 
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between one another. But feedback generated and 

responded to human operator was not scaled well. This is 

due to the inflexibility of the formation and the rigid 

structure of robots. Additionally, not all team-level 

properties may be particularly well-suited for haptic 

feedback. Therefore, it is essential to discover SR systems 

using haptic feedback where a human can supervise a 

large team of robots and receive feedback from it. Besides 

that, multimodal feedback to human operators using 

potential field approach has been examined. It enables 

controlling and designing the swarm system’s interface 

that provides feedback regarding the swarm speed, 

strength, capability and dispersion.  

 

Another problem is controlling the swarm system. 

Before sending a command to an SR system, human 

operator needs to know what state the system currently in. 

Therefore, swarm robotics system should provide 

feedback about the state of the individual robot to the 

human operator. In [66] indicates that inappropriate timing 

of control input could lead to swarm fragmentation. The 

author provides evidence of a simple target-searching task 

using neglect benevolence in a swarm. The result shows 

that frequently issue commands lead to lower levels of 

performance. Furthermore, to decide optimal timing of 

control input, it is essential to incorporate human operator 

decision. According to [67] identified two challenges 

when robots send state information to the human operator. 

The first challenge is due to small size of robot’s hardware 

and its simplicity. An individual robot may not be 

equipped with the dedicated hardware required to provide 

meaningful feedback to the human operator. The second 

challenge is due to the large swarm of robots. If a robot 

can interact with human operator meaningfully, it does not 

mean that each robot can do so. Hence, the state of the 

individual robot and composite information of team of 

robot need to deliver to the operator.   

 

A recent study [37] introduce a pheromone-based 

human-swarm interaction called the autonomy spectrum. 

The author emphasis on the assignment of a level of 

autonomy (LOA) to analysis, decision selection, 

information acquisition and implementation. Moreover, 

their model includes a predefined pathway between 

different LOA. This pathway combination of methods of 

operation. But the author was not concerned with a 

systematic comparison of human-swarm interactions. The 

primary conclusion is that human operators had some 

positive impact on system performance but further work 

remains to be done to better integrate human and swarm 

technology. In a similar work in [29] authors use two 

switchable modes of operation for a swarm to allow the 

human operator to switch between high and low 

autonomy. High autonomy mode was captured via a 

dispersion algorithm whereby the swarm members spread 

to cover the open space in the environment. Besides the 

low autonomy mode allowed the user to select subsections 

of the swarm to direct via waypoints. Here, the author 

perceived that operators found most success when using a 

mix of two modes. Nevertheless, further research work 

needed before properly say whether flexible LOA are 

beneficial in HSI. Moreover, properties of swarms are 

often unpredictable and human operators has little 

knowledge for understanding the swarm. 

 

Another study [22] motivated on supporting the 

interaction through gesture recognition using proximal 

swarm interaction. This enables human operator to 

monitor part of or whole swarm directly as well as interact 

with each other locally through the environment. This can 

control and influence the swarm of robots in a distributed 

manner. This open possibility of control robots by having 

multiple human operators via speech commands, gestures 

and face engagement. Though, such experiment has not 

been carried out yet. Proximal interactions treat operators 

as a special or ordinary swarm member which usually not 

found in other human-robot systems. However, it is not 

clear how one would utilize them for controlling large 

team of swarm.  

 

A touch-based input may allow users to perform 

complex tasks in an intuitive manner. Fong [20] presented 

a portable vehicle teleoperation interface using a personal 

digital assistant (PDA) with collaborative control. The 

authors discussed the use of collaboration, human-robot 

dialogue and waypoint-based driving that can enable an 

operator to effectively control a team of robots. A similar 

study [12] proposed an intuitive interface using a touch 

screen to control multiple robots simultaneously. Their 

interest is to discover how a human operator’s behaviours 

differ when using a robot control interface to send 

commands to humans, in order to adapt those guidelines 

and allow us to build interfaces that provides better 

simultaneous human and robot command and localization 

capabilities. 

 

6. Comparison  

 Existing HSI work has focused on developing 

mathematical models that allow humans to control swarm 

behaviours and have generally been evaluated on fixed 

computers with large screens, mouse and keyboard, as 

shown in Table 1. However, swarms have a mobile aspect 

and a human who is part of a swarm may move with the 

swarm. This calls for mobile interfaces, which in turn have 

novel interaction capabilities such as touch screens, but 

limited screen real estate. Table 2 shows that significantly 

less work has been done in this area. This project will thus 

focus on the unique challenges of HSI via a mobile 

device. 

 

Table 1: Computer-based Swarm Interaction  

Source 1 2 3 4 5 6 8 9 10 11 12 14 16 

CS 1 Y Y Y Y N ? ? Y ? Y ? ? N 

CS 2 Y Y Y Y N N Y Y ? Y ? ? N 

CS 3 Y Y Y Y N N Y Y N ? ? ? N 

CS 4 Y Y Y Y Y ? Y Y Y Y Y Y N 

CS 5 Y Y Y Y N ? Y Y ? Y ? N N 
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Table 2: Mobile-based Swarm Interaction  

Source  1 2 3 4 5 6 8 9 10 11 12 14 16 

MS 1 Y N N N  N N N Y N N N N N 

MS 2 Y N N N  N N N Y N N N N N 

MS 3 Y N N N  N N N Y N N N N N 

MS 4 Y N N N  N N N Y N N N N N 

MS 5 Y N N N  N N N Y N N N N N 

MS 6 Y Y Y Y N Y Y Y N Y N N N 

 

1-Move around; 2-Aggregation; 3-Dispersion; 4-

Flocking; 5-Foraging; 6-Formation; 8-Obstacle 

Avoidance; 9-Exploration; 10-Transport; 11-Coordinated 

Motion; 12-Source Localization; 14-Decision Making; 

16-Human Swarm Interaction; ?-Not mentioned. 

 

Observe from Fig. 10 that when a machine offers no 

assistance and is fully influenced by a human, there is 

minimal machine autonomy. However, when a machine 

has the ability to make decisions on its own, executes 

automatically and does not need to ask a human for 

approval/suggestions, we have maximal machine 

autonomy. On the other hand, between these extremes, 

machines can execute automatically, request human 

approval and permit humans to suggests alternatives. 

Additionally, semi-autonomy may allow the human to 

veto the machine decision or suggest a completely 

different set of alternatives.  

 
Figure 8: Human vs Machine Autonomy 

 

Fig. 10 suggests that human will gradually decrease their 

interactions or lose the ability to decide or have less 

involvement when machine autonomy increases. 

However, there is a problem as the decision, priority of 

tasks become more important and human has less or no 

involvement. Thus, human intervention is necessary and 

we argue that higher robot autonomy requires higher 

levels or more sophisticated forms of interaction [68]. 

This project will focus on the area of semi-autonomy 

where the swarming agents undertake low-level control 

autonomously but respond to high-level goals from the 

human. 

 

7. IntelliBot  Framework  

Research Problem and Solution Overview  

Human control of swarms is a complex problem, as there 

is no ready correspondence between human goals, swarm 

behaviours and actions an operator might take to influence 

the swarm. Additionally, the current state of the art has 

significant limitations including unreliability of 

automation [29], inability to fully capture operator’s intent 

[18] and lack of flexibility to deal with situations [21]. To 

overcome uncertainties in the environment or execute 

complex tasks; human supervisory control is essential. 

However, as the number of agents increases, bandwidth 

and constraints make it difficult for a human to interact 

with individual agents. Human operators need to 

coordinate and control the actions of large numbers of 

agents. This requires sequences of decisions, commands to 

control swarm behaviours and division of operator’s 

attention between agents, which is limited by the number 

of agents that operator can reasonably control. Thus, a 

system designed named IntelliBot that allows human 

operators to influence swarm robots at a high-level while 

the swarm continues their operations and low-level 

control.  

 

Individual agents in swarm systems interact with their 

neighbours only, which is low-level dynamics. By 

contrast, the human operator may only see global 

behaviours that emerge through self-organised interaction 

between individual agents [26]. The challenging task of 

decoding low-level swarm dynamics needs to be resolved 

programmatically. It is not clear human operators are 

capable of understanding this. The operator must be able 

to obtain a clear understanding of the present robots’ 

status and environment in order to effectively supervise 

swarm robots. It is currently not always possible for such 

systems to ensure that swarm robots will act in a desirable 

way or complete a particular objective. For this reason, 

mathematical models of control laws. 

 

IntelliBot’s interaction technique takes advantage of 

both swarm robots and human capabilities is a way to 

push the capabilities of robotics systems that lack of 

intelligence. In order to take advantage of both swarm 

robots and human operators, a graphical user interface 

(GUI) designed to allow operators to give commands that 

accomplish high-level decision-making and complex 

tasks. 
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Figure 9: Prototype Design of HIS: IntelliBot   

 

Experimental Setup  

Experiments using real robots/agents provide realistic 

results for the robotic study. However, this study will 

perform android smartphone simulations prior to 

investigations with real agents. In the initial stage, we will 

design experimental scenarios and conduct a pilot study 

before going for user studies. During user studies, all 

participants will be trained and asked to perform a range 

of interface-related tasks covering types of human-swarm 

interaction. Upon training completion, all participants will 

have the same set of instruction to assign agents to tasks. 

Tasks execution time, estimated travel time for each agent 

and task completion time will be captured by the system 

for further analysis. Following the completion of each 

scenario, all participants will respond to a questionnaire to 

obtain each user’s satisfaction, ease of use and 

performance.  

 

 

Significance of the research  

This research is significant due to—Firstly, it can expose 

whether human can control swarm robots and improve 

system performance. Secondly, data that will be collected 

can be used for further studies for measuring performance. 

Thirdly, large scale swarming robots (drones) could be 

used in situations too dangerous or impractical for humans 

such as search and rescue operations, or help farmers to 

monitor the quality of crop growth, apply fertilizer, or 

tasks in urban environments such as temperature 

monitoring. Furthermore, drones have socio-economic 

impacts on other areas such as telecommunication, 

transportation, humanitarian, firefighting, surveillance and 

airspace safety. 

 

8. Conclusion  

Developing a swarm robotics system is one of the greatest 

challenges. However, this study implemented HSI systems 

to overcome the limitations of traditional supervisory 

control. The field of robot swarm systems or multi-agent 

dynamic systems is still an active research field. Although 

there are many solved problems, there also many 

potentially fruitful new directions. Moreover, developing 

models and strategies for HSI, intelligent learning 

strategies and various levels of autonomy/intelligence for 

individual agents and the swarms as a whole are important 

topics of future research. 
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