

May - June 2020

ISSN: 0193-4120 Page No. 5384-5389

5384

Published by: The Mattingley Publishing Co., Inc.

Dynamic Intelligent Virtual Assistants Based

on User Preferences

Adarsh Anand
1
, Saket Savarn

2
, Sunilkumar Manvi

3

1,2,3

School of Computing and Information Technology

REVA University, Bengaluru, India
1
adarshanshu7@gmail.com,

2
saketsavarn07@gmail.com,

3
ssmanvi@reva.edu.in

Article Info

Volume 83

Page Number: 5384-5389

Publication Issue:

May - June 2020

Article History

Article Received: 19 November 2019

Revised: 27 January 2020

Accepted: 24 February 2020

Publication: 16 May 2020

Abstract

When we talk about “Dynamic Intelligent Virtual Assistant”

(DIVA), we are trying to imply about a virtual assistant which is

more dynamic than any pre-existing virtual assistants present and is

more personalized in understanding its user. The reason for making

this virtual assistant came from our observations as to how the

present assistants fail to adapt uniquely to different users and their

needs or preferences. Our virtual assistant aims at having a higher

learning curve of the user preferences so that our assistant’s

interaction is different for each user. Our assistant not only includes

all the basic features of the present-day assistants but also has more

personalized features such as “Time and activity tracker of the user”,

“learning about user’s preferences with some guidance”, etc. The

DIVA is effectively implemented to demonstrate its operation of

user assistance based on personal preferences learning.

Keywords: Virtual Assistant, Machine Learning, Artificial

Intelligence, TTS, STT, Speech Recognition

1. Introduction

Information interchange and how we interact with all this

information is what this information era is all about.

Man’s curiosity and need to make an intelligent agent to

do it’s work without need of manpower or manual labour

has been researched for a very long time. We invented

computers, laptops and then smartphones, automated

robots and tools with intelligence, came up with new

fields like IoT, fintech, etc over-time and made

breakthrough discoveries in older fields like data science

all to make our work easier. Overtime, we realized even

though all these technologies have made our life very

much easier, the method of communication has always

been troublesome, i.e., inputting our commands was done

through methods like clicking or pressing buttons or

typing a command or methods requiring our manual

attention, meaning input-method for these technologies

was manual in nature even if the output was automated.

Big Tech companies like Google, Samsung,

Microsoft, IBM, Apple, Facebook, Mozilla, etc have

already rolled out their virtual assistants or Text-To-

Speech Engines on which we can make Virtual

Assistants. Now many of these are open-sourced up to an

extent allowing developers to make their own virtual

assistant and this is how we came up with the decision of

making our own Virtual Assistant (VA) due to our

dissatisfaction of what current VA offer us.

The problem with current day VA is that they follow the

same structure or learning curve for every one of its user,

meaning, the current day VA have a learning curve of

about 5% for everyone. If I am using SIRI or Google

Assistant versus you using your own SIRI or Google

Assistant, both of our SIRI/Google Assistant will behave

the same way even if we interchange our personal Virtual

assistants.

Our aim is to make a “Dynamic” Virtual Assistant

that will learn about user preferences by web-scraping

information from the Internet and arrange the information

so that it can use this information on its own in our

conversations. This way if I use DIVA and if you use it, it

will remember our individual preferences, hence we are

expecting it to have a learning curve of at least 20% more

than current VA.

mailto:1adarshanshu7@gmail.com
mailto:saketsavarn07@gmail.com
file:///C:/Users/REVA00124/Downloads/ssmanvi@reva.edu.in

May - June 2020

ISSN: 0193-4120 Page No. 5384-5389

5385

Published by: The Mattingley Publishing Co., Inc.

The rest of the paper is organized as follows. Section 2

presents related work on intelligent assistants.

Architecture of DIVA is presented in section 3. Section 4

describes methodology for implementation of DIVA.

Finally results and conclusions are presented in Sections

5 and 6, respectively.

2. Related Works

In [1], the authors created a spelling correction (SC)

model which is trained to explicitly correct the errors

made by a speech recognizer. To train that SC model,

they generated error hypotheses by decoding the TTS

(text-to-speech) data synthesized from a large text-only

corpus. Their results showed that the SC model yields

clear improvement over the baseline LAS (Listen, Attend

& Spell) model. The authors in [2] presented an

interactive TTS (text to speech) system and combined it

with a speech emotion recognizer that had the potentials

to synthesize matching speaking styles as the input query,

meaning the TTS engine has the capability of having

“tone”, “accent” or “moderation” in the output speech

and not speak in a monotonous way unlike other TTS

engines. Using [1] and [2] as references, we are trying to

replicate human behaviour to understand speech to its

best by auto-correcting common-sense errors and

enacting pseudo-emotions via speech.

After imitating human speech, a reservoir of

knowledge is required to speak from. The work in [3]

presents LibriTTS which is a multi-speaker English

corpus of approximately 585 hours of read English

speech at 24kHz sampling rate. The Corpus used for

LibriTTS proved to be the best for making a Virtual

Assistant and hence acts as a guideline for making our

own corpus. In [4], authors present a novel keyword

spotting (KWS) system that uses contextual automatic

speech recognition (ASR). As in natural languages, a

context/statement can be described in multiple ways and

hence using simple statements to invoke commands from

the Virt. Asst. becomes wary if the statement is posed in a

different manner, therefore using keyword spotting, the

Virt. Asst. gets a gist of the intent behind the user’s

statement and invoke an action for the same.

The work discussed in [5] is Named Entity

Recognition (NER) which works in a similar way to

KWS [4] but unlike Keyword Spotting, NER is used to

recognize unstructured or non-native terms such as

Names, location or places, organization names, medical

or military or domain-specific terms or codes, etc. This

will be useful in adding information to the corpus [3] for

words that cannot be classified via POS (Part of Speech)

tagging & be used to learn personal information about the

User’s preferences, like his name, favourite sports &

music, etc as they all fall under Named Entities.

To be able to tackle unpredictable statements,

commands or information request, if the corpus [3] fails

to fetch an answer for the same from its repository, the

best option is to use the web for answers but the same

causes errors as nothing is organized in a structure format

on the web. Authors in [6] improved NER by using

background knowledge from sources like DBpedia, etc on

the web. Using NIF 2.0 (NLP Interchange Format) and

Linked Open Data (LOD) a structured way to get

information access from the web is possible and the same

can be then used by the Virt. Asst. In [7], authors present

LAS hypothesis, where SC model can generate an

expanded list which has significantly lowered the WER

(Word Error Rate). This helps in increasing accuracy of

the virtual assistant.

3. Architecture of DIVA

A Virtual Assistant has multiple segments that are

required to make the whole system work. For a virtual

assistant, the input-method which is our speech is taken

care by SST or Speech-to-text engine, this is the speech

recognition part, now based on the speech inputted, an

action is invoked by the Logic Engine which acts as the

brain of the whole system, based on the action, So, we

can understand that a VA uses multiple fields to work

such as Speech Recognition, Neural Networks, Natural

Language Processing, GET-POST Service to fetch data

from Internet. Over all these features, our virtual

assistant, DIVA can primarily keep track of our activities

and time, given that we have told it about the categories

that we divide our time into (Study, Assignments,

Projects, Games, Watching series etc.). Fig 1 depicts

overview of DIVA. The blocks in figure are explained as

follows.

Figures 1: Basic Architecture of a Virtual Assistant as it

carries out the command and perform the NLU on that

request

Automated Speech Recognition (ASR) (Used for SST)

[Input Method]: ASR is an algorithm that has evolved

over time due to benefits that Natural Language

Processing has reaped due to many researches works such

as better audio understanding due to improved

understanding of acoustic signals in an audio and better

noise reduction. It involves taking the audio and

converting it to a wave file.

Logic Engine or Natural Language Unit (NLU)

[Brain/CPU of the system]: Once the SST converts the

speech to “raw string”, (Fig 2) the logic engine processes

the information and tries to find the most suitable output

for the same. The logic engine can be complex or very

simple depending on the virtual assistant. More complex

logic engines are usually more dynamic in nature and use

various methods to work and categorize or process the

“raw string” such as Parts-of-speech (POS), Name Entity

Recognizer (NER), etc. The logic of NLU is given in Fig

2. Internal details are given as follows.

May - June 2020

ISSN: 0193-4120 Page No. 5384-5389

5386

Published by: The Mattingley Publishing Co., Inc.

Figure 2: Pipeline Architecture for an Information

Extraction System as it takes the raw text and perform

several analyses on it and gives the relations.

Part of Speech Tagging: Part of speech tagging consists

of breaking down the raw string or text in further

grammatical categories like Nouns, pronouns, adjectives,

adverbs, etc. (Fig 3) This helps the Logic Engine identify

irregular words that do not fall in any of these categories

or spot the main phrase or word using keyword spotter

mechanism (Eg: “date” is a keyword in the sentences

“What is the date” or “Today’s date”). These categorized

words or broken-down words are called as tokens or tags

and this process is known as “Tokenization” and

“tagging”. Example is given in Figure 3.

Figure 3: Tokenization of texts (Observe how the

sentence in the end is categorized with codes like “IN”,

“CD”, etc, these stand for Preposition (IN), Cardinal No.

(CD), JJ (Adjective), NNP (Proper Noun), NN (Noun)).

Extracting Entities: In NLP, entities refer to terms that

do not fall naturally in a natural language, for example,

names of organizations, people, places, objects, domain

specific terms and codes, etc. There are various ways to

recognize such entities and this is useful in many

scenarios like in our case where we will be using it to

figure out terms that stand out and make the NLU search

such terms so that it can learn about them on its own.

This way it can keep track of music artists names or

cricketers’ names, etc as all belong to entities.

The basic technique we will use for entity detection is

chunking, which segments and labels multi-token

sequences as illustrated below. The code consists of the

variable which is defined with particular grammar (Fig

4), that is chunked based on the grammar which is as

follows:

chunkGram= r”””Chunk: {<RB.?>* <VB.?>*

<NNP>+<NN>?}”””

chunkParser = nltk.RegexParser(chunkGram)

chunked = chunkParser.parse(tagged)

See Figure 4 for segments and chunks.

Figure 4: Segmentation of tokens and chunks both. Here,

PRP, VBD, DT, JJ, NN are tokens while NP and NP at

outer level are the chunks.

Text-to-speech [Output Method]: Once the NLU has

used various methods to process the raw text, it will

invoke an action. If the action turns out to be a reply to

the user, then a pre-defined text based on the NLU

decision-’s or a self-constructed sentence is converted

from text to speech via a TTS or Text-to-Speech Engine.

We are using Google TTS, which speaks the output via

the speakers.

Additional Features of our NLU: As we lookout for

other virtual assistant in the market, DIVA is more

personalised and more focus on one particular behaviour

and habit. It learns the human behaviour in first 10-15

days. Plots the graph according to that and revises the

algorithm on what the user is more focused on and how

he is handling the time by its unique feature (Stop

Watch). As we described that it will be divided in

different categories and according to that it will be easy to

differentiate whether it’s for the good and just happy

hours for the user. Using Pandas, we plot and visualize

the graph and give the suggestion how the user can

improve the time, which is again a unique feature (Time

Management).

4. Methodology

1.1. Hardware

The user will interact with our Raspberry Pi 3, Model B

using a mic component and the same will be converted to

text using Speech-To-Text (We are using speech

recognition module of python which is using the Google

Speech API for this purpose as of now). This will be main

core hardware component which works as a central

system that holds the code which includes all the API and

the models useful for the Virtual Assistant. RASPBERRY

PI unlike its competitors like Arduino, etc is a micro-

processor not a micro-controller (which Arduino is). The

capabilities of it are: voice recognition, good

performance, easy to install, and open source.

1.2. Software

The texts will go through our NLU modules like ntlk,

textblob, speech_recognition and they in place will

May - June 2020

ISSN: 0193-4120 Page No. 5384-5389

5387

Published by: The Mattingley Publishing Co., Inc.

invoke actions or dialogue management tasks that will be

processed via various APIs, our python scripts running

them in back-end, many of our own python scripts and

after this is done processing this will be converted from

text-to-speech using TTS modules (we are using Google

Text to Speech for this purpose as of now).

Software and APIs used are: Python 3.7 Scripts

(Back-End), Raspberry Pi Interface Software (Raspbian

Software), NOOB Package (For Raspberry Pi), Various

APIs ported through python 3.7 (Google Speech API,

Mozilla Deep Speech, Mozilla TTS, RASA, Google

TTS) and modules in python (NLTK, TextBlob, Speech

Recognition (NLP Modules, Seaborn, Matplotlib (Data

Visualization Modules, Time, OS (Standar Modules),

Urllib, Certify, SSL (Modules for setting connections

with APIs)).

1.3. Block Diagram

Figure 5: Block Diagram of a client-server based Virtual

Assistant as client give certain command and application

use HTTP POST request to send the requirement to

further analysis

(Fig 5) presents framework of VA based on client

server paradigm. The components of it are explained as

follows.

Speech Recognition: It will identify words and

phrases in spoken language and convert them to a

machine-readable format. Since the user will give the

input as a voice so, STT (Speech-to-Text) will convert

them into text format and then understand the word and

finally invoke the application to start.

HTTP POST Request: POST is a request method

supported by HTTP used by the World Wide Web. By

design, the POST request (Fig 5) method requests that a

web server accepts the data enclosed in the body of the

request message, most likely for storing it. It is often used

when uploading a file or when submitting a completed

web form.

Analysis of Text: Text mining identifies facts,

relationships and assertions that would otherwise remain

buried in the mass of textual big data. Once extracted, this

information is converted into a structured form that can

be further analysed, or presented directly using clustered

HTML tables, mind maps, charts, etc.

NLP: Machine learning is an artificial intelligence

(AI) technology which provides systems with the ability

to automatically learn from experience without the need

for explicit programming, and can help solve complex

problems with accuracy that can rival or even sometimes

surpass humans. However, machine learning requires

well-curated input to train from, and this is typically not

available from sources such as electronic health records

(EHRs) or scientific literature where most of the data is

unstructured text.

JSON Response: Json() is a function that reads the

response stream to completion and parses the response as

json. This operation may take time, so instead of just

returning the json, it returns another Promise. The success

function of this promise will have the resulting json as an

argument. JSON Request is proposed as a new browser

service that allows for two-way data exchange with any

JSON data server without exposing users or organization

to harm. It exchanges data between scripts on pages with

JSON servers in the web.

5. Results

Some snapshots of the results we tested out the DIVA are

presented in fig 6, 7 8 and 9. In these figure D.I.V.A. tries

to start the stop watch and learn about the user

preferences and even perform several functions in order

to fulfil the request of client.

Figure 6: Interacting with DIVA (1/3) Starting and

stopping the time and calculating, the user interests and

likes and what kind of application he/she use

May - June 2020

ISSN: 0193-4120 Page No. 5384-5389

5388

Published by: The Mattingley Publishing Co., Inc.

Figure 7: Interacting with DIVA (2/3) DIVA playing the

songs as heard the command play songs, and recording

the likes of user song’s genre.

Figure 8: Interacting with DIVA (3/3), Opening the

Browser from D.I.V.A. and even doing YouTube search

from the queries and even recording the likes and

dislikes.

From fig 9, we observe that interests of a user in

Netflix, web development, gaming, etc., are plotted by

DIVA. During the Stop Watch Timer, it calculates the

user likes and dislikes and the preferences user prefer and

involves his/her time mostly in.

Figure 9: Graph made by stop watch to visualize the user

interests and work algorithm accordingly. As given client

is mostly interested in Web Development so D.I.V.A.

learns about specific user and give the future suggestion

in the field of web development.

6. Conclusion and Future Works

As of now, DIVA has successfully been implemented

with a stop-watch feature as a background process which

does not exist in present-day Virtual Assistants present in

the market (Siri, G.A., Alexa, etc). Since, the stop-watch

is running in the background, the user can still use DIVA

to invoke other tasks or commands while the stopwatch

will be used to track the user’s time and tell them where

they can improve or if they are having too less sleep or

not.

DIVA is currently a bit slower and inaccurate

compared to market VA. but with few fine-tuning and

addition of tokenizer and classifiers we will be able to

remove those hindrances as well. For future work, we are

planning to run DIVA on a Raspberry pi which is

connected to Internet and to push the user’s information

in a secure cloud service. Multiple APIs also are been

added to DIVA and an intelligent web-scraper is also

been finalized soon.

References

[1] Jinxi Guo, Tara N. Sainath, Ron J. Weiss : “A

Spelling Correction Model for End-to-End

Speech Recognition ” in arXiv:1902.07178v1

[eess.AS], 19 Feb 2019.

[2] Yang Gao, Weiyi Zheng, Zhaojun Yang, Thilo

Kohler, Christian Fuegen, Qing He, “Interactive

Text to Speech Via Semi Supervised Style

Transfer Learning” in arXiv:2002.06758v1

[cs.SD], 17 Feb 2020.

[3] Heiga Zen, Viet Dang, Rob Clark, Yu Zhang,

Ron J. Weiss, Ye Jia, Zhifeng Chen, Yonghui

Wu: “LibriTTS: A Corpus Derived from

LibriSpeech for Text-to-Speech” in

arXiv:1904.02882v1 [cs.SD], 5 Apr 2019.

https://arxiv.org/abs/1902.07178
https://arxiv.org/pdf/2002.06758.pdf
https://arxiv.org/abs/1904.02882

May - June 2020

ISSN: 0193-4120 Page No. 5384-5389

5389

Published by: The Mattingley Publishing Co., Inc.

[4] Assaf Hurwitz, Michaely, Xuedong Zhang,

Gabor Simko, Carolina Parada, Petar Aleksic:

“Keyword Spotting for Google Assistant Using

Contextual Speech Recognition” in Proc. IEEE

ASRU, 2017.

[5] Leonid Velikovich, Ian Williams, Justin

Scheiner, Petar Aleksic, Pedro Moreno, Michael

Riley: “Semantic Lattice Processing in

Contextual Automatic Speech Recognition for

Google Assistant” in Proc. ISCA, 2018.

[6] Sebstian Helmann, Jens Lehman, et al.

“Integrating NLP using Linked Data”, Proc.

International Semantic Web Conference, 2013

[7] William Chan, Navdeep Jaitly, Quoc V. Le,

Oriol Vinyals, “Listen, Attend and Spell: A

Neural Network for Large Vocabulary

Conversational Speech Recognition”,in Proc.

IEEE ICASSP, 2016.

