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Abstract 

When we talk about “Dynamic Intelligent Virtual Assistant” 

(DIVA), we are trying to imply about a virtual assistant which is 

more dynamic than any pre-existing virtual assistants present and is 

more personalized in understanding its user. The reason for making 

this virtual assistant came from our observations as to how the 

present assistants fail to adapt uniquely to different users and their 

needs or preferences. Our virtual assistant aims at having a higher 

learning curve of the user preferences so that our assistant’s 

interaction is different for each user. Our assistant not only includes 

all the basic features of the present-day assistants but also has more 

personalized features such as “Time and activity tracker of the user”, 

“learning about user’s preferences with some guidance”, etc.  The 

DIVA is effectively implemented to demonstrate its operation of 

user assistance based on personal preferences learning. 

 

Keywords: Virtual Assistant, Machine Learning, Artificial 

Intelligence, TTS, STT, Speech Recognition 

 

 

1. Introduction 

Information interchange and how we interact with all this 

information is what this information era is all about. 

Man’s curiosity and need to make an intelligent agent to 

do it’s work without need of manpower or manual labour 

has been researched for a very long time. We invented 

computers, laptops and then smartphones, automated 

robots and tools with intelligence, came up with new 

fields like IoT, fintech, etc over-time and made 

breakthrough discoveries in older fields like data science 

all to make our work easier. Overtime, we realized even 

though all these technologies have made our life very 

much easier, the method of communication has always 

been troublesome, i.e., inputting our commands was done 

through methods like clicking or pressing buttons or 

typing a command or methods requiring our manual 

attention, meaning input-method for these technologies 

was manual in nature even if the output was automated. 

Big Tech companies like Google, Samsung, 

Microsoft, IBM, Apple, Facebook, Mozilla, etc have 

already rolled out their virtual assistants or Text-To-

Speech Engines on which we can make Virtual 

Assistants. Now many of these are open-sourced up to an 

extent allowing developers to make their own virtual 

assistant and this is how we came up with the decision of 

making our own Virtual Assistant (VA) due to our 

dissatisfaction of what current VA offer us. 

The problem with current day VA is that they follow the 

same structure or learning curve for every one of its user, 

meaning, the current day VA have a learning curve of 

about 5% for everyone. If I am using SIRI or Google 

Assistant versus you using your own SIRI or Google 

Assistant, both of our SIRI/Google Assistant will behave 

the same way even if we interchange our personal Virtual 

assistants. 

Our aim is to make a “Dynamic” Virtual Assistant 

that will learn about user preferences by web-scraping 

information from the Internet and arrange the information 

so that it can use this information on its own in our 

conversations. This way if I use DIVA and if you use it, it 

will remember our individual preferences, hence we are 

expecting it to have a learning curve of at least 20% more 

than current VA. 
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The rest of the paper is organized as follows. Section 2 

presents related work on intelligent assistants. 

Architecture of DIVA is presented in section 3. Section 4 

describes methodology for implementation of DIVA. 

Finally results and conclusions are presented in Sections 

5 and 6, respectively. 

 

2. Related Works 

In [1], the authors created a spelling correction (SC) 

model which is trained to explicitly correct the errors 

made by a speech recognizer. To train that SC model, 

they generated error hypotheses by decoding the TTS 

(text-to-speech) data synthesized from a large text-only 

corpus. Their results showed that the SC model yields 

clear improvement over the baseline LAS (Listen, Attend 

& Spell) model. The authors in [2] presented an 

interactive TTS (text to speech) system and combined it 

with a speech emotion recognizer that had the potentials 

to synthesize matching speaking styles as the input query, 

meaning the TTS engine has the capability of having 

“tone”, “accent” or “moderation” in the output speech 

and not speak in a monotonous way unlike other TTS 

engines. Using [1] and [2] as references, we are trying to 

replicate human behaviour to understand speech to its 

best by auto-correcting common-sense errors and 

enacting pseudo-emotions via speech.  

After imitating human speech, a reservoir of 

knowledge is required to speak from. The work in [3] 

presents LibriTTS which is a multi-speaker English 

corpus of approximately 585 hours of read English 

speech at 24kHz sampling rate. The Corpus used for 

LibriTTS proved to be the best for making a Virtual 

Assistant and hence acts as a guideline for making our 

own corpus. In [4], authors present a novel keyword 

spotting (KWS) system that uses contextual automatic 

speech recognition (ASR). As in natural languages, a 

context/statement can be described in multiple ways and 

hence using simple statements to invoke commands from 

the Virt. Asst. becomes wary if the statement is posed in a 

different manner, therefore using keyword spotting, the 

Virt. Asst. gets a gist of the intent behind the user’s 

statement and invoke an action for the same.  

The work discussed in [5] is Named Entity 

Recognition (NER) which works in a similar way to 

KWS [4] but unlike Keyword Spotting, NER is used to 

recognize unstructured or non-native terms such as 

Names, location or places, organization names, medical 

or military or domain-specific terms or codes, etc. This 

will be useful in adding information to the corpus [3] for 

words that cannot be classified via POS (Part of Speech) 

tagging & be used to learn personal information about the 

User’s preferences, like his name, favourite sports & 

music, etc as they all fall under Named Entities.  

To be able to tackle unpredictable statements, 

commands or information request, if the corpus [3] fails 

to fetch an answer for the same from its repository, the 

best option is to use the web for answers but the same 

causes errors as nothing is organized in a structure format 

on the web. Authors in [6] improved NER by using 

background knowledge from sources like DBpedia, etc on 

the web. Using NIF 2.0 (NLP Interchange Format) and 

Linked Open Data (LOD) a structured way to get 

information access from the web is possible and the same 

can be then used by the Virt. Asst. In [7], authors present 

LAS hypothesis, where SC model can generate an 

expanded list which has significantly lowered the WER 

(Word Error Rate). This helps in increasing accuracy of 

the virtual assistant. 

 

3. Architecture of DIVA 

A Virtual Assistant has multiple segments that are 

required to make the whole system work. For a virtual 

assistant, the input-method which is our speech is taken 

care by SST or Speech-to-text engine, this is the speech 

recognition part, now based on the speech inputted, an 

action is invoked by the Logic Engine which acts as the 

brain of the whole system, based on the action, So, we 

can understand that a VA uses multiple fields to work 

such as Speech Recognition, Neural Networks, Natural 

Language Processing, GET-POST Service to fetch data 

from Internet. Over all these features, our virtual 

assistant, DIVA can primarily keep track of our activities 

and time, given that we have told it about the categories 

that we divide our time into (Study, Assignments, 

Projects, Games, Watching series etc.).  Fig 1 depicts 

overview of DIVA. The blocks in figure are explained as 

follows. 

 
Figures 1: Basic Architecture of a Virtual Assistant as it 

carries out the command and perform the NLU on that 

request   

 

Automated Speech Recognition (ASR) (Used for SST) 

[Input Method]: ASR is an algorithm that has evolved 

over time due to benefits that Natural Language 

Processing has reaped due to many researches works such 

as better audio understanding due to improved 

understanding of acoustic signals in an audio and better 

noise reduction. It involves taking the audio and 

converting it to a wave file. 

Logic Engine or Natural Language Unit (NLU) 

[Brain/CPU of the system]: Once the SST converts the 

speech to “raw string”, (Fig 2) the logic engine processes 

the information and tries to find the most suitable output 

for the same. The logic engine can be complex or very 

simple depending on the virtual assistant. More complex 

logic engines are usually more dynamic in nature and use 

various methods to work and categorize or process the 

“raw string” such as Parts-of-speech (POS), Name Entity 

Recognizer (NER), etc. The logic of NLU is given in Fig 

2. Internal details are given as follows. 
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Figure 2: Pipeline Architecture for an Information 

Extraction System as it takes the raw text and perform 

several analyses on it and gives the relations. 

 

Part of Speech Tagging: Part of speech tagging consists 

of breaking down the raw string or text in further 

grammatical categories like Nouns, pronouns, adjectives, 

adverbs, etc. (Fig 3) This helps the Logic Engine identify 

irregular words that do not fall in any of these categories 

or spot the main phrase or word using keyword spotter 

mechanism (Eg: “date” is a keyword in the sentences 

“What is the date” or “Today’s date”). These categorized 

words or broken-down words are called as tokens or tags 

and this process is known as “Tokenization” and 

“tagging”. Example is given in Figure 3. 

 

 
Figure 3: Tokenization of texts (Observe how the 

sentence in the end is categorized with codes like “IN”, 

“CD”, etc, these stand for Preposition (IN), Cardinal No. 

(CD), JJ (Adjective), NNP (Proper Noun), NN (Noun)). 

 

Extracting Entities: In NLP, entities refer to terms that 

do not fall naturally in a natural language, for example, 

names of organizations, people, places, objects, domain 

specific terms and codes, etc. There are various ways to 

recognize such entities and this is useful in many 

scenarios like in our case where we will be using it to 

figure out terms that stand out and make the NLU search 

such terms so that it can learn about them on its own. 

This way it can keep track of music artists names or 

cricketers’ names, etc as all belong to entities. 

The basic technique we will use for entity detection is 

chunking, which segments and labels multi-token 

sequences as illustrated below. The code consists of the 

variable which is defined with particular grammar (Fig 

4), that is chunked based on the grammar which is as 

follows: 

chunkGram= r”””Chunk: {<RB.?>* <VB.?>* 

<NNP>+<NN>?}””” 

chunkParser  = nltk.RegexParser(chunkGram) 

chunked  = chunkParser.parse(tagged) 

See Figure 4 for segments and chunks. 

 

 

Figure 4: Segmentation of tokens and chunks both. Here, 

PRP, VBD, DT, JJ, NN are tokens while NP and NP at 

outer level are the chunks. 

 

Text-to-speech [Output Method]: Once the NLU has 

used various methods to process the raw text, it will 

invoke an action. If the action turns out to be a reply to 

the user, then a pre-defined text based on the NLU 

decision-’s or a self-constructed sentence is converted 

from text to speech via a TTS or Text-to-Speech Engine. 

We are using Google TTS, which speaks the output via 

the speakers.  

Additional Features of our NLU: As we lookout for 

other virtual assistant in the market, DIVA is more 

personalised and more focus on one particular behaviour 

and habit. It learns the human behaviour in first 10-15 

days. Plots the graph according to that and revises the 

algorithm on what the user is more focused on and how 

he is handling the time by its unique feature (Stop 

Watch). As we described that it will be divided in 

different categories and according to that it will be easy to 

differentiate whether it’s for the good and just happy 

hours for the user. Using Pandas, we plot and visualize 

the graph and give the suggestion how the user can 

improve the time, which is again a unique feature (Time 

Management). 

 

4. Methodology 

1.1. Hardware 

The user will interact with our Raspberry Pi 3, Model B 

using a mic component and the same will be converted to 

text using Speech-To-Text (We are using speech 

recognition module of python which is using the Google 

Speech API for this purpose as of now). This will be main 

core hardware component which works as a central 

system that holds the code which includes all the API and 

the models useful for the Virtual Assistant. RASPBERRY 

PI unlike its competitors like Arduino, etc is a micro-

processor not a micro-controller (which Arduino is). The 

capabilities of it are: voice recognition, good 

performance, easy to install, and open source. 

 

1.2. Software 

The texts will go through our NLU modules like ntlk, 

textblob, speech_recognition and they in place will 
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invoke actions or dialogue management tasks that will be 

processed via various APIs, our python scripts running 

them in back-end, many of our own python scripts and 

after this is done processing this will be converted from 

text-to-speech using TTS modules (we are using Google 

Text to Speech for this purpose as of now). 

Software and APIs used are: Python 3.7 Scripts 

(Back-End), Raspberry Pi Interface Software (Raspbian 

Software), NOOB Package (For Raspberry Pi), Various 

APIs ported through python 3.7 (Google Speech API, 

Mozilla Deep Speech, Mozilla TTS, RASA,  Google 

TTS) and modules in python (NLTK, TextBlob, Speech 

Recognition (NLP Modules, Seaborn, Matplotlib (Data 

Visualization Modules, Time, OS (Standar Modules), 

Urllib, Certify, SSL (Modules for setting connections 

with APIs)). 

 

1.3. Block Diagram 

 

 
Figure 5: Block Diagram of a client-server based Virtual 

Assistant as client give certain command and application 

use HTTP POST request to send the requirement to 

further analysis 

 

(Fig 5) presents framework of VA based on client 

server paradigm. The components of it are explained as 

follows. 

Speech Recognition: It will identify words and 

phrases in spoken language and convert them to a 

machine-readable format. Since the user will give the 

input as a voice so, STT (Speech-to-Text) will convert 

them into text format and then understand the word and 

finally invoke the application to start. 

HTTP POST Request: POST is a request method 

supported by HTTP used by the World Wide Web. By 

design, the POST request (Fig 5) method requests that a 

web server accepts the data enclosed in the body of the 

request message, most likely for storing it. It is often used 

when uploading a file or when submitting a completed 

web form. 

Analysis of Text: Text mining identifies facts, 

relationships and assertions that would otherwise remain 

buried in the mass of textual big data. Once extracted, this 

information is converted into a structured form that can 

be further analysed, or presented directly using clustered 

HTML tables, mind maps, charts, etc.  

NLP: Machine learning is an artificial intelligence 

(AI) technology which provides systems with the ability 

to automatically learn from experience without the need 

for explicit programming, and can help solve complex 

problems with accuracy that can rival or even sometimes 

surpass humans. However, machine learning requires 

well-curated input to train from, and this is typically not 

available from sources such as electronic health records 

(EHRs) or scientific literature where most of the data is 

unstructured text.  

JSON Response: Json() is a function that reads the 

response stream to completion and parses the response as 

json. This operation may take time, so instead of just 

returning the json, it returns another Promise. The success 

function of this promise will have the resulting json as an 

argument. JSON Request is proposed as a new browser 

service that allows for two-way data exchange with any 

JSON data server without exposing users or organization 

to harm. It exchanges data between scripts on pages with 

JSON servers in the web. 

 

5. Results 

Some snapshots of the results we tested out the DIVA are 

presented in fig 6, 7 8 and 9. In these figure D.I.V.A. tries 

to start the stop watch and learn about the user 

preferences and even perform several functions in order 

to fulfil the request of client. 

 

 
 

Figure 6: Interacting with DIVA (1/3) Starting and 

stopping the time and calculating, the user interests and 

likes and what kind of application he/she use 
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Figure 7: Interacting with DIVA (2/3) DIVA playing the 

songs as heard the command play songs, and recording 

the likes of user song’s genre. 

 

 
 

Figure 8: Interacting with DIVA (3/3), Opening the 

Browser from D.I.V.A. and even doing YouTube search 

from the queries and even recording the likes and 

dislikes. 

 

From fig 9, we observe that interests of a user in 

Netflix, web development, gaming, etc., are plotted by 

DIVA. During the Stop Watch Timer, it calculates the 

user likes and dislikes and the preferences user prefer and 

involves his/her time mostly in. 

 

Figure 9: Graph made by stop watch to visualize the user 

interests and work algorithm accordingly. As given client 

is mostly interested in Web Development so D.I.V.A. 

learns about specific user and give the future suggestion 

in the field of web development. 

 

6. Conclusion and Future Works 

As of now, DIVA has successfully been implemented 

with a stop-watch feature as a background process which 

does not exist in present-day Virtual Assistants present in 

the market (Siri, G.A., Alexa, etc). Since, the stop-watch 

is running in the background, the user can still use DIVA 

to invoke other tasks or commands while the stopwatch 

will be used to track the user’s time and tell them where 

they can improve or if they are having too less sleep or 

not. 

DIVA is currently a bit slower and inaccurate 

compared to market VA. but with few fine-tuning and 

addition of tokenizer and classifiers we will be able to 

remove those hindrances as well. For future work, we are 

planning to run DIVA on a Raspberry pi which is 

connected to Internet and to push the user’s information 

in a secure cloud service. Multiple APIs also are been 

added to DIVA and an intelligent web-scraper is also 

been finalized soon. 
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