

May-June 2020

ISSN: 0193-4120 Page No. 5276-5281

5276
Published by: The Mattingley Publishing Co., Inc.

Seamless Persistent Storage Availability

for Stateful Application Running on

Kubernetes Platform

1
Sai Kumar D,

2
Vishwanath Y,

1,2

School of Computing & Information Technology, REVA University, Bengaluru, Karnataka, India

Article Info

Volume 83

Page Number: 5276-5281

Publication Issue:

May-June 2020

Article History

Article Received:19 November 2019

Revised: 27 January 2020

Accepted: 24 February 2020

Publication: 16 May 2020

Abstract

Containers are rapidly being adopted by all sizes of enterprises

which they use them to quickly build, deploy, and scale cloud

native applications. Containers, along with containerization

technology like Docker and Kubernetes, are used for

deploying applications in cloud. Containers are completely

isolated environment in which they have their own processes

or services like virtual machines except they all share the

same OS kernel. Kubernetes is a container orchestration tool

which is used to deploy and manage containers. Containers

were introduced to package microservices runs as stateless

state& managing stateful application is difficult. To solve this

issue, where container can run stateful application and store its

information we need persistent container storage that is

compatible across physical, virtual and cloud infrastructures.

The main objective of this project is to leverage Kubernetes

platform to create management layer for database service on

Ceph Storage using Rook Orchestration. As part of this

project ,Operator pattern is used in which management layer

uses Kubernetes API for infrastructure & ETCD database for

persistent storage

Keywords: sizes of enterprises, cloud native applications.

1. Introduction

IT infrastructure has rapidly over past decade. With

the ease of cloud computing & advancement of

virtualization technology all business-critical

workloads are provisioned & managed in cloud

infrastructure. Initial days workload was run in 1:1

fashion with each workload used to run on dedicated

hardware with underutilizing lot of resources in terms

of CPU, Memory, Storage & Network. Once

virtualization came into existence it has brought

ability to run all applications in single piece of

hardware. Many cloud providers started providing on

demand compute resources through Infrastructure as a

Service (IAAS) through virtualization technology

Virtualization used technology of hypervisor which

emulates single piece of hardware & creates a layer to

run multiple operating on same physical machine.

Each virtual machine needs guest Operating System,

virtual copy of hardware resources. Due to increased

virtual copy, resources and moving of VMs between

public & private cloud can be challenging. To

overcome this issue containers came to existence

which shares kernel of host OS. Containers

light-weight & multiple containers can be deployed

on same host OS.

The rise of containerization technology has

transformed software development lifecycle & paved

way for migrating applications from monolithic to

microservices architecture.

Container offers virtualization at the Operating

system level using abstractions like chroot,

namespace and cgroups,

Figure 1: Comparison of Virtualization vs Containers

May-June 2020

ISSN: 0193-4120 Page No. 5276-5281

5277
Published by: The Mattingley Publishing Co., Inc.

required application packaging offers by container

engine like Docker and orchestration for containers

delivered through Container Orchestrator like

Kubernetes. Free and Open-Source (FOSS) adoption

helped enterprises to avoid vendor lock-in, de-facto

standard software’s like Docker (Container Engine)

and Kubernetes (Container Orchestrator) emerged as

main players and gathered the trust of enterprise to

adopt for production needs

With rise of containerized applications starting

single instance of containers is easy job but when we

have lot of application to run on multiple physical

node it is cumbersome process. For this purpose, to

schedule container and run them we need container

orchestration tool to manage, deploy & scale without

any manual intervention. Kubernetes is a container

orchestration tool for scheduling pods, manage

workloads &verifying health status of pod. Pod is

smallest deployable object which is wrapped around

one or more containers.

Storage plays one of the key roles in computing.

Earlier data was stored in tape drives it got evolved

into Hard Disk drives & Solid-State Drives. For

enterprise level storing data & preventing it from

point of failure is also important. Raid controllers

came into existence which help to create virtual drives

by implementing fault tolerance & grouping multiple

hard disk as single disk virtually. With the cost of

storage growing exponentially with advancement of

technology open source offers solution of Software

Defined Storage Solutions (SDS). In SDS, storage is

managed by underlying software for creation, placing

of data, maintaining quorum, redundancy.

In monolith architecture application which run

are in stateful state where data about each client

session is saved and uses it when client makes a

request next time. In microservice architecture

application runs in stateless state where it does not

save client data generated in session for use in next

session with that client. In containerized environment

workloads are stateless application where it does not

store any data once container is terminated. Docker

uses Layered architecture model which consists of

image layer and container layer. All files inside

container are by default stored under container layer.

Images are template for building base OS. We use this

template to create container. Once container is created

it adds writable layer on top of immutable image. All

data written on container will get stored in writable

container layer till process is running once it gets

exited all data will be destroyed. Managing of writing

data into container image is performed by storage

driver. Storage driver provide union file system which

is tightly coupled with Linux Kernel. Adding extra

abstraction with directly impact performance of

container. To overcome this issue docker has provided

two solutions of volume mount and bind mount.

Figure 2: Docker Container Image with layers

There are many container orchestration tools like

Docker Swarm, Apache Mesos and Kubernetes.

Docker Swarm and Apache Mesos are mostly of

enterprise licensed version which involves additional

cost whereas Kubernetes is completely open sourced

and maintainer by larger community so for this

research we will be working with Kubernetes

platform. As part of this research it covers running of

stateful application with persistent storage on

Kubernetes environment. Below are the motivated

Research Questions (RQ) that covers the extent of the

persistent storage on Kubernetes areas as part of this

research paper:

 RQ1: What storage should be used for deploying

stateful application?

 RQ2: How to deploy & manage storage in

containerized environment? Rook

 RQ3: How to make storage available for

Kubernetes cluster?

 RQ4:How does stateful application will store data

with storage deployed?

The further sections of this paper organized as

follows: Section-II provides the overview of literature

survey on RQ’s with Research Method Steps (RMS1-

4). Section-III Addresses Overview &Integration of

persistent storage availability on Kubernetes platform.

Section-IV describes the test approach, evaluation and

outcomes. Finally, Section V concludes the paper and

outlines the future research steps

2. Literature Survey

An extensive literature review carried out on

Integrating stateful containerized application on

Kubernetes with persistent storage. Total fifteen

research papers are identified that are related to this

paper RQ’s, research work of those papers provided

the right direction of what worked and what did not

work. Below are points that influence the research of

this paper.

RMS1:Kubernetes supports several types of standard

storage solutions such as StorNXT, GlusterFS, EMC

ScaleIO, Fibre Channel, CephFS, VMWare VSAN,

 or public cloud solutions like Amazon AWS EBS,

Azure Disk or File, Google’s Persistent Disk.

May-June 2020

ISSN: 0193-4120 Page No. 5276-5281

5278
Published by: The Mattingley Publishing Co., Inc.

Figure 3: Uniqueness of Ceph storage compared to

other solutions

Ceph Storage is unique storage compared to other

available storage solution. Key points taken into

consideration for considering Ceph Storage

 Open Source Solution

 Software Defined Storage

 Support Enterprise level storage up to Peta-

Bye Level

 Supporting all storage types like (Block,

Object, File Level)

Most of the above solution have software defined or

open source solution but none of them offered all 4

options. Ceph storage includes many enterprise

solutions like fault tolerance, redundancy, snapshots,

self-healing, provisioning,

Auto-scaling. Ceph storage can be run on commodity

hardware without spending much on traditional

hardware as there is no vendor lock-in. Ceph is

maintained by RedHat Enterprise which has good

community support. It supports huge amount of data

storage in terms of Petabyte & stores different types

of data like Block & Object.

RMS2:For deploying and orchestration of containers

we have Kubernetes platform which will take care of

all tasks associated with container management. Rook

is a cloud-native, open-source storage orchestrator for

Kubernetes. Rook couples together Ceph storage and

Kubernetes platform together to deliver high

performance and automatically scaling storage

workloads. Rook is a Kubernetes storage operator

which helps to deploy and manage Ceph clusters

RMS3: To integrate Ceph storage to Kubernetes we

will use Container Storage Driver(CSI). CSI driver

has three module which will use to interact with Ceph

Storage i.e. CSI Identity is used for identifying Ceph

plugin and returning in healthy drive information to

control manager, CSI Controller is used for

controlling and managing the volume, CSI Node is

used for managing volume’s action in node

RMS4:Kubernetes manages volumes and container

using metadata. The metadata inform is passed in

yaml manifest file as Persistent Volume – the low-

level representation of a storage volume, Volume

Driver – the code used to communicate with the

backend storage provider, Pod – a running container

that will consume a Persistent Volume,

Persistent Volume Claim – the binding between a Pod

and Persistent Volume, Storage Class – allows for

dynamic provisioning of Persistent Volume

3. Kubernetes & Ceph Storage With Rook

Architecture

Kubernetes is a container orchestration tool developed

by Google. It is an open-source and supported by

many enterprise organizations. The main motive of

Kubernetes is to run applications in the form of

containers in an automated way so that it can be easily

deployed, maintained & scaled. Kubernetes follows

distributed systems paradigm where a cluster i.e.

group of nodes that appears as a single system.

Distributed system comes with a concept of master-

worker node. In this system more than one node can

be used as master for high-availability. Master node

plays an important in managing nodes and hosting all

necessary services which are used to monitor all

worker nodes. It stores the member information

regarding the different nodes, planning which

containers are scheduled. When a worker node fails it

migrates all processes from failed worker node to

healthy worker node, Kubernetes master takes care of

all activity like scheduling, provisioning, configuring

and exposing API’s to client. All the activities are

done by master node using the component called

control plane components.

Four main basic components of master node (control

plane)

 1. API Server

 2. Scheduler

 3. Controller Manager

 4. ETCD

Figure 4: Kubernetes master & worker node

architecture

The API server is a main component using which all

cluster components communicate with each other.

API server is gatekeeper for entire cluster. Scheduler,

controller manager and another worker node

component communicate with the API server& it

exposes API to all other component for almost every

operation. In Kubernetes user can interact with API

server using kubectl utility

May-June 2020

ISSN: 0193-4120 Page No. 5276-5281

5279
Published by: The Mattingley Publishing Co., Inc.

Scheduler is responsible for physically placing pods

across multiple worker node. It will automatically

detect pod goes which worker node based on the

resource requirements, set of constraints defined in

configuration file. It will aptly find out the appropriate

node which satisfies all requirements to run the pod in

worker node

The Controller Manager keeps track of whole

cluster, it handles worker node failures, replicating

components, maintaining pods, etc. Controllers are

responsible for overall status of entire cluster. It

ensures that nodes are running all the time, correct

number of pods are running as specified in config file.

Etcd is a data store that stores the cluster

configuration in the format of key value format. It is

developed by core OS. With the help of etcd file, it

can restore entire cluster components from this stored

cluster configuration. It is the

Fig 5: Kubernetes+Ceph+Rook integration

central database to store current cluster at any point of

time. Etcd is a distributed key-value store where all

configuration information is stored.

The Worker node are kind of virtual machine (VM’s)

running in cloud or on-prem, a physical server

running inside data center. Physical machine capable

of running container runtime can perform a worker

node job. These nodes provide

Figure 5: Kubernetes + Ceph with Rook architecture

underlying compute, storage and networking to the

workloads. Together, these nodes form a cluster and

run a workload assign to them by master node

component as same as manager assign a task to

individual team member. As master node using

concept of controller can deploy pod in multiple pods

to achieve fault-tolerance and replication.

Three main basic components of master node (control

plane)

 1. Kubelet

 2. Kube-proxy

 3. Container runtime

The Kubelet is the main service in worker which

helps to communicate with API server and worker

node.Once API server gets request from kubectl it

will send request to schedule for workload on

respective node using kubelet. NodeName with

respective worker nodes will deploy pod on node and

kubelet controller will get a notification from API

server. It passes pod spec to container runtime to fetch

image and run

The Kube-proxy load balances traffic between

application workload. It is also called as service proxy

which run on each node in the Kubernetes cluster&

helps to establish communication between nodes &

pod. Kube-proxy process

constantly check for services and perform rules on

each node to forward traffic to back-end pods

respectively.

Container runtime engine like Docker,rkt,

containerdis installed on worker node which helps to

pull and run images in pod. Once specification is

defined in yaml file it looks for image section and

fetch image from docker hub using container runtime

engine

kubectl is a command line utility though which we

can communicate or interact with master node to carry

out specified job. Using kubectl utility we can control

the Kubernetes cluster manager. There are two ways

we can instruct the API server for CRUD operation in

Kubernetes cluster using imperative way and a

declarative way.

Rook is an open source cloud-native storage

framework designed to manage storage solutions and

is natively inte-grated with cloud-native environments

like Openstack, Kubernetes. The main objective of

Rook is to run File, Block and Object based storage

systems into the Kubernetes cluster, where pods

running inside node can consume the storage exposed

using Rook. It runs as a Kubernetes operator, which

help storage to run as software defined solution which

can perform tasks like self-managing self-healing, and

self-scaling service using Kubernetes objects.

Applications run inside pod can mount block devices

and file-system& use Amazon S3/Swift API for

object storage managed by the Rook operator. The

operators are deployed as pod, which automates and

monitors the cluster to ensure the storage remains

available and healthy. Inplace of deploying a new

storage cluster, Rook helps to tune existing storage

systems into cloud-native services on-top of

Kubernetes. It uses Kubernetes object Custom

Resource Definition (CRD) to manage Ceph storage.

Rook is integrated with other database service like

Cassandra DB, Cockroach DB for managing database

services. Rook deployment supports several services

for deploying the cluster using Prometheus and for

dashboard using Grafana.

Ceph is distributed storage system that offers high

performance, fault tolerance and redundancy. It

manages distribution of copy across all nodes by

copy-on write feature and no point of failure for

storage system. The Ceph mainly support consistency,

integrity and tolerance upon availability.

Ceph storage cluster is made up of several software

daemons making sure all services associated with

storage objects are running without any failure. A key

element of Ceph is the implementation of a pseudo-

https://kubernetes.io/docs/reference/kubectl/kubectl/

May-June 2020

ISSN: 0193-4120 Page No. 5276-5281

5280
Published by: The Mattingley Publishing Co., Inc.

random data distribution function (CRUSH) to

determine where and how to store the date on the

worker node. Ceph storage makes sure every data

write operation an acknowledgment is sent to client

only after all the replicas are written correctly

4. Kubernetes & Persistent Storage Test

Infrastructure For Stateful Application

Dynamic provisioning of storage has been defined in

storage class with the help of storage container

drivers. Once storage classes are defined persistence

volume of CephFS should be specified in yaml file.

Persistence volume claim (PVC) should be notified so

that other nodes workload does not use volume

mapped to a pod. We have used Custom Resource

Definition(CRD) for defining storage classes for

Ceph.

Persistence Volume Claim(PVC) yaml file

apiVersion: ceph.rook.io/v1

kind: Persistent Volume Claim

metadata:

 name: sql-pvc

spec:

cephVersion: apps/v1

 image: ceph/ceph:v14.2

data Dir Host Path: /var/lib/rook

storage Class Name: rook-ceph-block

access Modes:

 - Read Write Once

 resources:

 requests:

 storage: 5Gi

nodename: node01

Above yaml file is run on master node which helps to

integrate storage volume to nodes.

Test Setup

Hardware: Intel i7 8 Hyper-thread cores & 16 GB

RAM

Operating System: - Ubuntu 18.04 LTS

VM WorkStation: - VirtualBox

No of VMs: - 4(1 Master & 3 Worker Node)

Hard Disk: - 100GB mounted to Nodes

Kubernetes v1.14, Docker v18.09.2

Figure 6: Kubernetes+Persistence Storage Test

Implementation

RMS6: As we have used HDD disk for persistence

storage on storing data of stateful application. We

have measured disk performance for random

read/write & sequential read/write Below are the test

outcomes:

Figure 7: Persistent Drives IOPS Throughput Report

Figure 8:Persistent Drives IOPS Latency Report

5. Conclusion

This research work performed a preliminary

investigation on running stateful application over

containerized environment with persistent storage. We

have successful run database service workload on

Kubernetes with Ceph as storage and performed IOPS

test to ensure workload are getting run in

containerized environment without any issues. As a

part of this research we have accomplished of

integrating Kubernetes with persistent storage for

running stateful workload.

References

[1] G. Tlili, M. F. Zhani and H. Elbiaze, ”On

providing deadline-aware cloud storage

services,” 21st Conference on Innovation in

Clouds, Internet and Networks and

Workshops (ICIN), Paris, France, 2018.

[2] J. Gantz, and D. Reinsel, The digital universe

in 2020: Big data, bigger digital shadows,

and biggest growth in the far east. IDC

iView: IDC Analyze the future, 1-16, 2012.

[3] R. H• oppli, T. M. Bohnert, and L. Militano

”Hera Object Storage: A seamless,

Automated Multi-Tiering Solution on Top of

Openstack Swift”, 8th IEEE International

Symposium on Cloud and Services

Computing (SC2), 2018.

[4] Z., Ou, M., Song, Z. H., Hwang, A., Yl¨a-

J¨a¨aski, R., Wang, Y., Cui, and P. Hui, ”Is

cloud storage ready? Performance

May-June 2020

ISSN: 0193-4120 Page No. 5276-5281

5281
Published by: The Mattingley Publishing Co., Inc.

comparison of representative IP-based

storage systems”, Journal of Systems and

Software.

[5] C. Cerin, C. Coti, P. Delort, and F. Diaz,

Downtime statistics of current cloud

solutions, IWGCR: The International

Working Group on Cloud Computing

Resiliency, EU/USA, Tech. Rep. 001-en1-

2013, Jun. 2013.

[6] [6] E. Brewer, ”CAP twelve years later: How

the” rules” have changed.” Computer 45.2,

pp. 23-29, 2012.

[7] C. Colman-Meixner, C. Develder, M.

Tornatore and B. Mukherjee, ”A Survey on

Resiliency Techniques in Cloud Computing

Infrastructures and Applications,” in IEEE

Communications Surveys & Tutorials, 2016.

[8] G. Toffetti, S. Brunner, M. Bl¨ochlinger, J.

Spillner, and T. M. Bohnert, ”Self-managing

cloud-native applications: Design,

implementation, and experience”, in Future

Generation Computer Systems, Vol. 72,

2017, pp. 165-179,

[9] A. Srbu, and O. Babaoglu, ”Towards Data-

Driven Autonomics in Data Centers”, in

International Conference on Cloud and

Autonomic Computing, 2015.

[10] A. M. Kermarrec, E. Le Merrer, G. Straub,

and A. Van Kempen, ”Availability-based

methods for distributed storage systems”, in

IEEE 31st Symposium on Reliable

Distributed Systems (pp. 151-160), 2012.

[11] Chun, Byung-Gon and Dabek, Frank and

Haeberlen, Andreas and Sit, Emil and

Weatherspoon, Hakim and Kaashoek, M

Frans and Kubiatowicz,John and Morris,

Robert Tappan, ”Efficient Replica

Maintenance for Distributed Storage

Systems”, in NSDI, vol. 6, 2006.

[12] Zhu, Bingpeng and Wang, Gang and Liu,

Xiaoguang and Hu, Dianming and Lin,

Sheng and Ma, Jingwei, ”Proactive drive

failure prediction for large scale storage

systems”, in IEEE 29th Symposium on Mass

Storage Systems and Technologies (MSST),

2013.

[13] I. a. c. Red Hat, ”Ceph Documentation,”

2018. [Online]. Available:

http://docs.ceph.com/docs/master/.

[Accessed 26 07 2018].

[14] The Kubernetes Authors, ”What is

Kubernetes?,” The Linux Foundation, 2018.

[Online]. Available:

https://kubernetes.io/docs/concepts/overview

/what-is-kubernetes/.

http://docs.ceph.com/docs/master/

