
 

May-June 2020 

ISSN: 0193-4120 Page No. 4657-4660 

 

  

4657 Published by: The Mattingley Publishing Co., Inc. 

Server Monitoring Using RAFT Algorithm 
 

1
Aman Srivastava, 

2
Asad Ahmad, 

3
Akash Hadagali, 

4
Thirumagal E 

1,2,3
BTech, 

4
Professor, C&IT, Reva University, Bengaluru 

 

Article Info 

Volume 83 

Page Number: 4657-4660 

Publication Issue: 

May-June 2020 

 
 

 

 

 

 

 

 

Article History 

Article Received:19 November 2019 

Revised: 27 January 2020 

Accepted: 24 February 2020 

Publication: 12 May 2020 

Abstract 

Raft is a sophisticated algorithm that is majorly used for leader 

election and log replication across the servers in distributed system to 

achieve the same state and fault tolerance. Currently, raft algorithm is 

used for server health checks in distributed systems but not for 

monitoring. Beside only sending the health status we are sending the 

CPU and memory utilization of the server. Raft isolates the key 

components of accord, for example, pioneer political decision, log 

replication, and security, and it upholds a more grounded level of 

coherency to diminish the quantity of states that must be thought of. 

Results from a client study exhibit that Raft is simpler for understudies 

to learn than Paxos. Raft likewise incorporates another instrument for 

evolving the bunch participation, which uses covering greater parts to 

ensure wellbeing. 
 

Keywords: Raft, Server monitoring, Log replication, distributed 

system. 
 

 

1. Introduction 

RAFT is an algorithm that is intended to be 

straightforward. It's proportionated to Paxos in adaptation 

to non-critical failure and execution. The thing that 

matters is that it's disintegrated into moderately 

autonomous subproblems, and it neatly addresses every 

single significant piece required for down to earth 

frameworks. We trust Raft will make agreement 

accessible to a more extensive crowd, and that this more 

extensive crowd will have the option to build up an 

assortment of greater accord-based frameworks than are 

accessible today. 

RAFT is comparable from various perspectives to 

existing consensus algorithms, yet it has a few novel 

highlights:  

• Strong Leader: Raft utilizes a more grounded type of 

initiative than different accord calculations. For instance, 

log passages just stream from the pioneer to different 

servers.  

This streamlines the administration of the repeated log 

also, makes Raft more obvious.  

• Leader political race: Raft utilizes randomized clocks to 

choose pioneers. This includes just a limited quantity of 

instrument to the pulses previously required for any 

agreement calculation, while settling clashes essentially 

and quickly.  

• Membership changes: Raft's instrument for changing 

the arrangement of servers in the group utilizes another 

joint accord approach where the larger parts of two 

unique arrangements cover during advances. This  

 

 

permits the bunch to keep working ordinarily during 

design changes 

 

Ease of use: 

This Application of server health check provides the 

administrator the benefit to monitor performance of 

server and its utilization from his phone at any time. The 

App related to it can be easily installed on any android or 

ios device from where this real time monitoring can be 

done anytime. The app just has a single page interface 

which shows all the different instances of the server 

along with level of their utilization with the help of very 

good animation. The level of CPU and memory 

utilization of all these server nodes are also shown. 

This Application also has a elaborative desktop 

variant as well. This type of GUI based implementation 

makes the work of monitoring and health check very 

easy and fast and helps in reducing the downtime of the 

server. 

 

Performance: 

As the application is totally based on raft implementation 

it has similar performance as that of other algorithms like 

paxos. Here the elected leader has full power for log 

replication. Here in Raft full control of log entries are 

with leader, so it can be said that log’s move in only one 

direction in this application. Due to the availability of 

mobile application the speed of getting notified related to 

any change in the health status of the server is increased 

which leads to low downtime of the server and help the 

organization to provide better user experience 



 

May-June 2020 

ISSN: 0193-4120 Page No. 4657-4660 

 

  

4658 Published by: The Mattingley Publishing Co., Inc. 

RAFT has less message types than some other 

calculation for accord-based log replication that we are 

mindful of. For instance, we tallied the message types 

VR what's more, Zookeeper use for fundamental accord 

and enrollment changes (barring log compaction and 

customer connection, as these are about autonomous of 

the calculations). VR what's more, Zookeeper each 

characterize 10 distinctive message types, while Raft has 

just 4 message types (two RPC demands furthermore, 

their reactions). Pontoon's messages are more thick than 

different calculations', however they are easier 

aggregately. Also, VR and Zookeeper are depicted in 

terms of transmitting whole logs during pioneer changes 

extra message types will be required to streamline these 

systems with the goal that they are down to earth 

 

2. Related Works  

Currently RAFT is being used in CONSUL which runs 

on a minimum of three servers in server/client style 

approach. The three servers are used for quorum however 

in a home environment we can run it on just one. 

Prometheus is another open source tool which uses 

RAFT as a monitoring system. It has a number of HTTP 

API’s with the help of which it can request unprocessed 

data and evaluate PromQL queries. 

 

3. Existing Works 

Right now, it is being utilized by two open-source 

devices CONSUL and Prometheus. In CONSUL the 

operators register on the servers in the wake of giving a 

rundown of administrations that are running on it. It 

utilizes three servers for a majority. Prometheus is a 

measurement based observing framework that is intended 

to monitor the general framework conduct and health. 

CONSUL runs on at least three servers in 

server/customer style approach. The three servers are 

utilized for majority anyway in a home domain we can 

run it on only one. Prometheus uses RAFT as an 

observing system. It has various HTTP API's with the 

assistance of which it can demand natural information 

and assess PromQL questions. 

 

4. Proposed Works 

Objectives: 

1. To help the companies to keep a track of their 

servers and the applications running on it. 

2. To send alert to the system admin in case of an 

unhealthy server 

3. To monitor the web servers for security, speed as 

well as user load. 

4. To protect the server from a possible failure. 

5. To monitor the performance and operations of 

components and equipment at granular level including 

CPU and memory utilization. 

6. Develop test cases that capture all potential server 

failures. 

 

 

Block diagram: 

 
 

Algorithm: 

RAFT is the primary algorithm used by this server 

monitoring software. It is used mainly because it governs 

the Consensus taking place between different server 

instances. 

RAFT implement’s consensus by first electing a 

leader by-election and then giving the leader the 

complete responsibility for managing the log. A new 

leader is chosen every time when the existing one fails. 

Generally, a raft cluster has multiple server instances that 

allow the system to tolerate failure till the majority of the 

instances are up and working. Out of these multiple 

instances, only one is elected as a leader while others 

behave as passive members. RAFT algorithm is a 

successor of the Paxos consensus Algorithm which was 

very difficult to implement so RAFT replaced it. The  

Leader node has complete responsibility of log 

management in the system. Whenever there is a problem 

on the leader node a new election takes place and a new 

leader is chosen all together. 

A single leader selection increases the speed of log 

entries, As there is only one entity to to make choices 

related to main system functionality. 

 

5. Experimental Results and Analysis 

Analysis (running raft on cluster of three nodes) 

Leader node 

 

 



 

May-June 2020 

ISSN: 0193-4120 Page No. 4657-4660 

 

  

4659 Published by: The Mattingley Publishing Co., Inc. 

Follower node1 

 

 
 

Follower node2 

 

 
 

 
 

The memory gets piled up with logs but can be 

flushed once the logs are committed but if there exist 

more servers in a system then they are required to have 

more memory. As shown above the leader node will 

require more memory since all the logs are aggregated by 

the leader node. 

 

6. Conclusion 

Calculations are frequently planned with rightness, 

proficiency, or potentially compactness as the essential 

objectives. Although these are for the most part 

commendable objectives, we accept that 

understandability is similarly as significant. None of 

different objectives can be accomplished until engineers 

render the calculation into a commonsense usage, which 

will go amiss from what's more, develop the distributed 

structure. Except if engineers have a profound 

comprehension of the calculation and can make instincts 

about it, it will be hard for them to hold its attractive 

properties in their execution. Right now tended to the 

issue of disseminated agreement, where a broadly 

acknowledged however invulnerable calculation, Paxos, 

has tested understudies and engineers for numerous 

years. We built up another calculation, dependent on Raft 

and helps in server monitoring which we have 

demonstrated to be more justifiable than using Paxos. We 

additionally accept that Raft gives a superior 

establishment for framework building. Utilizing 

understandability as the essential plan objective changed 

the manner in which we moved toward the structure of 

Raft; as the structure advanced we got ourselves reusing 

a couple of systems more than once, for example, 

deteriorating the issue and streamlining the state space. 

These procedures not just improved the understandability 

of Raft yet in addition made it simpler to persuade 

ourselves regarding its accuracy. 

 

7. Acknowledgement 

Our appreciation goes to Prof.Thirumagal E, Professor of 

computer Sciences, the university of Reva for her strong 

ongoing support for the research, so that, amid a maze of 

possibilities and Shortcomings, we can achieve a planned 

objective.  

 

References 

[1] Ivan Loire – A simple node.js service monitor 

“https://github.com/iloire/watchmen” Last 

commit 31 Mar 2020  

[2] Diego Ongaro and John Ousterhout of Stanford 

University - In Search of an Understandable 

Consensus Algorithm 

“https://raft.github.io/raft.pdf ”, July  2014 

[3] Heidi Howard, Malte Schwarzkopf,Anil 

Madhavapeddy, and Jon Crowcroft SIGOPS 

Operating Systems Review, January 2015. 

[4] Heidi Howard, University of Cambridge, 

Computer Laboratory, UCAM-CL-TR-857, July 

2014. 

[5] Diego Ongaro of Stanford LogCabin source 

code “http://github.com/ logcabin/logcabin.” 

[6] JUNQUEIRA, F. P., REED, B. C., AND 

https://github.com/iloire/watchmen
https://raft.github.io/raft.pdf
https://twitter.com/heidiann360


 

May-June 2020 

ISSN: 0193-4120 Page No. 4657-4660 

 

  

4660 Published by: The Mattingley Publishing Co., Inc. 

SERAFINI, M. Zab,“High-performance 

broadcast for primary-backup systems”. In Proc. 

DSN’11, IEEE/IFIP Int’l Conf. on Dependable 

Systems & Networks (2011), IEEE Computer 

Society, pp. 245–256. 

[7] Raft consensus algorithm website. 

http://raftconsensus.github.io 

[8] MAZIERES D. Paxos made practical. 

“http: //www.scs.stanford.edu/dm/home/ 

papers/paxos.pdf”, Jan. 2007. 

http://raftconsensus.github.io/

