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Abstract 

Disturbance to the linear voltage regulator (LVR) output caused by the 

abrupt change of either output current or input voltage can be 

compensated using an output capacitor. The compensation can be 

performed by utilising the capacitor’s internal parasitic resistance called 

the equivalent series resistance (ESR). The values of ESR vary due to 

aging and temperature change factors, so despite the benefits of ESR, it 

creates a failure region in LVR for a range of ESR and output current. 

Characterisation involving manual data acquisition and analysis is 

required to estimate accurately the failure region, but the process is time 

consuming and costly. In this study, the application of circuit model-

based virtual sensing (CMBVS) to improve the efficiency of LVR failure 

region estimation (FRE) was investigated. CMBVS was developed to 

obtain the LVR circuit model through circuit analysis and linear 

regression before estimating the unmeasurable circuit parameters using 

simultaneous equation solution. The estimated failure region from 

CMBVS was then compared with the failure region benchmark, which 

was obtained from the manual FRE method. Findings showed that the 

failure region estimated using CMBVS produced MAE, MSE, RMSE 

and regression coefficient, 𝑅2, of 1.16 × 10−6, 1.16 × 10−12, 1.22 ×

10−6 and 0.9999, respectively. This investigation revealed that CMBVS 

is an efficient and effective LVR FRE method. 

Keywords: Linear Voltage Regulator; Failure Region; Circuit Analysis 

Model; Output Capacitor; Equivalent Series Resistance 

 

 

1. Introduction  

Linear voltage regulator (LVR) stability has 

become an important issue in power 

management system design for electronic 

products. LVR is widely used to convert 

unstable and noisy input voltage into a stable 

and noise-free output voltage that supplies to 

various analogue and digital load circuits [1-2]. 
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In many cases, disturbances may occur to the 

LVR output due to the abrupt change of either 

output current or input voltage that causes the 

LVR  

output voltage to oscillate and become unstable. 

Therefore, in most LVR designs, an output 

capacitor with specific internal parasitic 

resistive element called equivalent series 

resistance (ESR) is connected to the LVR 

output terminal to compensate for the 

disturbances. The optimum ESR range to ensure 

LVR output stability is typically shown in a 

unique graph in LVR manufacturer datasheet 

called the ESR tunnel graph [3-5], as depicted 

in Figure 1. This ESR range exists because ESR 

values vary due to aging and temperature 

change factors. 

 

Figure 1: Example of ESR tunnel graph 

Figure 1 shows three separated regions, with 

a pass region located between lower and upper 

failure regions. If an electronic system, such as 

LVR, operates in the failure region, then the 

system may fail [6-7]. The optimum ESR range 

is defined as the range starting from the 

minimum until maximum ESR of the pass 

region for each load current. However, the 

determination of this optimum ESR range has 

become a challenge to LVR manufacturers. 

Nowadays, the optimum ESR range is estimated 

manually in manufacturing plants because the 

actual model for each LVR unit is different due 

to manufacturing variation factor. The manual 

estimation involves manual data acquisition and 

analysis for each operating point in the ESR 

tunnel graph. Each operating point consists of a 

unique value of ESR and output current. A high 

accuracy of boundary between pass and failure 

regions can be obtained by acquiring data for 

several operating points manually. However, 

this process is time consuming and costly. In 

addition, an individual with high expertise must 

analyse the acquired data to determine the pass 

or fail status for each operating point. Given 

these drawbacks, an efficient and effective 

method is needed to improve failure region 

estimation (FRE). 

Reducing the number of operating points 

that require manual data acquisition is one way 

to improve efficiency of FRE. However, the 

effectiveness in estimating the failure regions 

must also be considered because data for the 

remaining operating points are unobtained. 

Therefore, virtual sensing (VS) was utilised in 

this study to estimate the failure regions by 

determining the failure status for the remaining 

operating points. VS acts as sensor to obtain the 

unmeasurable or difficult-to-measure physical 

parameters in a system [8-10]. VS can be 

divided into two main categories, namely, (a) 

data-driven and (b) model-based approaches. 

Data-driven VS using multilayer perceptron 

neural network has been used to estimate the 

LVR failure region without any LVR circuit 

modelling [11]. Model-based VS has recently 

obtained the LVR model for a certain number of 

operating points using a system identification 

approach before estimating the model transfer 

function coefficients by utilisingneural network 

[12]. However, the obtained LVR model was 

the black-box one, which only based on the 

acquired input and output signals, disregarding 
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the existing measurable components in the LVR 

circuit. Other studies have been also conducted 

to model electronic circuits for failure analysis 

[13-14].  

The present paper presents a new model-

based VS called circuit model-based VS 

(CMBVS) that considers the measurable 

component values in the VR circuit. CMBVS 

involves detailed circuit analysis and linear 

regression and then uses a simultaneous 

equation solution approach to obtain the 

unmeasurable LVR circuit parameters. The 

remaining of this paper is structured as follows. 

Methodology section describes the detail 

methodology of the work including the 

development of failure region benchmark and 

CMBVS algorithm. Then, results are reported in 

the subsequent section and finally the last 

section concludes this work. 

2. Methodology 

In this study, CMBVS, which can be 

categorised as a model-based VS approach, was 

used to estimate the LVR failure region. 

CMBVS manipulated the measurable 

components in an LVR circuit to reduce the 

number of parameters that must be estimated 

for increasing accuracy. To achieve this goal, an 

LVR circuit was fully constructed using discrete 

components, as depicted in Figure 2. The LVR 

circuit output is an adjustable output voltage 

controlled by feedback resistors, 𝑅1and 𝑅2, with 

a PMOS transistor used as the pass element to 

manage the output current. ESR is an internal 

parasitic element that is difficult to be directly 

measured. Therefore, an adjustable resistor, 

𝑅𝐸𝑆𝑅 , was connected in series with the output 

capacitor to simulate the variation of ESR 

values. 𝑅𝐿acted as the load, whilst 𝑅𝑠 was 

connected to a signal generator to create a 

disturbance signal in the form of a squarewave 

signal. This disturbance signal can abruptly 

increase or decrease the output current with 

small magnitude. The small signal is directly 

related to the LVR output impedance that 

affects the LVR stability. Hence, the LVR 

circuit in Figure 2 was transformed into the 

small signal analysis circuit to perform analysis, 

as displayed in Figure 3. 

 

Figure 2: LVR circuit 
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Figure 3: LVR circuit for small signal analysis 

 

2.1 Failure Region Benchmark 

All data in this work were acquired on the 

basis of the simulation of the circuit shown in 

Figure 3 using OrCAD Capture CIS Lite 

software from Cadence Design Systems. The 

acquired data, which were sampled at 

sampling time 𝑇𝑠 of 1 s, were collected in a 

dataset using MATLAB software from 

MathWorks. This study also developed the 

CMBVS algorithm using MATLAB with 

neural network and system identification 

toolboxes. Before developing the CMBVS 

algorithm, a benchmark dataset obtained from 

manual FRE was created. The dataset consists 

of various information, such as output current 

value before applying the disturbance, ESR of 

output capacitor and ESR lower and upper 

limit that resides on the boundary between 

failure and pass regions in the ESR tunnel 

graph. This manual process involved four 

subprocesses, namely, data acquisition, 

failure analysis, ESR tunnel graph plotting 

and failure region determination, as depicted 

in the flowchart in Figure 4. The four 

subprocesses were conducted for each 

operating point in the ESR tunnel graph until 

all operating points were completely 

analysed. 

The data acquisition process acquired 

output current and voltage signals from the 

LVR circuit through circuit simulation. The 

output voltage undershoot was then measured 

and analysed either within the undershoot 

specification or not. If the measured 

undershoot was within the specification, then 

the corresponding operating point passed and 

was marked with a circle symbol on the ESR 

tunnel graph. If not, then the operating point 

failed and was marked with a cross symbol on 

the graph. Finally, the pass and failure region 

boundaries were determined from the plotted 

ESR tunnel graph and became the ESR lower 

and upper limit benchmark for the subsequent 

CMBVS algorithm. 
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Figure 4: Manual FRE flowchart 

 

2.2 Circuit Model-based Virtual Sensing 

Figure 5 shows the CMBVS block diagram, 

which consists of four main processes, namely, 

data acquisition, circuit modelling, physical 

parameter estimation and failure region 

determination. Data acquisition and failure 

region determination are similar to the manual 

FRE in the previous section. Circuit modelling 

was conducted through (a) grey-box and (b) 

black-box modelling. The physical parameter 

estimation aimed to estimate the unmeasurable 

parameters in the LVR circuit on the basis of 

the information from the modelling process 

through simultaneous equation solution.  
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Figure 5: CMBVS block diagram 

 

Grey-box modelling was performed via 

small signal circuit analysis in CMBVS 

algorithm. This process utilised the physical 

parameters that can be measured in the LVR 

circuit, as shown in Figure 6. In this case, the 

estimated model was voltage gain model. The 

measurable parameters were 𝑅1, 𝑅2, 𝐶𝑜𝑢𝑡  and 

𝑟𝑑𝑠 , which were substituted with the actual 

component values of 64 k, 36 k, 10 F and 

65 , respectively. After analysing the circuit in 

Figure 6, voltage gain transfer function 𝐴𝑣 in 

discrete-time domain can be derived as follows: 

 

 

𝐴𝑣 𝑧 =
𝑔𝑚 𝑟𝑑𝑠+1

1+
2

𝑇𝑠
 

1−𝑧−1

1+𝑧−1 𝐶𝑜𝑢𝑡 𝑟𝑑𝑠+
𝑟𝑑𝑠

𝑅1+𝑅2
+

𝑔𝑚 𝑟𝑑𝑠 𝐺𝑒𝑎 𝑅2

 𝑅1+𝑅2  1+
2
𝑇𝑠

 
1−𝑧−1

1+𝑧−1 𝑅𝑒𝑎 𝐶𝑝𝑎𝑟  

  

   (1) 

which can be generally represented as, 

𝐴𝑣 𝑧 =
𝑏0 + 𝑏1𝑧

−1 + 𝑏2𝑧
−2

𝑎0 + 𝑎1𝑧−1 + 𝑎2𝑧−2
 

(2) 

 

Each coefficient in Eq. (2) can be defined 

by expanding Eq. (1) into, 

 

𝑏0 = 𝑁1𝐶𝑝𝑎𝑟 𝑅𝑒𝑎 + 𝑁2𝐶𝑃𝑎𝑟𝑅𝑒𝑎𝑔𝑚 + 𝑁3𝑔𝑚 +

𝑁4     (3) 
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𝑏1 = 𝑁5𝑔𝑚 + 𝑁6 

(4) 

 

𝑏2 = 𝑁7𝐶𝑝𝑎𝑟 𝑅𝑒𝑎 + 𝑁8𝐶𝑃𝑎𝑟𝑅𝑒𝑎𝑔𝑚 + 𝑁9𝑔𝑚

+ 𝑁10  

(5) 

 

𝑎0 = 𝐷1𝐶𝑝𝑎𝑟 𝑅𝑒𝑎 + 𝐷2𝐺𝑒𝑎𝑔𝑚 + 𝐷3 

(6) 

 

𝑎1 = 𝐷4𝐶𝑝𝑎𝑟 𝑅𝑒𝑎 + 𝐷5𝐺𝑒𝑎𝑔𝑚 + 𝐷6 

(7) 

 

𝑎2 = 𝐷7𝐶𝑝𝑎𝑟 𝑅𝑒𝑎 + 𝐷8𝐺𝑒𝑎𝑔𝑚

+ 𝐷9                                       

(8) 

where constants 𝑁1 to 𝑁10  and 𝐷1 to 𝐷9 can 

be calculated by substituting the measurable 

parameters with the actual component values. In 

the end, only four unmeasurable parameters, 

namely, 𝑔𝑚 , 𝐶𝑝𝑎𝑟 𝑅𝑒𝑎 , 𝐶𝑝𝑎𝑟 𝑅𝑒𝑎𝑔𝑚  and 𝐺𝑒𝑎𝑔𝑚 , 

remained in 𝐴𝑣 that need to be estimated. 

 

 

Figure 6: Voltage gain circuit for small signal 

analysis 

In the black-box modelling, linear 

regression (LR) technique was used to estimate 

all six transfer function coefficients in Eq. (2) 

on the basis of the acquired input and output 

voltage signals from the LVR circuit shown in 

Figure 6. In this research, the input voltage 

signal that acts as the excitation signal was in 

the form of sinusoidal signal. Sinusoidal signal 

was selected because sinewave signal can 

simultaneously excite two frequency 

components. Six coefficients are in Eq. (2), 

indicating that six frequency components exist. 

Thus, at least three sinewave signals with 

different frequencies were required to excite the 

LVR circuit. However, the combination of four 

sinewave signals with different frequencies, 

namely, 5, 10, 15 and 20 kHz, were selected in 

this study to increase the coefficient estimation 

accuracy. The frequency selection was based on 

the peak time of the LVR circuit step response. 

Afterwards, the LVR circuit was simulated to 

obtain the output voltage signal. Then, LR was 

used to estimate the LVR circuit model in terms 

of voltage gain transfer function coefficients 𝑎0, 

𝑎1, 𝑎2, 𝑏0, 𝑏1 and 𝑏2, without any consideration 

on the actual measurable components in the 

circuit. Subsequently, coefficients 𝑎1, 𝑎2, 𝑏0, 𝑏1 

and 𝑏2 are divided with 𝑎0 for improving the 

LR estimation accuracy, generating coefficients 

𝑎1𝐿𝑅 , 𝑎2𝐿𝑅 , 𝑏0𝐿𝑅 , 𝑏1𝐿𝑅  and 𝑏2𝐿𝑅 . 

2.3 Physical Parameter Estimation 

After estimating the parameter of grey-box and 

black-box models, all unmeasurable physical 

parameters, namely, 𝑔𝑚 , 𝐶𝑝𝑎𝑟 𝑅𝑒𝑎 , 𝐶𝑝𝑎𝑟 𝑅𝑒𝑎𝑔𝑚  

and 𝐺𝑒𝑎𝑔𝑚 , in the LVR circuit were estimated 

using simultaneous equation solution. 

Individually estimating each parameter is 

unnecessary because the estimated 

unmeasurable parameters were utilised to obtain 

the LVR circuit time response. Firstly, each 

transfer function coefficients from the circuit 

analysis and LR models were individually 

compared in the simultaneous equation solution. 

Before this step, coefficients 𝑎1, 𝑎2, 𝑏0, 𝑏1 and 

𝑏2 in Eq. (3) from the circuit analysis model 
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were divided with 𝑎0 in Eq. (3) to produce new 

five transfer coefficients to be estimated, 

namely,𝑎1𝐶𝐴𝑀 , 𝑎2𝐶𝐴𝑀 , 𝑏0𝐶𝐴𝑀 , 𝑏1𝐶𝐴𝑀  and 

𝑏2𝐶𝐴𝑀 . Each coefficient from circuit analysis 

and LR models were then equalised with one 

another and subsequently solved using 

simultaneous equation to obtain the 

unmeasurable physical parameters of interest.  

2.4 Failure Region Determination 

The LVR failure region was determined after 

obtaining the unmeasurable parameters. Firstly, 

the measurable and estimated unmeasurable 

parameters were substituted into the output 

impedance model, which was derived on the 

basis of Figure 2. The output impedance model 

was then simulated through a load transient test 

in OrCAD to acquire the LVR output voltage 

signal in the time domain. Afterwards, the 

undershoot of acquired output voltage was 

measured and analysed to determine the failure 

status for each operating point. The ESR tunnel 

graph was subsequently plotted for all operating 

points on the basis of this failure status. Finally, 

the ESR lower and upper limits were extracted 

from the plotted ESR tunnel graph and 

compared with the benchmark from the manual 

FRE to measure the effectiveness of CMBVS 

algorithm. In this case, four performance 

metrics, namely, mean absolute error (𝑀𝐴𝐸), 

mean square error (𝑀𝑆𝐸), root mean square 

error (𝑅𝑀𝑆𝐸) and regression coefficient (𝑅2), 

were computed as follows: 

𝑀𝐴𝐸 =
1

𝑁
  𝑦 𝑖 − 𝑦𝑝 𝑖  

𝑛

𝑖=1

 

(9) 

𝑀𝑆𝐸 =
1

𝑁
  𝑦 𝑖 − 𝑦𝑝 𝑖  

2
𝑛

𝑖=1

 

(10) 

𝑅𝑀𝑆𝐸 =  
1

𝑁
  𝑦 𝑖 − 𝑦𝑝 𝑖  

2
𝑛

𝑖=1

 

(11) 

𝑅2

=
 (𝑦 𝑖 − 𝑦 (𝑖))(𝑦𝑝 𝑖 − 𝑦𝑝   (𝑖))𝑛
𝑖=1

   𝑦 𝑖 − 𝑦 (𝑖) 2𝑛
𝑖=1   𝑦𝑝 𝑖 − 𝑦𝑝   (𝑖) 

2𝑛
𝑖=1

 

(12) 

Where 𝑦 is the ESR limit benchmark, 𝑦𝑝  is 

the ESR limit extracted from CMBVS 

algorithm, 𝑛 is the number of ESR limit, and 𝑖 

is the output current index. CMBVS algorithm 

exhibits good performance if 𝑀𝐴𝐸, 𝑀𝑆𝐸 and 

𝑅𝑀𝑆𝐸 values are minimum, and 𝑅2 value is 

towards unity. To evaluate the efficiency of 

CMBVS algorithm, the duration for estimating 

the LVR failure region using CMBVS 

algorithm was also recorded and compared with 

duration for completing the manual FRE. The 

following performance metric was used to 

measure efficiency: 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  1 −
𝑡2(𝑖)

𝑡1(𝑖)
 × 100% 

(13) 

where 𝑡1 and 𝑡2 are the duration for FRE of the 

manual method and CMBVS algorithm, 

respectively. 

3. Results and Discussion 

As previously mentioned, this study aimed to 

develop an effective and efficient LVR FRE 

method through CMBVS algorithm. The ESR 

limit benchmark was developed using manual 

estimation. Figure 7 shows the ESR tunnel 
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graph obtained using the manual estimation 

method. Subsequently, the ESR lower and 

upper limits were extracted from the ESR 

tunnel graph, as depicted in Figure 8. Three 

separated regions were illustrated in Figures 7 

and 8. The two failure regions at the bottom and 

top of the graph enclosed a pass region in the 

middle of the ESR range. Therefore, two ESR 

limits, namely, lower and upper, exist as the 

benchmark for CMBVS algorithm. 

 

 

Figure 7: ESR tunnel graph of manual FRE 

 

Figure 8: ESR lower and upper limit of manual FRE as benchmark 

Figure 9 illustrates the finding of the ESR 

tunnel graph obtained using CMBVS algorithm. 

The comparison result between Figures 7 and 9 

shows that the failure regions are similar. The 

ESR lower and upper limits were extracted on 

the basis of the ESR tunnel graph in Figure 9. 

The effectivenessof the FRE method through 

CMBVS algorithm was evaluated using the 

performance metrics in Eq. (4). In this case, 

𝑀𝐴𝐸, 𝑀𝑆𝐸, 𝑅𝑀𝑆𝐸 and 𝑅2 are 1.16 × 10−6, 

1.16 × 10−12 , 1.22 × 10−6 and 0.9999, 

respectively, indicating that CMBVS has good 
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performance. These performance metrics were 

computed in terms of the output voltage 

undershoot, which was measured on the basis of 

the time response of LVR circuit simulation 

using the estimated unmeasurable parameters. 

Two performance metrics, 𝑀𝐴𝐸and 𝑀𝑆𝐸, in 

evaluating the unmeasurable parameter 

estimation in CMBVS algorithm were also 

analysed. The outcomes are listed in Table 1. 

Three examples of unmeasurable parameters 

were investigated, and the overall performance 

is satisfied with 𝑀𝐴𝐸 and 𝑀𝑆𝐸 having small 

values. 

 

 

 

Figure 9: ESR tunnel graph from CMBVS algorithm 

 

Table 1: Performance metrics for three examples of unmeasurable parameter estimation in 

CMBVSalgorithm 

Set 
Physical parameter Performance metric 

Parameter Expected Estimated MAE MSE 

A 

gm 123.00 × 10
-3

 101.70 × 10
-3

 21.40 × 10
-3

 4.5608 × 10
-4

 

CoaRoa 6.0000 × 10
-5

 5.9999 × 10
-5

 1.0239 × 10
-9

 1.0438 × 10
-18

 

CoaRoagm 7.3800 × 10
-6

 6.0985 × 10
-6

 1.2815 × 10
-6

 1.6421 × 10
-12

 

geagm 6.9126 6.9132 6.0439 × 10
-4

 3.6529 × 10
-4

 

B 

gm 123.61 × 10
-3

 100.18 × 10
-3

 23.40 × 10
-3

 5.4925 × 10
-4

 

CoaRoa 6.0601 × 10
-5

 6.0600 × 10
-5

 1.0546 × 10
-9

 1.1121 × 10
-18

 

CoaRoagm 7.4910 × 10
-6

 6.0709 × 10
-6

 1.4204 × 10
-6

 2.0174 × 10
-12

 

geagm 6.9819 6.9822 3.0192 × 10
-4

 9.1153 × 10
-8

 

C 

gm 122.38 × 10
-3

 109.08 × 10
-3

 13.30 × 10
-3

 1.7710 × 10
-4

 

CoaRoa 5.9402 × 10
-5

 5.9400 × 10
-5

 1.7174 × 10
-9

 2.9496 × 10
-18

 

CoaRoagm 7.2699 × 10
-6

 6.4792 × 10
-6

 7.9069 × 10
-7

 6.2519 × 10
-13

 

geagm 6.8436 6.8439 2.5003 × 10
-4

 6.2517 × 10
-8

 

 



 

 

November-December 2019 

ISSN: 0193-4120 Page No. 5735 - 5746 

 

 

5745 Published by: The Mattingley Publishing Co., Inc. 

CMBVS algorithm is also an efficient FRE 

method. This algorithm can reduce the 

estimation time up to 80.24%. As shown in 

Figure 7, data had to be manually acquired for 

all 10,000 operating points in the manual 

estimation method, which took approximately 

13,608 s. By contrast, FRE using CMBVS 

algorithm only needed to manually acquire data 

for an operating point to estimate the 

unmeasurable parameters in the LVR circuit. 

For the remaining operating points, the LVR 

circuit time response could be generated 

through circuit simulation using the estimated 

unmeasurable parameters. Therefore, the 

estimation time in CMBVS algorithm was 

significantly reduced. 

 

4. Conclusion 

The developed algorithm in this study improves 

LVR FRE in terms of effectiveness and 

efficiency. The outcomes demonstrate that 

CMBVS algorithm can effectively generate an 

ESR tunnel graph similar to the benchmark 

from manual estimation with all performance 

metrics showing good performance. In addition, 

CMBVS algorithm is an efficient method to 

estimate the failure region by greatly reducing 

the number of data that need to be manually 

acquired, thus shortening the total estimation 

time. As an effective and efficient method to 

estimate the LVR failure region, CMBVS 

algorithm can eventually determine the ESR 

stable range of output capacitor ESR in the 

LVR circuit. 
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