

May-June 2020

ISSN: 0193-4120 Page No. 3779-3787

3779

Published by: The Mattingley Publishing Co., Inc.

Federated Cloud & Containerization – A

Dockers Perspective

1
Divya Kshatriya,

2
Gopal Krishna Shyam

1
Research Scholar, School of CSA, REVA University, Bengaluru 560064, India

1
divya.kshatriya@gmail.com

2
Professor, School of C&IT, REVA University, Bengaluru 560064, India

2
gopalkrishnashyam@reva.edu.in

Article Info

Volume 83

Page Number: 3779-3787

Publication Issue:

May-June 2020

Article History

Article Received:19 November 2019

Revised: 27 January 2020

Accepted: 24 February 2020

Publication: 12 May 2020

Abstract

As the ecosystem for Cloud Computing was conceptualized it was

widely created as an outsourcing of all business IT resource

requirement from a cloud service provider. Over the years there

has been a progression in cloud computing offerings from not just

operating as a single cloud service provider to a multi cloud service

providers mutually offering federated cloud as a service. Federated

cloud overcome the limitations of single cloud service provider by

pooling up the data center resources of multiple clouds vendors

and giving high performance on applications, high volume of

storage, no downtime and efficient throughput. This requires

seamless portability of applications with least overhead

requirements and dynamic migrations of applications across the

various cloud heterogeneous architecture without interoperability

issues. With the advent of containerization technology that

packages together application code with all its required dependent

libraries and binaries eliminates the technical issues related to

portability of applications and incompatibility issues of multiple

cloud landscape. Docker containers have revolutionized and

remodeled the process of building, installing and executing any

application irrespective of the technology used in developing or the

size of the application. These applications bundled in Docker

containers make the orchestration of application components

across federated cloud a seamless process with high level of

flexibility. This paper is conceptualized with a deeper

understanding on the impact of containerization on federated

cloud.

Keywords: Federated Cloud, Containerization, Virtualization

Docker.

1. Introduction

Cloud computing is the rendering of computing related

services – that include servers, databases, storage,

software, networking, intelligence &analytics –

delivered over the Internet to enable flexible resources,

quicker innovation, and scale economies. Typically,

the customeronly pays for cloud services consumed by

him/her, driving decreased operational costs, allowing

effective management of information technology

infrastructure and scaling up in line with growth or

shrinkage of business demand [1]. Cloud federation is

the topology of interconnection ofcloud computing

environments across two or more providers aimed at

traffic load balancing, handling demand spikes and

lowering operational costs.Cloud federation mandates

one provider to rent or wholesale computing resources

to another provider. Such resources become a

permanent or temporary augmentation of cloud

computing environment maintained by buyer, based on

the specific federation agreement signed-off among

providers [2][3].

mailto:divya.kshatriya@gmail.com
mailto:gopalkrishnashyam@reva.edu.in

May-June 2020

ISSN: 0193-4120 Page No. 3779-3787

3780

Published by: The Mattingley Publishing Co., Inc.

Cloud federation presents two notable advantages

to cloud providers. Firstly, it empowers the providers

to obtain revenuesthrough computing resources that

otherwise would be underutilized or idle. Secondly,

cloud federation allows the cloud providers to enlarge

their geographic outreach and handle unexpected

peaks in demand by effectively utilizing their existing

data centres. While the advantage of administering

cloud federation is enormous, nevertheless it’s a

challenging task to smoothly relocate applications

across various cloud service providers [4].It

necessitates the complexity of understanding a

spectrum of cloud architectures and building

applications to dynamically interoperate on these

platforms. The innovation in container technology &

micro-services applications has immensely facilitated

this aspect.

A container is a modular unit of software that

bundles together code and its underlying dependencies

to enable the application to execute with performance

and reliabilitybetween computing environments.

Containers are self-contained and don’t need a guest

operating system while sharing its host kernel.

Container enables the user with quicker application

development & deployment no matter that the

platform [5]. Docker containers are instrumental in

popularizing the current day virtual containers. A

Docker container image is a standalone,lightweight

&executable software package that consists of

everything required for executing an application:

runtime, code, system tools&libraries and settings.

Such technology has become a boon for both

development and production environments. Docker

containers are intrinsically portable and can be

executed on a VM or in the cloud unmodified, the

containers are movable between VMsand to bare metal

without the need for intensive efforts to enable

transition [6][13].

The key differentiator in container technology is

“isolation.” Isolation implies velocity – containers are

much compact entities vis-à-vis virtual machines

which promotes their faster deployment. Isolation

implies performance – diminished boot-up times.

Isolation means adaptability – containers are movable

across various platforms &cloud vendors. Therefore,

they’ve earned extensive relevance in federated cloud

scenarios [5].

2. Containerization

A Brief History of Containers

Containerization has ushered a dominant trend in

software development as substitution or complement

to virtualization. It entails encapsulation or bundling

together software code and its entire dependencies to

allow it to execute consistently &uniformly across

infrastructures. This technology is rapidly evolving,

leading to quantitative for developers, operations

teams, and overall software infrastructure.

Containers are not a newborn technology and have

existing for over a decade. Still,prior to Docker’s

meteoric success starting in 2013 they were not well-

known or wide-spread. For better appreciation of

container technology, one would need to rewind go

back in time from the origination of concept of

containers from Chroot right back in 1979.

Chroot was introduced first 40 years ago in 1979

during the development of Unix V7. It was built to

transform the supposed root filesystem of a process

and its children. In simple terms, network namespaces

or modern process isolation were removed. In 2000,

FreeBSD jails expanded upon Chroot and popularized

enhanced sandboxing features. Jails consist of their

own network interfaces and IP addresses, that

disallowed by default raw sockets. This ushered

resemblance to virtual machines [7][8].

Figure 1: History of Containers

Shortly, the Linux community jumped on the

bandwagon with Linux-VServer in 2001 and OpenVZ

in 2005. Both were out-of-tree patches to the Linux

kernel, and hence somewhat complicated to maintain.

They offered reasonable process & network isolation,

however were also laden with some downsides. It

wasn’t helpful that hosting providers offered these

containers as light-weight virtual machines, creating

frustration among people for not getting features

provided by VMs.

Control groups (cgroups) are a Linux kernel

feature launched in 2008 to insulate the resource usage

(memory, CPU, network, disk, etc.) of process groups.

Over the years, it underwent several changes however

retained its central purpose, that is to furnish a unified

interface for process isolation in the Linux kernel.

Cgroups were redesigned in 2013, along with a new

feature called Linux namespaces. Namespaces

partition kernel resources to prevent a process in one

namespace from viewing resources of another

namespace. Work is still being done to make almost

every part of the Linux kernel namespace-aware. The

one with utmost importance are process ID, mount,

interprocess communication, network, and user

namespace. Cgroups and namespaces modified

everything, since they are the elementary units of all

contemporary container technologies on Linux [11].

May-June 2020

ISSN: 0193-4120 Page No. 3779-3787

3781

Published by: The Mattingley Publishing Co., Inc.

Also in 2008, LXC took birth developed on

cgroups& namespaces. It was the first available

container tool that interoperated with the upstream

Linux kernel. Nonetheless, the early versions were

weaker in security vis-à-vis its prehistoric ancestors,

Linux-VServer&OpenVZ. Root in an LXC container

implied root on the host. This wasn’t applicable any

longer with LXC 1.0 which imported unprivileged

containers with the aid of user namespaces.

With Warden in 2011, CloudFoundry enrolled

into the arena using LXC as its base. It had

independent client & server components, aimed at

managing containers across a machine cluster.

Subsequently, they switched LXC with their home-

grown platform independent implementation. Warden

containers commonly had only two layers: a read-only

OS root file-system & a runtime file-system from

elementary units called buildpacks. CloudFoundry is

still existent however they’ve deserted Warden in

exchange of contemporary standards.

Google, whose engineers’ brainchild was cgroups,

has already become a leading player in container

technologies also launched their own open-source tool

in 2013 called Let Me Contain That For You

(LMCTFY). It could never take off the ground since

development stopped with their interest getting drawn

to new standard components in 2015 and introduced

nsjail.

It was Linux Containers – LXC – which enabled

instituting containers as a key virtualization

technology reasonable for cloud data centers. LXC is a

Linux operating system-level virtualization method for

running multiple isolated Linux systems on a single

host. The Namespaces &Cgroups features made Linux

Containers possible. Docker came along later.

Originally, it was a project to create single-application

LXC containers. Ever since, Docker has introduced

many noteworthy upgrades to the container concept,

that includedistancing away from LXC as the

container format. Docker containers allow the users to

conveniently deploy, move, replicate, and back-up a

workload, thus providing cloud-like flexibility to any

infrastructure capable of running Docker.A Docker

container image is a standalone,lightweight,

executable software bundle which comprised of

aggregate needsfor executing an application: runtime,

code, system tools, system libraries &settings [7].

With open source Docker Engine emerging in

2013, an industry standard for containers with

straightforward developer tools and a universal

framework of packaging, expedited the uptake of this

technology. Gartner, a renowned research

firm,estimates that by 2020 over 50% of firms globally

will adopt container technologies [10][13].

Back in 2014,when standards within container

industry yet seemed out of reach, another key

endeavor came into fray. Kubernetes was introduced

Google engineers, massively motivated by know-how

of company’s internal container orchestration systems.

It rapidly fascinated contributors from dominant

industry players e.g. RedHat, Intel, CoreOS.

Kubernetes is a sophisticated framework for

automation of management, scaling &deploymentof

containers. It was embraced by the CNCF, alongside

majority of its key components. Kubernetes initially

harnessed Docker for its container runtime. However,

it’s now compatible with any runtime through the

Container Runtime Interface (CRI), e.g. CRI-O that

utilizes the interface through containerd&runC [11].

Docker’s share of the orchestration segment was

Swarm,which is a self-contained tool to manage a

cluster of docker daemons through the same API. It

was antiquated by Swarm mode that is embedded in

Docker since version 1.12.

3. Docker Containers

A.

B. Docker Containers

Container technology took off in 2013primarily as an

open-source project, initially named dotcloud, with

vision to create single-application Linux containers.

Ever since, Docker containers has emerged as not only

a favoured development tool but also proliferated as a

runtime environment. Docker is build using Go and

leverages constructs of the Linux kernel to distribute

its functionality. A key driver of Docker being so

famous is that it offers the commitment of “develop

once, run anywhere.” Docker renders anuncomplicated

approach to packaging an application & associated

dependencies (esp. runtime) within a unified container,

and enables a runtime abstraction that facilitates the

container to execute across various versions of Linux

kernel. Using Docker, a developer can build a

containerized application on their workstation and later

conveniently deploy the same to any Docker-enabled

server while not having to retune or retest it for the

specific server environment – both on on-premise or

on cloud scenarios. Additionally, Docker offers a

mechanism of sharing & distribution of software

which enables developers &operations teams to

seamlessly share &reuse container content. This

distributed mechanism, topped-up with transportability

across machines, is the secret-sauce for

Docker’simmense acclaim with developers

&operations teams [11][13].

May-June 2020

ISSN: 0193-4120 Page No. 3779-3787

3782

Published by: The Mattingley Publishing Co., Inc.

Figure 2: Docker Objectives

Docker Components

Docker is not only a development tool but also a

runtime environment. To comprehend Docker, one

must first grasp the concept of a Docker container

image. A container invariably kicks-off with an image

and is deemed an instance of the same.

An image represents a static blueprint of

container’s expected identity in runtime, inclusive of

application code within the container & runtime

configuration settings. Docker images comprise of

read-only tiers (or layers), which implies the image is

immutable once created.

A functioning Docker container is an instance of

an image. Containers extracted out of the same image

are each other’s replica from perspective of their

application code &runtime dependencies. However,

dissimilar to images which are read-only, each

deployed container is embedded with a writable layer

(a.k.a. the container layer) atop the read-only content.

Runtime changes, inclusive of any updates &writes to

files &data are conserved in the container layer only.

Hence, numerous parallel executing containers which

share the same underlying image could comprise of

varied container layers.

The deletion of a running container is

accompanied with the deletion of writable container

layer – it will then not persist. The exclusive approach

to conserve changes is by doing ancategorical “docker

- commit” before the container is destroyed. While a

“docker – commit is done,” the executing content of

container, along with the writable layer, is persisted

into a new container image and thereafter stored to the

disk. This now becomes a new image disparate from

the preceding image which has instantiated the

container.

Employing this definitive “commit” command,

one could construct a consecutive, distinct set of

Docker images, each one developed atop the

preceding image. Additionally, Docker harnesses a

Copy-on-Write strategy in order to diminish the disk

footprint of containers &images which share the ditto

base components. This enables optimization of

storage space and minimization of container start

time. Besides the image concept, Docker also

comprises of handful of specific components which

are divergent from those in Linux containers.

Figure 3: Components of Docker Architecture

Docker daemon:a.k.athe Docker Engine. Docker

daemon is a narrow stratum between the containers

and the Linux OS. It is the perpetual runtime

environment which manages application containers.

Any Docker container can execute on any server

which has Docker-daemon enablement, irrespective of

the substrata operating system.The daemon

instantiates & maintains Docker objects e.g.

containers, images, volumes &networks.A daemon

can also communicate with its peers to manage

Docker services.

Docker Registries:A Docker registry saves

Docker images. Docker Hub is a communal registry

for usages by anyone, and Docker is configured by

default to scan for images on Docker Hub.

Dockerfile: Developers harness Dockerfile to

construct container images, that in turn act as the basis

of executing containers. A Docker file is a text

document which holds all the configuration related

information &commands required for assembling a

container image. Using a Dockerfile, Docker daemon

can seamlessly construct a container image. This

process significantly streamlines the procedure for

container creation. More precisely, in a Docker

registry, one first specifies a “base image” based on

which the build process is initiated. One later

specifies a sequence of commands, which leads to

building of a new container image.

Docker Command Line Interface (CLI) tools:

Docker offers a list of CLI commands for lifecycle

management of image-based containers. Docker

commands span across development functions e.g.

build, tagging&export, alongside runtime functions

e.g. running, starting, deleting, &stopping a container,

and much more.

Docker Objects:While using a Docker, one is

creating &using images, networks, containers,

plugins, volumes &other objects.An image is a read-

only blueprint with prepareatory information for

constructing a Docker container. Generally, an image

is built on baseline image, by adding few

customizations. For example, one may construct an

image that is founded on the Ubuntu image, however

installs the Apache web server &application,

May-June 2020

ISSN: 0193-4120 Page No. 3779-3787

3783

Published by: The Mattingley Publishing Co., Inc.

alongside the configuration information required to

enable one’s application to execute.

A container is essentially an executable instance

of an image. One could create, stop, start, delete or

move a container by using the Docker API or CLI.

One could help container establish connection to one

or more networks, hook up storage to it, or even

construct a new image founded on its current state.A

container is identified by its image along with any

configuration settings one provides to it during its

creation or starting. While a container is detached, any

modifications to its state which are unsaved in its

persistent storage will be abandoned [12] [13].

Features of Docker Containers

One of the most differentiating attributes of Docker

containers is their immutability which results inthe

statelessness of containers.

As mentioned earlier, a Docker image, once

constructed, does not modify. An executing container

extracted from the image is embedded with a writable

layer designed to ad-hoc contain the runtime

modifications. In scenario of container committing

prior to deletion using “docker – commit”, the

modifications will be saved in the writeable layer into

a new image which is disparate from the preceding

one.

Figure 4: Features of Containers

Immutable images &containers result in an immutable

infrastructure, which in turn has several compelling

properties which are non-attainable with conventional

systems. For example:

Version control: Using the categorical commit

method, the Docker enforces forces one to perform

version control. One can maintain traceability of

consecutive image versions; if required rolled back to

a preceding version (thereby to a prior system

component) is completely made possible, as prior

versions are preserved and never changed.

Neater updates and higher manageability of state

modifications: Given the immutable infrastructure, one

need not have to upgrade one’s server infrastructure,

that implies no requirement to modify configuration

files, no software upgrades, no OS (operating system)

updates, and so on.When modifications are required,

one may simply create new containers and deploy

them to substitute the old ones. This is a much

superior, discrete & manageable approach for state

change.

Curtailed drift: To prevent any drift, one can regularly

and with pre-planning rejuvenate all the system

components to assure they are equipped with the latest

version. This procedure is a much effortless with

containers which abstract out smaller system

components as compared with conventional & heavy

software [9][14][15].

Benefits of Docker Container

Due to the contemporary & soaring appeal for

data-demanding applications to up-scale various

platform needs periodic digital transformations.

Containerization of applications offers several

advantages, especially the below:

Portability among various platforms & clouds –

it’s genuinely write once, execute anywhere.

Efficiency via harnessing way lower resources than

VMs and ensuring much increased usage of compute

resources [12]. Agility which enables developers to

harmonize with their current DevOps environment.

Increased velocity in the administration of upgrades.

Containerization of monolithic applications by usage

of micro-services aids in development teams creating

services with its unique lifecycle and scaling policies.

Enhanced security through isolation of applications

from the host system and from one another.Quicker

application start-up and seamless scaling.Affability to

onboard applications on virtualized infrastructures or

on bare metal servers. Convenient administration

since install, rollback & upgrade processes are

embedded into the Kubernetes platform. [9]

Docker’s proprietary image format, its comprehensive

APIs for container administration, and the ingenious

mechanism of software distribution through registries

have led to its platform popularity for both

development & operations teams. Docker offers such

noteworthy advantages to an organization.

Minimalistic, allegorical systems: Docker containers

perform optimally if designed as small, modular,

specific-objective applications. This leads to

containers which are bare-essential in size, that again

facilitates speedy delivery, continuous integration &

deployment.

Predicable processes & transactions: The topmost

pain-point associated with system operations has ever

been the apparently arbitrary performance of the

infrastructure & applications. Docker pushes one to

entail petite & more manageable upgrades and offers

a mechanism to curtail system drift; both pre-

requisites are really what’s required to construct

predicable systems. Where drifts are minimized or

avoided, one can achieve affirmation that the same

application or system should perform identically,

irrespective of number of times one deploys them.

Large-scale software reuse: Docker containers reuse

tiers (or layers) belonging to other images; that

May-June 2020

ISSN: 0193-4120 Page No. 3779-3787

3784

Published by: The Mattingley Publishing Co., Inc.

encourages reuse of software. The methodology

Docker shares images through registries is yet another

enormous medium to proliferate the component

sharing & reuse [17].

Authentic multi-cloud portability: Docker

implements a genuine platform independence, that

enables containers to transmigrate unrestricted among

various cloud platforms, on-premises infrastructures,

and even development workstations.

Docker has significantly changed the

organizational methodology of building systems and

services delivery. It has also started reshaping our

thinking approach towards software design and the

economics of software delivery [16].

4. Vm Versus Containerization

Virtualization is the process of constructing a

software-centric, or virtual, depiction of something,

e.g. servers, virtual applications, networks

&storage.Virtual Machines (VMs) virtualize hardware.

Virtualization depends on software to mimic hardware

functionality and replicate a virtual computer system.

This allows IT organizations to execute more than one

virtual systems – and disparate OS (operating

systems)&applications – on a unified server. A virtual

computer system is known as a “virtual machine”

(VM): a firmly confined software container embedded

with an OS & application under-the-hood. Each self-

sufficient VM is entirely autonomous. Deploying

manifold VMs on a unified computer allows various

OS & applications to execute on strictly one physical

server, or “host.” A narrow tier (layer) of software

named as “hypervisor” unbundles the virtual machines

& host and real-time earmarks computing resources to

individual virtual machine as required. Each guest VM

comprises of a dedicated copy of an OSatop the host

OS however the host’s hardware is shared among VMs

on the same host [18][19.]

Figure 5: Virtualization Framework

Containers, nonetheless, virtualize the OS – every

container enjoys its own dedicated CPU, block I/O,

memory, network stack etc., however utilizes the

host’s OS similar to other containers on the same host.

Containers occupy lower boot volume and lower disk

space. One can execute higher number of containers

on the same host similar to with VM – up to 100x. It is

also faster to initiate and remove a container compared

to a VM [18][20].

Figure 6: Containerization Framework

VM is in line with its name – a hardware machine

that’s virtualized. On the other hand, a container is

simply a process, that harnessing kernel features one

can segregate and confine the resources accessible to

it. Both are carrying out a different mission. They are

analogous since they both offer secluded environments

– they both can be harnessed to bundle up & dispense

software [23].Yet, containers are usually much faster

&smaller, that yields them a superior fit for rapid

development cycles µ-services. The

compensation is that containers don’t implement

authentic virtualization; for example, one can’t execute

a windows container on a Linux host.VM’s are

designed for applications which are typically more

stable and don’t modify much frequently. However,

containers are higher in flexibility and ensure a

convenient & periodic updatesto one’s containers. In

summary, the choice among VM’s and containers

boils down to specific use-case. Table-1 depicts the

key differences amongst virtualization and

containerization[18][20][21][22][24].

Table 1: Comparison between VM and

Containerization

PARAMETE

RS
VM

CONTAINERIZATI

ON

Abstraction
OS from

hardware
Application from OS

Isolation
Complete

Isolation

Isolation using

techniques like

namespaces

Boot Up Time In Minutes In Seconds

Resource

Requirement

Heavyweig

ht
Lightweight

Space

Allocation

Data

volume

cannot be

shared

Data volume is shared

and reused

Performance

Limited

Performanc

e due to

multiple

running

VMs

Near Native

Performance as they

are hosted in single

Docker Engine

Security Very high
Low as compared to

VM

Portability

Compatibili

ty issue

while

porting to

Easily portable across

multiple platforms

May-June 2020

ISSN: 0193-4120 Page No. 3779-3787

3785

Published by: The Mattingley Publishing Co., Inc.

different

platform

Version

Management

Difficult to

implement

version

control

Easy version control

Scalability

Slow

provisionin

g and

difficult to

scale up

Real Time

provisioning

5. Containerization In Federated Cloud

Earlier research also brings about the fact that with the

emerging and existing technologies like

Containerization, Kubernetes, Microservices, Docker

enterprise edition will become the foundation for

building the right infrastructure for propagation and

management of federated clouds. This will help

leverage the benefit of maximizing the resource

utilization of each cloud provider and workload would

be more efficiently managed amongst the participating

cloud service providers of federated cloud. The

scalability required by applications during peak

requirements would be managed in no time as

deployment would be seamless.

Current cloud landscape has many different

service offerings for customer applications as well

multiple deployment offerings. Service offerings range

from software as a service, platform as a service,

infrastructure as a service, network as a service and

storage as a service. The deployment options also

range as private cloud, public cloud, community cloud,

hybrid cloud and federated cloud. Each cloud offering

caters to unique business application requirements to

multiple customers in various geographically

distributed areas. At the same time in realism an

individual cloud service provider cannot conform to all

the possible use cases. Even a substantial large cloud

service provider with all the available resources of

range of servers, network infrastructure, database

storage, virtual machines and tools will be able to

optimally cater to business application requirements

with high performance only when resources are

located close to customers.It’s not technically,

financially and operationally feasibleto have cloud

ecosystem at multiple locations hence to meet up the

ever growing requirement of cloud the federation

model is well suited. Federated cloudecosystem

requires to mutually pool up resources by different

cloud vendors that are geographically distributed and

are in alliance to support the resource requirement

across multiple clouds [25][27].

Cloud environment and integration layers have

emerged and matured over the decade to resolve the

issues of federated cloud environments. By

consolidating the different cloud platforms of

multitude of cloud service providers by controlled and

commonly managed interface with well

governedpayment systems, the current cloud

integrators can fundamentally ease the process

associated with acquisition along with financially

compensating for infrastructure anywhere and

anytime.

However execution of development of software

applications and setting up production environments in

federated cloud landscape is a grave challenge even

when establishing of the data center infrastructure is

considerable a standard process. Largely all cloud

platforms can be considered as relatively simple and

easily compatible set of technological resources to

support the execution of applications of any kinds.

They are designed to have the capacity and capability

to handle different kinds of workload requirements

[28][29]

With the emergence of container technology like

Docker that primarily focuses on the requirement of

development teams and production teams to isolate

any dependency of application to its infrastructure.

The Docker Enterprise (DE) platform is an innovative

platform with federated application management

feature. This is an independent platform that supports

development teams to create ship and run applications

consistently and seamlessly across multiple cloud

providers.Clouds have fluctuating deployment,

migration, resource security, management, and

replication behaviors. Federated management is

designed to position among all of them and offers a

consolidated perspective and automated model for

migrating, deploying, and mirroring applications.DE

facilitates deployment of significantly available

workloads by leveraging either the Docker Swarm or

Docker Kubernetes Service. DE provides automation

of several tasks which orchestration needs e.g.

provisioning of pods, cluster &containers resources

[26].

Docker is employed by various large-sized

organizations to enable large-scale continuous

integration & delivery distribution of application, and

for creation of distributed application architectures.To

summarize, Docker delivers a portable PaaS

(Platform-as-a-Service) environment, barring that in

lieu of banking on a cloud vendor’s platform, each

specific application encapsulates its own platform (e.g.

binaries, libraries etc.) within it, equippedfor faster

deployment on any appropriate infrastructure [25]

[30]. The requirement for spinning up additional

servers to deploy an application for a different

geographic area is handled by integration layer of

federated cloud marketplace to identify, administer,

and deploy the infrastructure tier, and push the current

Docker containers on top of that infrastructure, thereby

significantly decreasing the lead-time to deployment.

In contrast to earlier times, the process of contracting

& negotiation with new cloud or hosting service

providers, configuration of discrete server

environments, applications installation i.e. Docker-

Cloud integration model is less time consuming,

considerably simpler, and much efficiently

manageable.

May-June 2020

ISSN: 0193-4120 Page No. 3779-3787

3786

Published by: The Mattingley Publishing Co., Inc.

6. Conclusion

Containerization has brought in a paradigm shift in the

field of cloud computing that has enabled the rapid

adoption of cloud within organizations across various

types (segmented by size, industry, domains etc.). It

has offered simultaneous benefits such as agility,

portability, scalability, version management – a unique

combination that has led to its popularity. Several

organizations are exploring containers as medium to

enhance their application life-cycle management by

harnessing proficiencies such as continuous integration

and continuous delivery. Containerization is a

remediation to proprietary vendor lock-in cloud

technologies by conforming to the principles of open-

source, which also aids the easier adoption of

federated cloud architectures. Containers and Docker

in essence are not in battle with virtual machines; they

are actually complementary to each other and meant

for distinctive purposes.With the increasing

preferences of organizations to leverage multiple cloud

service providers with the objective to accrue best-of-

breed features and to de-risk themselves, continuous

developments in containerization (especially Docker)

technologies are poised to offer a practical solution via

federated cloud framework.

This paper provides perspective around Dockers

containerization its evolution, features, advantages,

comparison with virtualization, and its unique ability

to facilitate and support the federated cloud

architecture. It can provide a template for future papers

on other complimentary cloud technologies.

References

[1] P. Mell and T. Grance, “The nist definition

of cloud computing,” National Institute of

Standards and Technology, vol. 53, no. 6, p.

50, 2009. [Online]. Available:

https://www.nist.gov/publications/nist-

definition-cloud-computing

[2] Bermbach, D., Kurze, T., Tai, S.: Cloud

federation: eff ects of federated compute

resources on quality of service and cost. In:

Proceedings of IC2E 2013, pp. 31–37 (2013)

[3] A. Marosi, G. Kecskemeti, A. Kertesz, P.

Kacsuk, “ FCM: An architecture for

integrating IaaS cloud systems”, The Second

International Conference on Cloud

Computing, GRIDs, and Virtualization, pp.

7–12, 2011.

[4] R. Ranjan, “The Cloud Interoperability

Challenge,” IEEE Cloud Computing, vol. 1,

no. 2, pp. 20–24, 2014.

[5] BlessonVarghesea and RajkumarBuyya

“Next generation cloud computing: New

trends and research directions” Future

Generation Computer Systems, Vol. 79, no.

3, pp. 849-861, February 2018.

[6] https://cloud.google.com/containers

[7] David Bernstein, “Containers and Cloud:

From LXC to Docker to Kubernetes,” IEEE

Cloud Computing, vol. 1, no. 3, pp. 81–84,

2014.

[8] https://dzone.com/articles/evolution-of-

linux-containers-future

[9] https://www.ibm.com/cloud/learn/containers

[10] What is a container?

https://www.docker.com/resources/what-

container

[11] D. Merkel, “Docker: lightweight linux

containers for consistent development and

deployment,” Linux Journal, vol. 239, pp.

76-91, 2014.

[12] J. Turnbull, The Docker Book, 2014; www

.dockerbook.com.

[13] https://docs.docker.com/engine/docker-

overview/

[14] Claus Pahl, Antonio Brogi, Jacopo Soldani

and Pooyan Jamshidi,” Cloud Container

Technologies: A State-of-the-Art Review,”

IEEE Transactions on Cloud Computing,

vol. 7, no. 3, pp. 677-692 , 2019

[15] Preeth E N, Fr. Jaison Paul Mulerickal, Biju

Paul and Yedhu Sastri, “Evaluation of

Docker Containers Based on Hardware

Utilization” 2015 International Conference

on Control Communication & Computing

India (ICCC), Trivandrum, India, 19-21Nov

2015

[16] Hao Zeng, Baosheng Wang, Wenping Deng

and Weiqi Zhang, “Measurement and

Evaluation for Docker Container

Networking,” International Conference on

Cyber-Enabled Distributed Computing and

Knowledge Discovery, China, Oct 2017

[17] Han, R., Guo, L., Ghanem, M., Guo, Y.:

Lightweight resource scaling for cloud

applications. In: International Symposium on

Cluster, Cloud and Grid Computing

(IEEE/ACM CCGrid), pp. 644–651 (2012)

[18] Rajdeep Dua, A Reddy Raja, Dharmesh

Kakadia, “Virtualization vs

Containerization to support PaaS”,

Proceeding of 2014 IEEE International

Conference, pp. 610- 614 (2014)

[19] https://www.vmware.com/in/solutions/virtual

ization.html

[20] https://www.docker.com/blog/vm-or-

containers/

[21] Ann Mary, “Performance Comparison

Between Linux Containers and Virtual

Machines ,” 2 015 International Conference

on Advances in Computer Engineering and

Applications, Ghaziabad, India, 19-20 March

2015.

[22] Mathijs Jeroen Scheepers, “Virtualization

and Containerization of Application

Infrastructure: A Comparison,” 21st Twente

https://cloud.google.com/containers
https://dzone.com/articles/evolution-of-linux-containers-future
https://dzone.com/articles/evolution-of-linux-containers-future
https://www.ibm.com/cloud/learn/containers
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://www.vmware.com/in/solutions/virtualization.html
https://www.vmware.com/in/solutions/virtualization.html

May-June 2020

ISSN: 0193-4120 Page No. 3779-3787

3787

Published by: The Mattingley Publishing Co., Inc.

Student Conference on IT, June 23rd, 2014,

Enschede, The Netherlands.

[23] Carlos de Alfonso, Amanda Calatrava,

Germ´an Molt´ o,”Container-based Virtual

Elastic Clusters,” The Journal of Systems &

Software, Jan 2017

[24] https://devopscon.io/blog/docker/docker-vs-

virtual-machine-where-are-the-differences/

[25] Claus Pahl, “Containerization and the PaaS

Cloud, ” IEEE Cloud Computing , Vol. 2,

no. 3, pp. 24-31, July 2015

[26] https://docs.docker.com/ee/

[27] Di Liu and Libin Zhao, “ The Research and

Implementation of Cloud Computing

Platform Based on Docker,” 2014 11th

International Computer Conference on

Wavelet Actiev Media Technology and

Information Processing, Chengdu, China, 19-

21 Dec 2014

[28] Moustafa Abdelbaky, Javier Diaz-Montes ,

Manish Parashar , Merve Unuvar and

Malgorzara Steinder, “Docker Containers

across Multiple Clouds and Data Centers,”

2015 IEEE/ACM 8th International

Conference on Utility and Cloud Computing

(UCC), Limassol, Cyprus, 7-10 Dec. 2015

[29] Nitin Naik, “Building A Virtual System of

Systems Using Docker Swarm in Multiple

Clouds,” 2016 IEEE International

Symposium on Systems Engineering (ISSE),

Edinburgh, UK, 3-5 Oct. 2016

[30] James Hadley, Yehia Elkhatib, Gordon Blair,

and Utz Roedig , “MultiBox: Lightweight

Containers for Vendor-Independent Multi-

cloudDeployments” , Proceeding of

Embracing Global Computing in Emerging

Economies,pp. 79-90, Nov 2015

https://devopscon.io/blog/docker/docker-vs-virtual-machine-where-are-the-differences/
https://devopscon.io/blog/docker/docker-vs-virtual-machine-where-are-the-differences/

