
May - June 2020

ISSN: 0193-4120 Page No. 3511-3520

3511 Published by: The Mattingley Publishing Co., Inc.

Securing Homogeneous Big Data Using

Augmented and Light-Weighted

Homomorphic Encryption Scheme

1
D.Anuradha,

2
S.Bhuvaneswari

1
Part Time Research Scholar, Department of Computer Science

Pondicherry University-Karaikal Campus
2
Registrar, Central University of Tamilnadu, Thiruvarur

1
anuradha.d@vit.ac.in,

2
sbhuvaneswari@cutn.ac.in

Article Info

Volume 83

Page Number: 3511-3520

Publication Issue:

May - June 2020

Article History

Article Received: 19 August 2019

Revised: 27 November 2019

Accepted: 29 January 2020

Publication: 12 May 2020

Abstract

As the business and scientific data size grows faster in tremendous rate,

big data would be the choice for the storage and management of the data.

Big data analytics improves the corporate revenues and customer

satisfaction. Also, big data analytics helps governments to plan people

welfare schemes effectively. But sharing sensitive data among data

analysts may lead to data privacy leakage in some cases. Homomorphic

class of encryption schemes allow us to do mathematical calculations on

encrypted data and the results can be used for analysis purposes

meaningfully. But the existing homomorphic algorithms are relatively

expensive in terms of complexity and runtime if used for big data. A new

augmented homomorphic encryption algorithm, which is light-weighted

when compared with other traditional algorithms is proposed in this

work. Even though this design is light-weighted, it is robust against

cryptanalysis, as this new algorithm produce different cipher for same

message at different occurrences in a data block. A new method to

transform different ciphers of the same message into a cipher, which is

very useful for map-reduce operation.is also proposed here.Java

programs are tested in HDFC-Hive environment and the results obtained

shows that my algorithms are faster than other existing homomorphic

algorithms.

Keywords: Big data security, homomorphic encryption, Transform for

Map-Reduce, HDFS, Hive.

1. Introduction

Big data refers to very large data sets collected from wide

range of data sources which is impossible to handle with

traditional database software and frameworks [1]. In

recent years business data analysis started playing a vital

role in the growth of corporates around the globe [2].

Both the secure data management issues and value of big

data become the new era of research. The increase of

sensitive data leakage will help the hackers to infringe the

data privacy of legitimate users. If he data privacy

threshold decrease, the private data of users may be

poisoned. Data may lose its credibility if it is tempered by

illegal access, such as modifying review information in

review web sites. Any strong authentication system may

be breached by a new emerging illegal intrusion method,

as the hacking technology is developing too fast. Since

big data deals with unstructured heterogeneous types of

data, implementing efficient access control policies may

fail at some extent [3]. Almost all these flaws of big data

can be fixed by encrypting the data before further

handling. Since the rate of data growth is increasing

rapidly for every second of time, the encryption of big

data would consume considerable amount of time and

resources. Also, the analysis of big data usually require

sensitive data and their computation results. Not all the

big data analyst are trustable. So, it would be very

mailto:anuradha.d@vit.ac.in
mailto:sbhuvaneswari@cutn.ac.in

May - June 2020

ISSN: 0193-4120 Page No. 3511-3520

3512

Published by: The Mattingley Publishing Co., Inc.

convenient to employ an encryption scheme which allow

users to do computations on encrypted data itself. The

results thus obtained can be decrypted to get the original

results. Homomorphic class of encryption algorithms

provide us the ability to do the same.

Proposal of anew augmented homomorphic

encryption technique, which is light-weighted and

deterministic over the mathematical operations addition,

subtraction, and multiplication of text data is done here.

This paper consists of the following sections. The

second section describes the other related research works

done in the field of big data encryption and security.The

third section presents the discussion about the

fundamentals of homomorphic encryption techniques and

four popular homomorphic algorithms such Goldwasser-

Micali encryption, ElGamal encryption, Paillier

encryption and Boneh-Goh-NissimEncrytion algorithms

are reviewed. The fourth section includes the proposal of

new, augmented and light-weighted homomorphic

encryption scheme with detailed description ofalgorithms

for generating keys, encrypting data, decrypting cipher,

and transform procedure (which is needed for map-reduce

process of big data). The above sited three algorithms

(Goldwasser-Micali, ElGamal, and Paillier encryption

algorithms) are selected for performance comparison with

new proposed algorithm.

The experimental setup used to test the algorithms is

discussed in section five. Based on the results obtained

analysis is done and reports are given in section six. The

final conclusions are cited in section seven. The last

section includes the references used for this work.

2. Related works

A. Hybrid Attribute Based Encryption

In 2005, A. Sahai, and B. Waters [4] introduced

Attribute-Based-Encryption(ABE). In their work

information security and data access control are

implemented by providing various encryption methods

for different user categories. Users and their roles are

dynamically changing over time. Other revocation

methods of ABE deals with decrypting the whole data

and encrypting again with new ABE key. In hybrid ABE

scheme, data is encrypted using Advanced Encryption

Standard (AES) and the AES keys are encrypted using

ABE. At the time of revocation of users, it‟s enough to

change the ABE cipher text i.e AES key and re-encrypt

the data with the new AES key without decryption. But

this process needs the entire data on the client (Data

owner) side. The process of download, re-encrypt, and

uploading data back to the store incur a huge cost of

communication depending upon the size of the data.

A proxy re-encryption method is proposed by

Yoshiko Yasumura et.al [5], in which the data could be

encrypted again in the cloud server at revocation of

rights. This will reduce the overhead of communication

between data owner and cloud server without

downloading. The proxy encryption scheme given in

figure 1 below,employs a hybrid of AES and ABE. The

data owner may wish to change the userrights by

revoking some of the users at any time.

Figure 1: Proxy re-encryption protocol

At this point of time the data owner generates a new

AES key and it was encrypted using ABE. Also a new re-

encryption key (re-key) is generated using the old and

new AES keys is generated by the data owner. Only the

re-key and the cipher text of new AES key encrypted

using ABE are sent to cloud server. At the cloud server,

the encrypted data (using old AES key) is again

encrypted with the re-key and the cipher text of old AES

key encrypted using ABE is replaced with the cipher text

of new AES key encrypted with ABE

So, the revoked users are not aware of the new AES

key, that they cannot unpack the new AES key. Hence

they cannot decrypt the data which was encrypted

twice.This scheme greatly reduce the data traffic over

network and also efficient in implementing access

control. But the computation overhead of the proxy cloud

server is increased as the re-encryption is to be done on

entire data.

B. HDFS Data Encryption Scheme

Even though big data researchers believe that AES is the

standard encryption algorithm for securing big data,

Korean government have chosen ARIA algorithm for

domestic data security. S. Parket. Al [6] developed a

scheme which uses the AES using Split-able

Compression Codec for encrypting HDFS data. The

widely used AES algorithm [7,8] is known as symmetric

key encryption algorithm and it was announced by US

National Institute of Standards and Technology (NIST) –

a non-regulatory US agency [9]. As the cryptographic

algorithms involve highly complex mathematical

computations, variouscorporate companies and

government entities trust NIST recommendations on best

cryptography. The ARIA algorithm [10,11]is commonly

used for domestic purposes as Korean government found

it as a best cryptographic algorithm. ARIA performs data

encryption on data blocks of size 128-bit and uses key

with 128/192/256 bit size. It supports 12/14/16 rounds of

bit-wise operations such as XOR.

May - June 2020

ISSN: 0193-4120 Page No. 3511-3520

3513

Published by: The Mattingley Publishing Co., Inc.

Table 1: Comparison between AES and ARIA algorithms

 AES ARIA

Year 1999 2004

Authorizing

entity
NIST NSRI

Attribute

Domestic and

international

cryptography

system

Alternative to

AES in

domestic

applications

Service
National and

private
Administrative

In their work, Y.Song et.al [12] both AES and ARIA

algorithms are used in HDFS encryption. Figure 2

describes the architecture of the encryption process. The

user choses the encryption algorithm either AES or

ARIA. First the data is split into 64-

Figure 2: Architecture of HDFS encryption scheme

MB blocks. The module which is responsible for

making all the data blocks are of same size, appends

dummy data to the small data blocks. Each block is

encrypted using the chosen encryption algorithm. The

cipher blocks are mapped and merged together using

Map-Reduce process to store in HDFS.

During the Map-Reduce process data need to be

decrypted and encrypted again before storing in HDFS. If

the data is very sensitive, decryption-encryption process

is done for both Map and reduce operations separately. It

has been proved that cost of encryption and decryption

had a less dependency on data size in HDFS. ARIA based

encryption can support various applications shows better

performance when compared to AES based encryption in

query processing.

C. BigCrypt Encryption Scheme for Big Data [13]

It is a probablistic encryption methodusing Preety Good

Privacy (PGP) technique for encrypting big data, where

both asymmetric and symmetric encryption algorithms

are used. 80% of the typical victim of identity stealing are

failed to detect the trap of stealing password and it was

made easy to make unauthorized entry to databases or

hijack the victim website[14]. A.A.Mamunet et. al.[13]

presented a new encryption scheme using RSA (Rivest–

Shamir–Adleman) [15] and Rijndael [16] for big data

encryption.

NIST specifies three asymmetric ciphers RSA, DSA

(Digital Signature Algorithm), and ECDSA (Elliptic

Curve Digital Signature Algorithm)[9]. ECDSA is

comparatively a new one and the other two algorithms are

standard algorithms. RSA is preferred over DSA, since

RSA allows us to use large keys. Rijndael encryption

algorithm is preferred over the old DES by NIST in 2001

itself.

The BigCrypt scheme is shown below in figure 3.

Receiver generates the required keys for RSA cipher and

sends only the public key to the sender. The senderr can

generate the Rijndael encryption key for data encryption.

First the data is encrypted using Rijndael algorithm with a

symmetric key. This cipher text is appended with its

symmetric key, which is a cipher produced by RSA with

its public key of the receiver.

The receiver seggregates the cipherr of the

symmetric key and decrypts it using his/her private key of

RSA. Using the decrypted symmetric key the cipher text

is decrypted to get the original data back.This cipher

scheme is tested in three different computing

environments using a local Ubuntu server, an Apache

web server and a MS Azure Linux SUSE cloud server.

The test data set sizes varies from 100MB to 2GB. The

tests are repeated using two different key lengths and the

average values of each case are taken for conclusion.

Local server has taken comparatively very less time for

executing the algorithms in almost all the test cases. But

when the data size increases the cloud server gave good

performance when compared other two servers.

Figure 3: BigCrypt scheme

3. Homomorphic Encryption Schemes[17]

Encryption of data can be defined as the procedure of

obscuring private data to make it indecipherable to people

who are not intended users. Abstract algebra defines the

May - June 2020

ISSN: 0193-4120 Page No. 3511-3520

3514

Published by: The Mattingley Publishing Co., Inc.

homomorphic property as the structure-preserving map

between two algebraic structures. Homomorphic

encryption has the property that, performing a

computation on two values, (say „a‟ and „b‟) and

encrypting the result is same as the result obtained by

applying the same computation on the encrypted values

of „a‟ and „b‟.Hence, it decouples the ability to perform

computations from the necessity to view the private data.

A. Goldwasser-Micali Encryption Scheme [18]

It is the first probabilistic homomorphic PKIestablished

by ShafiGoldwasser and Silvio Micali in 1982. It produce

cipher text which is few hundred times larger than the

plain text. Hence this algorithm could not be used in

applications. Goldwasser-Micali Encryption Scheme first

decides a whether the chosenrandom value x is a square

mod N, chosen to be the private key and N=p*q. The

procedure for checking the square modulus is as follows:

 Key generation

The sender selects two big prime numbers p, q randomly

and independent to each otheri.e. p=q=3(mod4), and

computes N as (p*q). The sender finds a non-residue „a‟

as follows:

Then (a,N) is assumed to be the public key and (p,q) is

private key for this cryptosystem.

 Encryption

For each and every bit „mi‟ in message „m‟ a random

value „bi‟ is generated i.e.GCD(bi,N) =1. Using the public

key the cipher is computed as ci = bi
2

 .a
m

i (mod N). The

cipher text c= (c1,c2, … , cn) is thus form for the message

m = (m1,m2, ,,, ,mn), where n is the bit count of message

„m‟.

 Decryption

Upon receiving the cipher text „c‟, the receiver

determines whether each bit ci in „c‟is a quadratic residue

of mod N or not. If so then mi is 0 otherwise mi is 1. Thus

the message is reconstructed in decryption as follows:

B. ElGamal Encryption Scheme [19]

It‟s anasymmetric key encryption designed by Taher

ElGamal in 1985, which uses Diffee-Hellman key

exchange scheme. It is used in GNU Privacy Guard

software, new editions of PGP, and few other ciphers.

 Key generation

A cyclic group G is precisely chosen by the sender with

an order q and generator g such that Gq: g
q
 = I, where I is

an identity element of G with the defined operation. A

random x belongs to the set {1,2,…,(q-1)} is selected and

a value „y‟ is computed as y = g
x
. The set {(G,q,g), y} is

made public and {x} is kept as the private key.

 Encryption

The sender choses a random r ∈ {1,2, … , q-1} to

calculate the first half of the cipher C1 = g
r
and a secret

key S = y
r
(using the public key). Now, the message m is

converted into another element m‟ in the group Gq. the

second half of the cipher is calculated as C2 = m‟ * S.

The cipher text (C1,C2) = {g
r
, m‟ * S} is sent to receiver.

 Decryption

The decryption the cipher text (C1,C2) with the secret

key {x}, the receiver compute a value t = C1
x
. Now, m`

can be extracted from the encrypted dataas follows:

C2 = m` * S = m‟ * y
r
[⸪ S = y

r
]

C2 = m` * g
x*r

 [⸪ y = g
x
] and

C1
x
 = g

x*r

To find m`,

m` = C2/C1 = m` * g
x*r

/ g
x*r

After m` is extracted from the cipher, the receiver

converts m‟ in group Gq back to the original message m.

C. Paillier Encryption [20]

This is also a homomorphic public key cryptosystem,

proposed by Pascal Paillier in 1999. The core logic of this

encryption scheme is how to manage the residue in each

calculation.

 Key Generation

Two big prime numbers p, q i.e.GCD(pq, (p-1)*(q-1)) =

1are chosen and the following computations are made:

The sets {n, g} and {λ, µ}are assumed to be public

and private keys, respectively.

 Encryption

Let m ∈ Zn be the plain text and chose a random r∈ to

compute the cipher c = g
m

 * r
n
(mod n

2
). The

cipher c is sent to receiver.

 Decryption

Upon receiving the cipher c, the receiver calculates the

original message m as follows:

May - June 2020

ISSN: 0193-4120 Page No. 3511-3520

3515

Published by: The Mattingley Publishing Co., Inc.

D. Boneh-Goh-NissimEncrytion Scheme [21]

Boneh – Goh-Nissim cryptosystem resembles mainly

Paillier encryption algorithm and it allows addition and

multiplication with constant size cipher text. This

algorithm takes the data domain as two additive groups

G1 and G2 and a multiplicative group GT with order „p‟

for all the groups. Let P ∈ G1be the generator of the

groups G1and Q ∈ G2 be the generator of the group G2.

Device a pairing map e: G1 X G2 → GT, which hold good

for the following:

 Key generation

For a random data security factor λ ∈ Z
+
, a record is

generated. It consists of the following:

Choose two generators g, u, randomly from G to compute

h = u
q

2. The public key is formed as the set {N, G, G1, e,

g, h} and the set {q1} is assumed as the private key.

 Encryption

Let m ∈{0, 1, 2, … , t}, t<q2and choose an integer „r‟

from {1,2, … ,N} to compute the cipher text c = g
m
 * h

r∈

G.

 Decryption

Using the key q1 the plain text m can be computed from

cipher as follows:

 c
q
1 = (g

m
 * h

r
)

 q
1

 = (g
m
 * u

rq
2)

 q
1

 = (g

 q
1

m
 * u

rq
1

 q
2)

 = g
q
1

m
 [u - generator of G]

Since, c
q

1 = g
 q

1
m
, by finding the discrete logarithm of

c
q

1 to the base of g
 q

1, message m can be extracted.

4. Augmented Homomorphic Encryption

There are two data groups (Ĝ, ѳ) and (Ĥ, ϕ)[17]. The

homomorphic property for groups from (Ĝ, ѳ) to (Ĥ, ϕ) is

defined as a function f: Ĝ Ĥ, i.e. for all „g‟ and „h‟ in

Ĝ it is true that f(g ѳ h) = f(g) ϕ f(h). Let (Pl, Ci, K, En,

De) be the cryptography system, where Pl and Ci are the

plain test space and cipher text space respectively, K is

the symmetric or asymmetric key space, “En” is the

encryption algorithm to be used, and “De” is the

decryption algorithm. In this work it is assumed that the

plain text form the group (Pl, ѳ) space and cipher text

forms the group (Ci, ϕ). The algorithm En is a mapping

from Pl to Ci, i.e, En(k) : Pl Ci, where k ∈ K and k can

be either secret key or public key. The homomorphic

property of my proposed algorithm is stated as follows:

In this design it is assumed that ѳ = ϕ. The operations that

satisfied the above relations are addition, subtraction, and

multiplication.

A. Key generation

The key used in this design is prepared using the first

algorithm given below. The algorithm Key-Generator

selects two large and random prime numbers A ∈ Z
*
 and

B ∈ Z
*
 upon four criteria. The product of A and B is

calculated. A homomorphic factor λ is prepared by

finding out the LCM ((A-1),(B-1))

The set k = {A, λ, P} forms the key for the new

proposed cryptosystem.

B. Encryption

The data to be encrypted in big data could be ofany

format, i.e. structured, unstructured, or semi-structured

data. Each data element from the big data file is first

converted into numerical equivalent form. Let the data is

„M‟. The encryption of „M‟ (denoted as „C‟) is given in

the second algorithm.

The encrypted data „C‟ is stored in big data centres

and made available for trusted and authenticated using

multi-factor authentication users. Users may save the

result of their computation on „C‟ back into the storage.

The data owners and/or the trusted users can decrypt

the data if required. The encryption procedure is

described pictorially in figure 4.

May - June 2020

ISSN: 0193-4120 Page No. 3511-3520

3516

Published by: The Mattingley Publishing Co., Inc.

Figure 4: Proposed Encryption Scheme

C. Decryption

The data stored by the data owner can be retrieved back

by decrypting „C‟ to get the numerical form of the

original data

Design of the decryptionprocess is given in

Algorithm3. The decryption process can be described in

figure 5.

Figure 5: Proposed Decryption Scheme

D. Proof of Correctness

The homomorphism of my algorithm can be proved as

follows:Let m1 and m2 be the two plain text messages to

be encrypted. When encryption algorithm is applied on

messages m1 and m2, two ciphers c1 and c2 will be

obtained.

Proof for addition operation

Decrypting the ciphers,

Proof for subtraction operation

Decrypting the ciphers,

Proof for multiplication operation

Decrypting the ciphers,

E. Transform (for Map-Reduce)

Same message can appear at different locations in the

input plain text. In this case the encryption algorithm will

produce different ciphers for the same message as

follows:

May - June 2020

ISSN: 0193-4120 Page No. 3511-3520

3517

Published by: The Mattingley Publishing Co., Inc.

Let‟s assume a message m is repeated at two

locations in the plain text. The first encryption of m

yields c1 (m +A* (γ1)
λ
) mod P. The next encryption

produces c2 (m + A * (γ2)
λ
) mod P. this is the one of

the advantages of my cryptosystem, as cryptanalysis will

be very hard and in some cases it‟s impossible.

Figure 6: Transform operation

But when this new proposed cryptosystem to be used

with Map-Reduce technique to handle big data, we need

same cipher for all same valued plain text. To address this

problem, a new Transform algorithm is formed, which

will transform the different ciphers c1 and c2 of same

message m into a new value c*. The algorithm works as

follows:

Figure 6 describes the functionality of the transform

algorithm. Now, c* can be used to map the same

messages into the same cluster of any big data storage

such as HDFS.

Proof of Transform operation

For a message m, assume two ciphers are computed as,

Now, applying the transform algorithm will yield a new

value c* in both the cases as follows:

Proof is needed that if c1 and c2 were computed from

same message m, then c1
*
 = c2

*
. Since there is only one

message m,

So, if two messages m1=m2, then c1
*
 = c2

*

5. Experimental Setup

The experiments were carried out in Hadoop-HDFS

system, version 2.7.2. The Apache Hadoop [22] is an

open-source software framework for reliable, scalable,

and dispersed computing for big data stored in numerous

data cluster at different physical locations. Hadoop

Distributed File System (HDFS) is anextremelyfault

tolerant system, which can be deployed on low-cost

hardware. It has master-slave architecture, in which a

single „Name node‟ and many „Data nodes‟ are existing.

The Name node is the master server and the data nodes

manage the data storage in the clusters. The architecture

of the HDFS is given below.

Figure 7: HDFS Architecture

In this work, a HDFS cluster setup is formed, where

a name node and three data nodes are createdwith their IP

addresses.The block size of the data nodes are set to

512MB. All the five systems are interconnected in LAN.

The specifications of the four systems are given below.

Processor Intel Xeon – 4 core

Speed 3.3 GHz

OS Ubuntu14 – 64bits

Memory 4GB

Storage 500GB

Hive2.3.4is used to manage the data stored in HDFS

clusters. Hive [23] is a data ware house infrastructure that

provides facilities to read data, write data and other data

manipulations using SQL queries. It‟s a distributed

computing system, where the algorithms are executed in

parallel in all the three data nodes.

Four different data sets are taken for testing purpose,

whose sizes are 125M, 512M, 1GB, and 2GB.

Experiments are repeated by changing the key (A and B)

sizes as 256bit and 512bit.We have implemented the

algorithms in Java, and used jdk1.8 and Eclipse 3.8.1 for

executing the algorithms. Each test is done for six times

and the average values are listed here.The time taken for

May - June 2020

ISSN: 0193-4120 Page No. 3511-3520

3518

Published by: The Mattingley Publishing Co., Inc.

encryption for all combination of key sizes and data sets

in four data nodes are given in tables 1.Similarly, the time

taken for decryption operation is also recorded in table2.

Table 1: Execution time for encryption

 125M 512M 1GB 2GB

256 bit Key Gold-Wasser
82.5 320.5 325.5 580.5

ElGamal 70 280.5 281.1667 557.1667

Paillier 75 290 287 562.6667

Proposed

algorithm 68 270.3333 272 545.3333

512 bit Key Gold-Wasser
83.33333 323.1667 327 585.3333

ElGamal 71.66667 283.1667 285.3333 560.5

Paillier 78 295 289 565.1667

Proposed

algorithm 69 272 275 547.5

Table 2: Execution time for decryption

 125M 512M 1GB 2GB

256 bit Key Gold-Wasser
72 268 271 499

ElGamal 63 245.3333 244 486

Paillier 67.5 252.1667 257 491.6667

Proposed

algorithm 60.66667 240.6667 241.1667 481

512 bit Key Gold-Wasser
75 271.8333 275 502.1667

ElGamal 65.16667 246.3333 247 489.1667

Paillier 68 253.1667 258.5 495.1667

Proposed

algorithm 62.16667 241.3333 242.6667 485.5

6. System Analysis

We have chosen Goldwasser-Micali encryption system,

ElGamal encryption system and Paillier encryption

system for comparing with the proposed algorithm in

performance.We have used jdk1.8 and Python3.2.7 in

Eclipse3.8.1 IDE for executing the algorithms. To

execute python implementation of Goldwasser-Micali

encryption algorithm pydev plugin tool is installed in

Eclipse3.8.1 IDE. All other three algorithms are in

Java.The time taken for generating key is ignored as it is

very negligible. The execution time taken for encryption

and decryption algorithms are measured as performance

in the evaluation.

All the four algorithms are executed by varying the

input data se sizes and key sizes and time taken for

encryption and decryption methods are listed in table 1

and 2. Each test is repeated for six times and the average

value is taken. The graphs drawn for comparison of four

algorithms shows the performance differences between

proposed algorithm and all the other three algorithms.

The comparison of encryption runtimes of the four

algorithms for the key size 256bit is shown as graph in

figure 8. In all the graphs given here, the X axis is

represents the different test data block sizes and the Y

axis represents the run time in seconds. The encryption

runtimes using 512bit key size is displayed in figure 9.

The figures 10 and 11 describe the comparisons for

decryption runtimes using key sizes 256bit and 512bit

respectively.

Figure 8: Comparison of Encryption runtimes with

256bit key

May - June 2020

ISSN: 0193-4120 Page No. 3511-3520

3519

Published by: The Mattingley Publishing Co., Inc.

Figure 9: Comparison of Encryption runtimes with

512bit key

Figure 10: Comparison of Decryption runtimes with

256bit key

Figure 11: Comparison of Decryption runtimes with

512bit key

While the performance of all the four algorithms are

examined, it was inferred that ouralgorithm shown best

performance by consuming less time for encryption and

decryption when compared to other three algorithms. This

is because of the reason that the new proposed algorithm

is relatively light-weighted when considering other three

algorithms. At the same time ouralgorithms show their

robustness towards cryptanalysis for diagnosing the plain

text by analysing cipher text. Breaking our cipher has

become very hard and impossible in some cases, as

ourencryption algorithm produces different cipher text for

the same plain text at different times. Also, if the key size

is increased, the robustness of this cryptosystem will still

be improved.

7. Conclusion

We have proposed new augmented, light-weighted,

homomorphic cryptosystem for big data. The new

proposed algorithm is proved to be homomorphic over

addition, subtraction and multiplication operations.

Evaluation of the new proposed algorithms are done by

repeating experiments using four different data sizes and

two key sizes. A fair comparison is done between my

algorithm with Goldwasser-Micali, ElGamaland Paillier

cryptosystems. From the test results, it can easily be

realized that our algorithms showed better performance

among the other algorithms as this new algorithm we

developed is relatively light-weighted, but still robust

towards cryptanalysis.

A vision of adding an efficient multilevel user

authentication mechanism using graphical password and

biometric images for analysing big data is under design

stage.

8. Acknowledgment

We wholeheartedly thank VIT, Vellore, Tamilnadu, India

for providing us the required lab facilities to carry out the

experiments.

References

[1] Sharma, S. Rise of Big Data and related issues.

In Proceedings of the 2015 Annual IEEE India

Conference (INDICON), New Delhi, India, 17–

20 December 2015; pp. 1–6.

[2] Eynon, R. The rise of Big Data: What does it

mean for education, technology, and media

research? Learn. Media Technol. 2013, 38, 237–

240.

[3] Gang Zeng, “Big Data and Information

Security”, International Journal of

Computational Engineering Research (IJCER),

ISSN (e): 2250 – 3005, Volume, 05, Issue, 06,

June – 2015|

[4] A. Sahai, and B. Waters, "Fuzzy identity-based

encryption," Advances in Cryptology–

EUROCRYPT 2005, LNCS, vol. 3494, pp. 457-

473, 2005.

[5] Yoshiko Yasumura, Hiroki Imabayashi,

HayatoYamana, “Attribute-based Proxy Re-

encryption Method for Revocation in Cloud

Data Storage”, 2017 IEEE International

Conference on Big Data (BIGDATA)

[6] Seonyoung Park and Youngseok Lee, “A

Performance Analysis of Encryption in HDFS,”

May - June 2020

ISSN: 0193-4120 Page No. 3511-3520

3520

Published by: The Mattingley Publishing Co., Inc.

Journal of KISS: Databases, Vol.41, Issue.1,

2014, pp.21-27

[7] Byeong-yoon Choi. “Design of Cryptographic

Processor for AES Rijndael Algorithm,” The

Journal of The Korean Institute of

Communication Sciences, Vol.26, Issue.10,

2001, pp.1491-1500

[8] Yong Kuk Cho, Jung Hwan Song, and Sung

Woo Kang, “Criteria for Evaluating

Cryptographic Algorithms based on Statistical

Testing of Randomness,” Journal of the Korea

Institute of Information Security and

Cryptology, Vol.11, Issue.6,2001,pp.67-76.

[9] N. I. of Standards and Technology,

“STANDARDS AND GUIDELINES TESTED

UNDER THE CAVP),”

http://csrc.nist.gov/groups/STM/cavp/standards.

html/.

[10] ARIA Development Team, Block Encryption

Algorithm ARIA [Internet],

http://glukjeoluk.tistory.com/attachment/ok1100

00000002.pdf.

[11] Korea Internet & Security Agency, ARIA

specification [Internet],

http://seed.kisa.or.kr/iwt/ko/bbs/EgovReference

Detail.do?bbsId=BBSM

STR_000000000002&nttId=39&pageIndex=1&

searchCnd=&searchWrd =.

[12] Youngho Song, Young-Sung Shin, Miyoung

Jang, Jae-Woo Chang, Design and

Implementation of HDFS Data Encryption

Scheme using ARIA Algorithm on Hadoop,

IEEE BigComp, 2017

[13] Abdullah Al Mamun, Khaled Salah, Somaya Al-

maadeed, and Tarek R. Sheltami, BigCrypt for

Big Data Encryption, Fourth International

Conference on Software Defined Systems

(SDS), 2017

[14] C. SANTA CLARA, “Success of phishing

attacks with 80 percent of business users unable

to detect scams,”

http://www.mcafee.com/us/about/news/2014/q3/

20140904-01.aspx”, September 4, 2014.

[15] Wikipedia, “RSA (cryptosystem),”

http://en.wikipedia.org/wiki, 2015, [Online;

accessed 14-April-2015].

[16] J. Daemen and V. Rijmen, The design of

Rijndael: AES-the advanced encryption

standard. Springer Science & Business Media,

2002.

[17] X. Yi et al., Homomorphic Encryption and

Applications, Springer Briefs in Computer

Science, DOI 10.1007/978-3-319-12229-8__2

[18] S. Goldwasser, S. Micali, “Probabilistic

encryption and how to play mental poker

keeping secret all partial information”, in

Proceedings of 14th Symposium on Theory of

Computing, 1982, pp. 365–377

[19] T. ElGamal, A public-key cryptosystem and a

signature scheme based on discrete logarithms.

IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

[20] P. Paillier, Public key cryptosystems based on

composite degree residue classes, Proceedings of

Advances in Cryptology, EUROCRYPT‟99,

1999, pp. 223–238

[21] D. Boneh, E. Goh, K. Nissim, Evaluating 2-DNF

formulas on cipher texts, in Proceedings of

Theory of Cryptography, TCC‟05, 2005, pp.

325–341

[22] https://hadoop.apache.org/

[23] https://hive.apache.org/

http://csrc.nist.gov/groups/STM/cavp/standards.html/
http://csrc.nist.gov/groups/STM/cavp/standards.html/
http://glukjeoluk.tistory.com/attachment/ok110000000002.pdf
http://glukjeoluk.tistory.com/attachment/ok110000000002.pdf
http://seed.kisa.or.kr/iwt/ko/
http://www.mcafee.com/us/about/
https://hadoop.apache.org/
https://hive.apache.org/

