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Abstract: 

Embedded systems have become an essential part of everyday life, and are widely used 

worldwide. Embedded systems must be cost effective, and memory occupies a 

substantial portion of the entire system. The complexity and performance requirements 

for embedded programs grow rapidly. Thus, reducing the code size and providing a 

simple decompression engine are both challenges when applying code compression to 

embedded systems. Memory plays a crucial role in designing embedded systems. 

Embedded systems are constrained by the available memory. A larger memory can 

accommodate more and large applications but increases cost, area, as well as energy 

requirements. Code-compression techniques address this issue by reducing the code 

size of application programs. It is a major challenge to develop an efficient code-

compression technique that can generate substantial reduction in code size without 

affecting the overall system performance. We present an efficient code-compression 

technique, which significantly improves the compression ratio. 
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Table 

  
 

1. Introduction 

With the exponential growth of the number of 

interconnected computing platforms, computer 

security has become a critical issue. The utmost 

importance of system security is further 

underscored by the Expected proliferation of 

diverse Internet enabled embedded systems ranging 

from home appliances, cars, and sensor networks to 

personal health monitoring devices. Moreover, as 

capabilities of embedded processors increase, the 

applications running on these systems also grow in 

size and complexity, and so does the number of 

security vulnerabilities.  

2. Code Size and RISC Processors 

The high performance RISC processors are widely 

used as embedded processors. The RISC processors 

tend to decrease and simplify the hardware 

electronics of a processor on a single chip. Because 

of its effect on code size, it enabled RISC processor 

for embedded systems. A comparison [1] of 

distribution of Arithmetic/logic instructions and 

data transfer instructions for two benchmark 

programs on VAX and MIPS is shown in Table 1. 

The VAX is a popular CISC processor and MIPS 

are a popular RISC processor. The 50% to 133% 

increase in data transfer instructions for the MIPS, 

compared to the VAX, is due to use of several load 

and store instructions in MIPS. This „code size 

bloating‟ problem of RISC processors is depicted in 

[2] which compares the object code size of an 

MPEG2 encoder compiled on multiple processors 

of different architectures. The RISC processors 

ARM Thumb and SHARC need 68.2 kB and 106.2 

kB respectively. 

 Attacks that impair code integrity by injecting and 

executing malicious code are one of the major 

security issues. A common method for code 
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compression is the Compressed Code RISC 

Processor (CCRP), which is show in figure-1. 

 

 
Figure.1. Compressed Code RISC Processor 

 

It breaks the program into blocks of n, where n 

corresponds to the cache line size.Each block is 

compressed individually by a suitable algorithm. 

Line Address Table (LAT) is used to compress 

cache line within the compressed program. Cache 

Look aside Buffer (CLB) is added to alleviate LAT 

lookup cost. During program execution, upon each 

cache miss, LAT entry cached used to calculate the 

compressed Cache Line Address (CLA).[1] The 

compressed cache line is then fetched from 

memory, decompressed, and placed into the 

instruction cache. 

 

3. Modification of the Processor 

 

We consider a 64-bit simple scalar instruction set, 

which is similar to MIPS .We assume a simple 5-

stage pipeline processor for ease of discussion. In 

order to compress the instruction cache, 

decompression must be done after the cache [2]. 

Therefore the CPU must now be modified to 

include 2 additional functions. Address translation 

from the uncompressed version to the compressed 

(CLB). 

 

3.1. Instruction Decompression (DEC) 

 

These 2 additional sections are added to the usual 5-

stage pipeline as shown in figure 2. 

 
 

 

The CLB section implements address translation 

from the uncompressed version to the compressed 

version for each instruction and DEC implements 

Instruction Decompression. [3]The Instruction 

Fetch (IF) stage will now fetch the compressed 

instruction instead of the uncompressed instruction. 

The stage length for CLB and DEC are both 

dependent on the compression algorithm. The 

additional CLB and DEC sections are both before 

the Instruction Decode (ID) stage.[4] Thus stages 

within these sections will add to branch penalty. In 

addition, these penalties cannot be reduced by 

branch prediction since they are before the ID stage, 

where instruction opcode is first being identified. 

 

3.2. Compression Algorithm 

Problems: Compression algorithm used must have 

simple CLB and DEC sections, or it will lead to 

large branch penalty. [5]The problems we face with 

the usual CCRP compression algorithm that 

compresses serially within the block, byte wise are 

for a 64-bit instruction, we require 8 DEC stages to 

decompress. 

 

3.3Granularity of Random Access 

 

With CCRP, random access is only at block level. If 

the program counter jumps from one compressed 

block to another and it is the very last instruction in 

the block that it is jumping to, then all instructions 

within the block must be decompressed before the 

actual instruction will be fetched. This will lead to 

additional stages of delay. 

Modified Algorithm: We devise such an 

algorithm. It can be thought of as a binary Huffman 
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with only two compressed symbol lengths, but due 

to its similarity to table lookup we refer to it as 

Table. It uses 4 tables, each with 256, 16-bit entries. 

[6] Each 64-bit instruction is compressed 

individually as follow: 

Divide the 64-bit instruction into 4 sections of 16-

bit.Search content of table 1 for section 1 of the 

instruction. If found, record the entry number. 

Repeat Step (ii) for section 2 with table 2 and so on 

with remaining sections. If entry number in the 

corresponding table replaces all the sections, then 

the instruction is compressed. Otherwise, the 

instruction remains uncompressed. A 96-bit LAT 

entry tracks every 64 instructions. 32-bits equal the 

compressed address. The rest of 64 bits are on or off 

depending on whether the corresponding instruction 

is compressed or not. Since this method tracts each 

instruction individually, the inter-block jump 

problem is gone.[7] For the DEC section, 

decompression is either nothing or 4 table lookups 

in parallel.So one stage is sufficient. For the CLB 

section, it is simply a CLB lookup follow by some 

adding in a tree of adders. This could be done in one 

cycle, with CLB lookup taking half and adding 

taking another half. 

 

Details: With the Table compression algorithm, the 

compressed instructions can be either 4 or 8 byte 

long. This could lead to misalignment problem for 

instruction cache access in case of 8-byte 

instruction. For example, an 8-byte instruction can 

have its first 4 byte in the end of one cache line and 

its last 4 byte in the start of another cache line. This 

result in 2 cache accesses for a single instruction 

fetches. To solve this, instruction cache is divided 

into two banks, with each bank 4-byte wide. The 

first bank is used to store the upper half word of the 

64-bit word. [8] The second bank is used to store 

the lower half. Since every 8-byte instruction must 

have its two 4 byte halves in different banks, simple 

logic can be used to ensure each bank is accessed 

correctly to fetch the instruction in one cycle. The 

determination of the content for the 4 tables is 

critical in achieving a good compression for this 

method. Between the 4 tables, they can keep 256 

power 4, or 4 gig entries of distinct instructions. 

However, for every entry within a table, 256 power 

3, or 16 Meg entries of instructions will take on that 

same section. So it is quantity without quality. 

 
Figure.3. Compression Result for Table 

Compression 

 

3.4.Result for the Modified Algorithm 

 

On average Table can compress to 70% of the 

original size. In comparison to CCRP with Huffman 

byte serial compression at block size of 8, we loose 

about 20% on average. This 20% lost is partly due 

to the smaller granularity of random access we have 

achieved.[9] In general the smaller granularity of 

random access, the less compression will be 

achieved. This can be observed again with result, 

which does not provide any random access. On 

average it compresses to 20% of the original size, 

which is 30% better than CCRP with Huffman. 

 

4. Branch Compensation Cache (BCC) 

Problem: As mentioned earlier, in order to perform 

decompression after instruction cache (between the 

I-cache and the CPU), we add two more stages into 

the pipeline before ID: CLB (Cache Look Aside 

Buffer) and DEC (decompression). As a result, 

branch penalty is increased to three cycles. This is 

illustrated in figure 4. 

 
Figure-4: Increased Branch Penalty 
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Originally, in regular five-stage pipeline, the branch 

penalty is only one stage (IF), but in our seven-stage 

pipeline, the branch penalty increases to three stages 

(CLB, IF, DEC).[10] Obviously it is not good, so 

we need a solution. 

 
Figure-5 Use BCC to Reduce Branch Penalty 

 

Solution: The solution is to add a branch 

compensation cache (BCC) and try to pre-store the 

target instructions there. Whenever we encounter a 

branch (or more precisely, a PC jump), go to the 

BCC and check if the target instruction is there. The 

basic idea is shown in figure 5. 

 

In figure 5, a PC jump is found at the ID stage, so 

we go to check BCC to see if the target instruction 

is pre-stored there. If no, then we have to go 

through CLB, DEC and ID pipeline stages but if 

yes, then we simply fetch it and keep going, no 

branch penalty at all in such case. 

 
Figure-6: BCC Implementation 

 

 

At ID stage we find out a jump instruction being 

taken, so we must flush the current pipeline and 

restart. Figure 6 shows a more detailed pipeline 

implementation, where the key points.[11].The 

restarted pipeline is used to get the target instruction 

through normal stages, i.e. using CLB to get the 

compressed address from the regular address, using 

IF to fetch the decompressed instruction, using DEC 

to decompress it to get target instruction. 

Simultaneously, we also go to the BCC to check if 

the required target instruction is pre-stored there. If 

no, then keep running the restarted pipeline; if yes, 

then we directly fetch the target instruction from 

BCC and flush/restart the pipeline for a 2nd 

time[12]. 

The 2nd restarted pipeline is used to provide the 

sequential instructions after the jump. In order to 

completely eliminate the penalty incurred by a 

jump, we require T, T+8, T+16, T+24 instructions 

are all pre-stored in BCC upon a hit. 

So the 2nd restarted pipeline starts CLB stage with 

T+32 instructions, where T is the target instruction, 

T+8 is the next instruction, and so on. 

 

Result: To quantify the BCC performance, we 

observed several applications such as ijpeg, wave5, 

etc. 

 
Figure-7: BCC Performance 

 

Here the cache block size is kept as 8-byte long, 

while the block number varies from 1, 2, 4, 8, ¼, to 

4096 to give different cache size. Directly mapped 

cache is used and the replacement policy is least 

recently used (LRU). From the observed results we 

can see that for a fairly small branch compensation 

cache (1KB ~ 2KB), the branch penalty is 

significantly reduced, which indicates our approach 
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is very effective.As far as the compressed cache 

performance is considered, compressed cache with 

Table algorithm do outperform uncompressed 

cache, especially within a region of instruction 

cache size where uncompressed cache is getting 

from 10 to 90 % hit rate[13].The improvement 

could go as high as near 40%. This is as expected 

since compressed cache contains more instructions 

and this translates to better hit rate. The reason that 

there is a window of sizes where cache compression 

is more effective is because this is the thrashing 

region and a small increase in cache size could give 

big improvement. 

Compression in cache is like a virtual cache 

increase. For example 70% compression in cache 

could give a cache that is 1.4 times the original 

size.[14] Therefore cache compression is especially 

effective within this thrashing region. So the 

original idea that compressed instruction cache can 

lead to smaller instruction cache is valid. 

 

5. Conclusions 

In addition to real-time requirements, the program 

code size is a critical design factor for real-time 

embedded systems. To take advantage of the code 

size vs. execution time tradeoff provided by reduced 

bit-width instructions, we propose a design 

framework that transforms the system constraints 

into task parameters guaranteeing a set of 

requirements. The goal of our design framework is 

to derive the temporal parameters and the code size 

parameter of each task in such a way that they 

collectively guarantee the system end-to-end timing 

requirements while the system code size is 

minimized. 
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