

May – June 2020

ISSN: 0193-4120 Page No. 1963 - 1967

1963 Published by: The Mattingley Publishing Co., Inc.

Compressed Code for RISC Processor (CCRP) in

Real-Time Embedded Systems

D.Lakshmi Narayana 1*

ResearchScholar,

Sathyabama University,

Chennai,Tamilnadu,India
Lakshman5504@gmail.com

Dr.V.Ganesan 2*

Associate professor,

Sathyabama university,

Chennai,Tamilanadu,India
Vganesh1711@gail.com

Article Info

Volume 83

Page Number: 1963 - 1967

Publication Issue:

May - June 2020

Article History

Article Received: 11August 2019

Revised: 18November 2019

Accepted: 23January 2020

Publication: 10 May2020

Abstract:

Embedded systems have become an essential part of everyday life, and are widely used

worldwide. Embedded systems must be cost effective, and memory occupies a

substantial portion of the entire system. The complexity and performance requirements

for embedded programs grow rapidly. Thus, reducing the code size and providing a

simple decompression engine are both challenges when applying code compression to

embedded systems. Memory plays a crucial role in designing embedded systems.

Embedded systems are constrained by the available memory. A larger memory can

accommodate more and large applications but increases cost, area, as well as energy

requirements. Code-compression techniques address this issue by reducing the code

size of application programs. It is a major challenge to develop an efficient code-

compression technique that can generate substantial reduction in code size without

affecting the overall system performance. We present an efficient code-compression

technique, which significantly improves the compression ratio.

Keywords: Code Compression, Embedded Systems, Cache Line Address, Line Address

Table

1. Introduction

With the exponential growth of the number of

interconnected computing platforms, computer

security has become a critical issue. The utmost

importance of system security is further

underscored by the Expected proliferation of

diverse Internet enabled embedded systems ranging

from home appliances, cars, and sensor networks to

personal health monitoring devices. Moreover, as

capabilities of embedded processors increase, the

applications running on these systems also grow in

size and complexity, and so does the number of

security vulnerabilities.

2. Code Size and RISC Processors

The high performance RISC processors are widely

used as embedded processors. The RISC processors

tend to decrease and simplify the hardware

electronics of a processor on a single chip. Because

of its effect on code size, it enabled RISC processor

for embedded systems. A comparison [1] of

distribution of Arithmetic/logic instructions and

data transfer instructions for two benchmark

programs on VAX and MIPS is shown in Table 1.

The VAX is a popular CISC processor and MIPS

are a popular RISC processor. The 50% to 133%

increase in data transfer instructions for the MIPS,

compared to the VAX, is due to use of several load

and store instructions in MIPS. This „code size

bloating‟ problem of RISC processors is depicted in

[2] which compares the object code size of an

MPEG2 encoder compiled on multiple processors

of different architectures. The RISC processors

ARM Thumb and SHARC need 68.2 kB and 106.2

kB respectively.

 Attacks that impair code integrity by injecting and

executing malicious code are one of the major

security issues. A common method for code

May – June 2020

ISSN: 0193-4120 Page No. 1963 - 1967

1964 Published by: The Mattingley Publishing Co., Inc.

compression is the Compressed Code RISC

Processor (CCRP), which is show in figure-1.

Figure.1. Compressed Code RISC Processor

It breaks the program into blocks of n, where n

corresponds to the cache line size.Each block is

compressed individually by a suitable algorithm.

Line Address Table (LAT) is used to compress

cache line within the compressed program. Cache

Look aside Buffer (CLB) is added to alleviate LAT

lookup cost. During program execution, upon each

cache miss, LAT entry cached used to calculate the

compressed Cache Line Address (CLA).[1] The

compressed cache line is then fetched from

memory, decompressed, and placed into the

instruction cache.

3. Modification of the Processor

We consider a 64-bit simple scalar instruction set,

which is similar to MIPS .We assume a simple 5-

stage pipeline processor for ease of discussion. In

order to compress the instruction cache,

decompression must be done after the cache [2].

Therefore the CPU must now be modified to

include 2 additional functions. Address translation

from the uncompressed version to the compressed

(CLB).

3.1. Instruction Decompression (DEC)

These 2 additional sections are added to the usual 5-

stage pipeline as shown in figure 2.

The CLB section implements address translation

from the uncompressed version to the compressed

version for each instruction and DEC implements

Instruction Decompression. [3]The Instruction

Fetch (IF) stage will now fetch the compressed

instruction instead of the uncompressed instruction.

The stage length for CLB and DEC are both

dependent on the compression algorithm. The

additional CLB and DEC sections are both before

the Instruction Decode (ID) stage.[4] Thus stages

within these sections will add to branch penalty. In

addition, these penalties cannot be reduced by

branch prediction since they are before the ID stage,

where instruction opcode is first being identified.

3.2. Compression Algorithm

Problems: Compression algorithm used must have

simple CLB and DEC sections, or it will lead to

large branch penalty. [5]The problems we face with

the usual CCRP compression algorithm that

compresses serially within the block, byte wise are

for a 64-bit instruction, we require 8 DEC stages to

decompress.

3.3Granularity of Random Access

With CCRP, random access is only at block level. If

the program counter jumps from one compressed

block to another and it is the very last instruction in

the block that it is jumping to, then all instructions

within the block must be decompressed before the

actual instruction will be fetched. This will lead to

additional stages of delay.

Modified Algorithm: We devise such an

algorithm. It can be thought of as a binary Huffman

May – June 2020

ISSN: 0193-4120 Page No. 1963 - 1967

1965 Published by: The Mattingley Publishing Co., Inc.

with only two compressed symbol lengths, but due

to its similarity to table lookup we refer to it as

Table. It uses 4 tables, each with 256, 16-bit entries.

[6] Each 64-bit instruction is compressed

individually as follow:

Divide the 64-bit instruction into 4 sections of 16-

bit.Search content of table 1 for section 1 of the

instruction. If found, record the entry number.

Repeat Step (ii) for section 2 with table 2 and so on

with remaining sections. If entry number in the

corresponding table replaces all the sections, then

the instruction is compressed. Otherwise, the

instruction remains uncompressed. A 96-bit LAT

entry tracks every 64 instructions. 32-bits equal the

compressed address. The rest of 64 bits are on or off

depending on whether the corresponding instruction

is compressed or not. Since this method tracts each

instruction individually, the inter-block jump

problem is gone.[7] For the DEC section,

decompression is either nothing or 4 table lookups

in parallel.So one stage is sufficient. For the CLB

section, it is simply a CLB lookup follow by some

adding in a tree of adders. This could be done in one

cycle, with CLB lookup taking half and adding

taking another half.

Details: With the Table compression algorithm, the

compressed instructions can be either 4 or 8 byte

long. This could lead to misalignment problem for

instruction cache access in case of 8-byte

instruction. For example, an 8-byte instruction can

have its first 4 byte in the end of one cache line and

its last 4 byte in the start of another cache line. This

result in 2 cache accesses for a single instruction

fetches. To solve this, instruction cache is divided

into two banks, with each bank 4-byte wide. The

first bank is used to store the upper half word of the

64-bit word. [8] The second bank is used to store

the lower half. Since every 8-byte instruction must

have its two 4 byte halves in different banks, simple

logic can be used to ensure each bank is accessed

correctly to fetch the instruction in one cycle. The

determination of the content for the 4 tables is

critical in achieving a good compression for this

method. Between the 4 tables, they can keep 256

power 4, or 4 gig entries of distinct instructions.

However, for every entry within a table, 256 power

3, or 16 Meg entries of instructions will take on that

same section. So it is quantity without quality.

Figure.3. Compression Result for Table

Compression

3.4.Result for the Modified Algorithm

On average Table can compress to 70% of the

original size. In comparison to CCRP with Huffman

byte serial compression at block size of 8, we loose

about 20% on average. This 20% lost is partly due

to the smaller granularity of random access we have

achieved.[9] In general the smaller granularity of

random access, the less compression will be

achieved. This can be observed again with result,

which does not provide any random access. On

average it compresses to 20% of the original size,

which is 30% better than CCRP with Huffman.

4. Branch Compensation Cache (BCC)

Problem: As mentioned earlier, in order to perform

decompression after instruction cache (between the

I-cache and the CPU), we add two more stages into

the pipeline before ID: CLB (Cache Look Aside

Buffer) and DEC (decompression). As a result,

branch penalty is increased to three cycles. This is

illustrated in figure 4.

Figure-4: Increased Branch Penalty

May – June 2020

ISSN: 0193-4120 Page No. 1963 - 1967

1966 Published by: The Mattingley Publishing Co., Inc.

Originally, in regular five-stage pipeline, the branch

penalty is only one stage (IF), but in our seven-stage

pipeline, the branch penalty increases to three stages

(CLB, IF, DEC).[10] Obviously it is not good, so

we need a solution.

Figure-5 Use BCC to Reduce Branch Penalty

Solution: The solution is to add a branch

compensation cache (BCC) and try to pre-store the

target instructions there. Whenever we encounter a

branch (or more precisely, a PC jump), go to the

BCC and check if the target instruction is there. The

basic idea is shown in figure 5.

In figure 5, a PC jump is found at the ID stage, so

we go to check BCC to see if the target instruction

is pre-stored there. If no, then we have to go

through CLB, DEC and ID pipeline stages but if

yes, then we simply fetch it and keep going, no

branch penalty at all in such case.

Figure-6: BCC Implementation

At ID stage we find out a jump instruction being

taken, so we must flush the current pipeline and

restart. Figure 6 shows a more detailed pipeline

implementation, where the key points.[11].The

restarted pipeline is used to get the target instruction

through normal stages, i.e. using CLB to get the

compressed address from the regular address, using

IF to fetch the decompressed instruction, using DEC

to decompress it to get target instruction.

Simultaneously, we also go to the BCC to check if

the required target instruction is pre-stored there. If

no, then keep running the restarted pipeline; if yes,

then we directly fetch the target instruction from

BCC and flush/restart the pipeline for a 2nd

time[12].

The 2nd restarted pipeline is used to provide the

sequential instructions after the jump. In order to

completely eliminate the penalty incurred by a

jump, we require T, T+8, T+16, T+24 instructions

are all pre-stored in BCC upon a hit.

So the 2nd restarted pipeline starts CLB stage with

T+32 instructions, where T is the target instruction,

T+8 is the next instruction, and so on.

Result: To quantify the BCC performance, we

observed several applications such as ijpeg, wave5,

etc.

Figure-7: BCC Performance

Here the cache block size is kept as 8-byte long,

while the block number varies from 1, 2, 4, 8, ¼, to

4096 to give different cache size. Directly mapped

cache is used and the replacement policy is least

recently used (LRU). From the observed results we

can see that for a fairly small branch compensation

cache (1KB ~ 2KB), the branch penalty is

significantly reduced, which indicates our approach

May – June 2020

ISSN: 0193-4120 Page No. 1963 - 1967

1967 Published by: The Mattingley Publishing Co., Inc.

is very effective.As far as the compressed cache

performance is considered, compressed cache with

Table algorithm do outperform uncompressed

cache, especially within a region of instruction

cache size where uncompressed cache is getting

from 10 to 90 % hit rate[13].The improvement

could go as high as near 40%. This is as expected

since compressed cache contains more instructions

and this translates to better hit rate. The reason that

there is a window of sizes where cache compression

is more effective is because this is the thrashing

region and a small increase in cache size could give

big improvement.

Compression in cache is like a virtual cache

increase. For example 70% compression in cache

could give a cache that is 1.4 times the original

size.[14] Therefore cache compression is especially

effective within this thrashing region. So the

original idea that compressed instruction cache can

lead to smaller instruction cache is valid.

5. Conclusions

In addition to real-time requirements, the program

code size is a critical design factor for real-time

embedded systems. To take advantage of the code

size vs. execution time tradeoff provided by reduced

bit-width instructions, we propose a design

framework that transforms the system constraints

into task parameters guaranteeing a set of

requirements. The goal of our design framework is

to derive the temporal parameters and the code size

parameter of each task in such a way that they

collectively guarantee the system end-to-end timing

requirements while the system code size is

minimized.

6. References
[1] J.L.Hennessy and D.A.Patterson, “Computer

Architecture: A quantitative Approach”, Fourth

edition, Morgan Kaufmann publishers, 2007.

[2] J. Heikkinen, J.Takala, and H.Corporaal,

“Dictionary based program compression on
customizable processor architectures”,

Microprocessors and Microsystems, vol. 33, pp.

139 – 153, 2009.
[3] Y. Xie, W. Wolf, H. Lekatsas, “Code Compression

for VLIW Processors using Variable – to- Fixed

Coding,” IEEE Trans. VLSI Systems, vol. 14,

no.5, pp. 525 – 536, May 2006.
[4] L.Benini, F.Menichelli, and M.Olivieri, “A class of

code compression schemes for reducing power

consumption in embedded microprocessor

systems”, IEEE Trans.Computers, vol.53, no.4,
pp.467 – 482, April 2004.

[5] A. Wolfe and A. Chanin, “Executing compressed

programs on an embedded RISC architecture”,
in Proc. Int. Symp. Microarch, 1992, pp.81 – 91.

[6] T.M.Kemp, R.K. Montoye, J.D. Harper,

J.D.Palmer, and D.J. Auerbach, “A
decompression core for power PC,” IBM

J.Res.Develop., vol.42, no.6, pp. 807 – 812,

Nov. 1998.

[7] J.A. Fisher, P.Faraboschi, and C.Young,
“Embedded Computing: A VLIW Approach to

Architecture, Compilers and Tools”, Morgan

Kaufmann publishers, 2005.
[8] A.N.Sloss, D.Symes and C.Wright, “ARM System

Developer‟s Guide: Designing and optimizing

System Software”, Morgan Kaufmann
Publishers, 2004.

[9] C.H.Lin, Y.Xie, and W.Wolf,”Code Compression

for VLIW Embedded Systems using a self-

generating table”, IEEE Trans. VLSI Systems”,
Vol.15, no.10.pp.1160- 1171, Oct.2007.

[10] “microMIPS Instruction Set Architecture”, MIPS

Technologies, Inc., October, 2009.
[11] B.Govindarajalu, “Computer Architecture: and

Organization: Design Principles and

Applications”, Second Edition, Mc Graw-Hill

publishers, 2010.
 [12] http://www.mips.com/products/supporttraining

/documentation/ [13] D. Sima, T. Fountain, and

P. Kacsuk, “Advanced Computer Architectures:
A design space approach”, Pearson Education,

1997.

 [14] D.A.Patterson, and J.L.Hennessy,"Computer
Organization & Design: The Hardware /

Software Interface”, Second Edition, Morgan

Kaufmann, 1998.

