

May – June 2020
ISSN: 0193-4120 Page No. 235 - 246

235

Published by: The Mattingley Publishing Co., Inc.

Modern Metrics (Mm): Function Point based Size

Estimation Technique for Modern Software
1
John T Mesia Dhas,

2
T.S. Shiny Angel,

3
J. Sheeba

1
Associate Professor, Department of Computer Science and Engineering, Audisankara College of

Engineering and Technology, Gudur, Andhrapradesh, India, Mail: jtmdhasres@gmail.com
2
Assistant Professor Sr. grade, Department of Software Engineering, SRM Institute of Science and

Technology, Chennai, Tamil Nadu, India, Mail: shinyangeldavid@gmail.com
3
Associate Professor, Mohamed Sathak A.J Academy of Architecture, Chennai, Tamil Nadu, India

sheeba4archi@gmail.com

Article Info

Volume 83

Page Number: 235 - 246

Publication Issue:

May - June 2020

Article History

Article Received: 11August 2019

Revised: 18November 2019

Accepted: 23January 2020

Publication:07May2020

Abstract:

About fifteen distinct programming languages, operating system, development tools

and utility software are used for developing a new software system. The programming

language independent, operating system neutral, highly extensible and dynamic are the

behaviors of modern software system. The existing particularistic approached software

sizing techniques are not good for estimating the size of versatile modern software.

Modern Metrics (MM) is a novel method for estimating the size of modern software

system. MM is independent of computer languages, operating system, development

methodology, application domain and technology behind the development. MM can be

estimated early in the analysis and design phase of the System Development Life Cycle

(SDLC) and is prepared based on the user, developer and environmental perspectives.

This novel method Modern Metrics (MM) analyses all possible functional units and

complexity factors of modern software. So, the defects present in the Function Point

Analysis (FPA) is reduced. MM considers internal inputs, internal operations,

database, SDLCs, output formats, international standards and multiple software usage.

It increases the accuracy of the results and also reflects good results in cost, size and

time constraints.The performance of MM is accurate in industrial results in developing

the software compared with existing FPA method. The result analysis of MM an FPA

with Software Project Management (SPM) metrics like size, effort, cost and time

implies, MM is more accurate than FPA and MM is suitable approach for calculating

the size of modern software system. So, this research concludes that MM method is a

successful approach to determine size of modern software system and it leads to the

success of project management activities of modern software system development.

Keywords: Modern Metrics, Modern Software, Software size, Software Project

Management, MMSize, Function Points.

I. Modern Metrics Sizing Technique

Modern Metrics (MM) is the proposed sizing

technique for modern software which is based on

new metrics and values. MM is a novel approach,

that estimates the size of the software with less cost

and time. The modern software mainly does the

extraction, processing of data and value based on

decision making. Apart from the traditional function

points like External Input (EI), External Output

(EO), Internal Logical Files (ILF), External Inquiries

(EQ) and External Interface File (EIF), it includes

Internal Input (II), Internal Operations (IO) and Data

and Text (DT). It also recognizes System

Development Life Cycle (SDLC), updated

Complexity Adjustment Factors (CAF), Trial

versions of the software, Indexed data, Multiple

forms of output, user developer views on system and

mailto:shinyangeldavid@gmail.com

May – June 2020
ISSN: 0193-4120 Page No. 235 - 246

236

Published by: The Mattingley Publishing Co., Inc.

Social, Economic and Political laws of the Nation.

Therefore, the defects per function point is reduced

by the novel Function Point Analysis (FPA), using

MM technique.

A. Modern Metrics

Modern Metrics (MM) is an Indian metrics which

will measure the size of a software with the help of

updated functional units of modern software. MM

has some simple calculations for finding the size of

modern software. It is not considering programming

language, operating system, development tools,

working environment and other technical factors.

Hence, a novice or non-software professional can

easily estimate the size of software.

Architecture of MM

The functional diagram of Modern Metrics (MM)

includes all the internal and external function points

of a software system. The traditional IFPUG

function point estimation technique has only five

functional units (External Input, External Output,

External Inquiries, External Interface files and

Internal Logical Files). But the MM has eight

functional units (External Input, External Output,

External Inquiries, External Interface files and

Internal Logical Files, Internal Inputs, Internal

Operations and Data and Text). The MM also

includes twenty two Complexity Adjustment Factors

(CAF) but the traditional IFPUG function point

calculation has only eighteen CAF. The

architectural diagram of Modern Metrics (MM) is

shown in the following Figure 1:

Figure 1: Architecture of MM

II – Internal Inputs

IO – Internal Operations

ILF – Internal Logical Files

EIF – External Interface Files

CAF – Complexity Adjustment Factors

SDLC – System Development Life Cycle

MMSize – Modern Metrics Size

May – June 2020
ISSN: 0193-4120 Page No. 235 - 246

237

Published by: The Mattingley Publishing Co., Inc.

UMMFP – Unadjusted Modern Metrics Function Points

MMCAF – Modern Metrics Complexity Adjustment Factor

Functional Units of MM

The functional units of a software is the basic

element for estimating the size of a software. The

functional units are divided into two categories

based on its functional view. They are, internal

functional units, external functional units and hybrid

functional units. The internal functional units are

influencing the system internally and which will not

interact with the external actors. Like that, external

functional units are influencing the system by

external actors or communications from system to an

external actor. In Modern Metrics, internal inputs,

internal operations and internal logical files are

internal functional units. Other functional units like,

external inputs, external outputs, external inquiries

and external interface files are external functional

units. The data and text is having the behavior of

both internal and external functional units. So it is a

hybrid functional unit.

Internal Functional units:

a) Internal Inputs (II): The defined constants and

internal assignments of variables are internal

inputs.

b) Internal Operations (IO): A complete cycle of

operations in the system but which is not present

under any other functional units.

c) Internal Logical Files (ILF): It is a supporting

software or data present in the system for

executing the system successfully.

External functional units:

a) External Inputs (EI): Inputs given to the system

through input devices by an external actor.

b) External Outputs (EO): The results received

from the system through output devices for an

external actor.

c) External Inquiries (EQ): The external questions

raised from the actor during the execution time

for checking the accuracy of the system.

d) External Interface Files (EIF): It is a supporting

software or data present in the external system

for executing the software successfully.

Hybrid functional units:

a) Data and Text (DT): 8000 words (manual typing

speed of a person per day) in a text document is

a functional unit of DT. The DT may not take

part any operation and it may be tables, historical

data, help files, images or other text documents.

It may be both internal and external.

The Metrics of the Functional Units of MM

The metrics of the functional units of modern

software is difficult to find and classify it. So some

important functional units of functions are identified

and listed in the following Table 1,

S.No
Functional

Unit
Metrics

1
Internal

Inputs (II)

Constants, internal assignments,

internal keys

2

Internal

Operations

(IO)

Choices, A complete operational cycle

which is not taking part with any other

functional calculations, dynamic

effects of webpages, internal

algorithms, Array input, output or

calculations, the properties and events

assigned to the GUIs, function calling

in a program

3

Internal

Logical
Files (ILF)

The driver files for other software,

header files, packages

4
External

Inputs (EI)

Inputs given through input ports or

input statements, input GUI’s like text

box, list box, combo box etc.,

Graphics coordinates for a complete

diagram (example circle, line, ellipse

etc.) with its properties

5

External

Outputs

(EO)

The results displayed using output

devices, output GUIs like label box,

list box, text box, combo box

6

External

Inquiries

(EQ)

The queries generated by the users for

the better operations of the system

7

External

Interface
Files (EIF)

The driver files used for external

devices and remote systems, anchor
tags,

8
Data and

Text (DT)

Tables, Text files, image files, help

files, data files, Webpage contents

May – June 2020
ISSN: 0193-4120 Page No. 235 - 246

238

Published by: The Mattingley Publishing Co., Inc.

Functional Units with Metrics and Metric values

of MM

The eight functional units are ordered according to

their availability in a function. The metrics of the

functional units are Low, Average, High and Very

High based on the complexity and time required to

complete the operations of each functional unit.

These metrics are otherwise known as effort

modifiers of the software sizing process. By using a

set of inflexible standards the metrics are

categorized following Table 2.

Table 2: Functional Units with Metrics

Metrics
Functional Units

EI II EO IO DT EQ ILF EIF

Low 1 to 3 1 to 3 1 to 4 1 to 3 1 to 4 1 to 3 1 to 7 1 to 5

Average 4 to 5 4 to 5 5 to 6 4 to 5 5 to 6 4 to 5 8 to 14 6 to 9

High 6 to 8 6 to 8 7 to 9 6 to 8 7 to 9 6 to 8 15 to 21 10 to 13

Very High >8 >8 >9 >8 >9 >9 >21 >13

If a function has 1 to 3 EI then, the metrics of EI is

Low. Similarly, all the metrics are identified in a

function and are tabulated. The metric values are

effort modifiers of MM listed in the following Table

3.

Table 3: Metrics with its Values

Metrics EI II EO IO DT EQ ILF EIF

Low 3 3 4 3 4 3 7 5

Average 4 4 5 4 5 4 10 7

High 6 6 7 6 7 6 15 10

Very High 9 9 10 9 10 9 22 14

Calculating FUs of MM

All the classes and functions are analyzed and

listed all the corresponding functional units using

following Table 4 format. All the functional units

are identified in each functions of software and

tabulated. The total number of functions referred and

total functional units of each type are calculated at

the end of Table 4.

Table 4: Calculating Functional Units

S. No
Name of the

Function
EI II EO IO DT EQ ILF EIF

1

2

3

4

5

S. No
Name of the

Function
EI II EO IO DT EQ ILF EIF

Total number of functions

referred (TF)

Total functional units (TFU)

Complexity Adjustment Factors (CAF) of MM

The project complexity and management process is

one of the challenging task in the size estimation of

modern software. In most of the projects, the

complexity of a project will be measured in based on

its degree of novelty, its interdependencies, and the

technologies involved. The level of complexity may

be the duties, the degree of autonomy and the scope

of responsibilities.

The complexity of modern software is derived based

on the following reasons,

a) Technology used in the software.

b) Standardisation and development models

associated to the software.

c) Distribution and processing of application.

d) The novelty and innovation of the developing

system.

e) Uncertainty of the software system

The complexity of the software is determined using

the following Complexity Factors (Fi). They are,

1. Whether backup is required to the system?

2. Whether data communication is important?

May – June 2020
ISSN: 0193-4120 Page No. 235 - 246

239

Published by: The Mattingley Publishing Co., Inc.

3. Whether it has any distributed processing?

4. Is representation complex?

5. Whether the system works in congested

environment?

6. Is it requires any online updating?

7. Whether the system has online input, output and

operations?

8. Is it require any major file on online updating?

9. Is it work in multi environment?

10. Is the internal operation critical?

11. Is it reusable?

12. Whether the software is extensible?

13. Is it good for different organizations?

14. Is it permit the user interactions?

15. Whether the system uses indexed or listed data

(single index or multi index)?

16. Whether the system uses more than one SDLC

models?

17. Is the system using more than one programming

languages, Data Base Management Systems

(DBMS), Web tools, Drivers, etc.?

18. Is the networking environment using more than

one network topologies?

19. Is the system installed in different nations and

uses different social, cultural, economic and

environmental laws?

20. Is the system giving multiple forms of output?

21. Is the trial version and model version of software

development affects the system?

22. Is User Interface influence the system?

The influence of the complexity factors of a software

is measured using the influential values (Nil = 0,

Secondary = 1, Moderate = 2, Average = 3,

Important = 4, Essential = 5) assigned to the

Complexity Factors. The following Equation (1)

gives the value of Modern Metrics Complexity

Adjustment Factor (MMCAF) of the software.

MMCAF = 0.25 + 0.01 * Fi (1)

The Fi (i = 1 to 22 factors) is the amount of

influence and are based on responses to complexity

factors.

Calculating Unadjusted Modern Metrics

Function Points (UMMFP)

The UMMFP is the number of raw function points

present in a software. The following Table 5 is used

to calculate the UMMFP

Table 5: Unadjusted MMFP

To find the value of UMMFP, we must calculate

Total number of Functions (TF), Total Functional

Units (TFU), Average Functional Units (AFU),

weighting factor and weightage of the functional

units.

The total number of functions is sum of the

functions having the functional units of each type. It

is calculated during the functional unit calculations

of each functions of a software. The function having

any functional unit, immediately the corresponding

functions count is increased by one.

The distinct functional units of each function is

calculated and tabled using Table 4. The total sum of

S.

No

Functional

Units

Total Number

of Functions

(TF)

Total Functional

Units (TFU)

Average Functional Units

(AFU = TFU / TF)
Metrics

Metric

Value (W)

UMMFP

(TF * W)

1 EI

2 II

3 EO

4 IO

5 DT

6 EQ

7 ILF

8 EIF

 Total UMMFP

May – June 2020
ISSN: 0193-4120 Page No. 235 - 246

240

Published by: The Mattingley Publishing Co., Inc.

each functional units in all functions is the total

functional units.

The ratio of total functional units and total number

of functions is known as average functional units.

The value of average functional units is used to

calculate weighting factor and weightage of the

functional units using Table 2 and Table 3.

The Unadjusted Function Point (UFP) of each

functional units is calculated. That is the product of

total number of functions and weightage.

The Unadjusted Modern Metrics Function Point

(UMMFP) is the sum of all the Unadjusted Function

Points of each functional unit,

MMSize

MMSize is the size of the software based on Modern

Metrics. The unit of Modern Metrics (MM) software

size is MM. It is calculated using the Equation (2)

MMSize = UMMFP x MMCAF (2)

The Modern Metrics Size (MMSize) is the product

of Unadjusted Modern Metrics Function Points

(UMMFP) and Modern Metrics Complexity

Adjustment Factor (MMCAF).

B. Other Estimations Based on MM

MM Productivity Factor

 Modern Metrics Productivity Factor (MMPF)

defines the amount of time required for completing

one function point. The productivity factor may

change from organization to organization. PF is

calculated using the following Equation (3),

MMPF = Total Hours required to Complete a project

/ MMSize (3)

MM Effort

 Software Effort denotes the amount of man

hours required for completion of the project [9,66].

Software size is the primary independent variable

affecting software development effort. The

following Equation (4) is used for calculating effort

using MM.

Modern Metrics Effort (MME) = MMSize * PF

 (4)

Where MMSize = Size of software using

Modern Metrics

PF = Productivity Factor.

 Productivity factor defines the amount of

time required for completing one function point. The

productivity factor may change from organization to

organization. Our organization uses productivity

factor as 16 because they took in and average 16

hours per Modern Metrics Function points.

MM Duration

Duration denotes the total time required for

completing the project. The following Equation (5)

is used for calculating Duration using Modern

Metrics

Modern Metrics Duration (MMD) = Modern Metrics

Effort (MME) / (176 * number of persons involved

in the software development)

 (5)

 Here 176, denotes working hours per month

that means Indian software industry people work on

22 days per month and per day 8 hours, totally 22*8

= 176 hours.

 MM Cost

 The cost of the software project is calculated

based on the total expenditure for the development

of the software. The following Equation (6) is used

for calculating Cost of the project using MM.

Modern Metrics Cost (MMC) = Number of persons

involved * Average remuneration of software

developers + Management cost

 (6)

 The management cost will be varied from

organization to organization. The unit cost of

Modern Metrics Size is calculated using the

following Equation (7).

 Modern Metrics Unit Cost (MMUC) =

Modern Metrics Cost (MMC) / MMSize (7)

II. SIZE ESTIMATION USING MODERN

METRICS

 Modern Metrics (MM) is a novel technique

for estimating the size of modern software system

May – June 2020
ISSN: 0193-4120 Page No. 235 - 246

241

Published by: The Mattingley Publishing Co., Inc.

based on its internal, external and hybrid function

points. The previous chapter 4 analyses the

procedure for implementing the MM. This chapter 5

is giving the practical implementation of MM.

A. Calculating the Functional Units

The functional units of each function is analyzed

separately and tabulated using the following Table 6

Table 6: Functional Units calculation

S.

No

Name of the

Function
EI II EO IO DT EQ ILF EIF

1 allsched1 5 6 1 2

2 cprocess1 5 7 1 2

3 cprocess2 3 3 4 1 2

4 cpwd1 2 1 1

5 cpwd 4 6 1 2

6 cregister

9 2 1 1 2

7 ctransit1

1 10 3 1 2

8 ctransit

1 1 2

9 czpro 3 1 1

10 dt1

1 2 1 1

11 dt2

 6 2 1 1 2

12 dt3

2 1 1 2

13 fcitizen

 5 1 1 2

14 lic2

 2 1 2

15 licapp1

1 2 1 1 2

16 licapp2

1 3 6 1 2

17 licapp3

 6 2 1 2

18 licapp11

1 2 1 2

19 licpro2

 6 3 1 2

20 licst2

1 3 1 1 2

21 licst3

1 8 10 1 2

22 pinmast1

1 7 3 3 2

23 pinmast

 2 1 2

S.

No

Name of the

Function
EI II EO IO DT EQ ILF EIF

24 pp1

1 2 1 1 2

25 ppst1

1 4 6 2

26 ppst11

1 1 1 2

27 prolic2

1 1 1 1 2

28 register

 1 1 1

29 registerc

 1 1 1 1

30 sappno

 1 1 2

31 signin

 3 4 3 1 2

32 sregister

 3 2 1 1 1 2

33 tprolic

1 1 1 2

34 transit1

1 1 1 1 2

35 transit

1 1 1 2

36 tsched

1 6 1 2

37 updlic

4 1 1 1 2

38 vastaff

 4 1 2

39 vcz1

1 10 7 2

40 vcz

 1 1

41 vpp1

1 1 2 2 1 1

42 vpp2

1 11 12 1 1

43 vpp3

3 4 2

44 vpppro2

5 2 1 2

45 vpropp1

1 1 3 1 2

Total number of

functions referred (TF)
33 23 38 6 7 11 29 45

Total functional units

(TFU)
69 100 124 11 20 16 29 87

B. Unadjusted MM Function Point Calculation

The unadjusted Modern Metrics function points

(UMMFP) of Aadhar processing system is

calculated using the following Table 7

May – June 2020
ISSN: 0193-4120 Page No. 235 - 246

242

Published by: The Mattingley Publishing Co., Inc.

Table 7: Unadjusted MMFP calculation

S.

No

Functional

Units

Total

Number of

Functions

(TF)

Total

Functional

Units (TFU)

Average

Functional

Units (AFU

= TFU / TF)

Metrics

Metric

Value

(W)

UMMFP

(TF * W)

1 EI 33 69 2.0909090 Low 3 99

2 II 23 100 4.3478260 Average 4 92

3 EO 38 124 3.2631578 Low 4 152

4 IO 6 11 1.8333333 Low 3 18

5 DT 7 20 2.8571428 Low 4 28

6 EQ 11 16 1.4545454 Low 3 33

7 ILF 29 29 1 Low 7 203

8 EIF 46 87 1.8913043 Low 5 230

Total UMMFP 855

In the software, Aadhar processing system having

total of 45 functions. 33 functions having 69

External Inputs, 23 functions having 100 Internal

Inputs, 38 functions having 124 External Outputs, 6

functions having 11 Internal Operations, 7 functions

having 20 Data and Text, 11 functions having 16

External Inquiries, 29 functions having 29 Internal

Logical Files and 45 functions having 87 External

Interface Files.

The average functional units are calculated based on

the ratio of total functional units and total number of

functions. Based on this value, the weighting factor

and weightage is calculated based on Table 2 and

Table 3 respectively.

Unadjusted Function point of each functional unit is

calculated, which is the product of total number of

functions and weightage of each functional units.

The Unadjusted Modern Metrics Function Point is

the sum of unadjusted function point of all the

functional units. The UMMFP of Aadhar processing

system is 855

C. Complexity Adjustment Factor

The complexity factors of the Aadhar Processing

system is present in the following Table 8

Table 8: MMCAF

S.

No
Factors

Scale of Factors

Nil (0)
Secondary

(1)

Moderate

(2)

Average

(3)

Important

(4)

Essential

(5)
Value

1

Does the system need

unfailing backup and

recovery?

5 5

2
Is data communication

necessary?
3

3

3
Are there distributed

processing jobs?
3

3

4 Is act complex and critical?

4

4

5
Will the system work in an
existing mainly utilized

operational environment?

5 5

6
Does the system need on line

data entry?
5 5

May – June 2020
ISSN: 0193-4120 Page No. 235 - 246

243

Published by: The Mattingley Publishing Co., Inc.

S.

No
Factors

Scale of Factors

Nil (0)
Secondary

(1)

Moderate

(2)

Average

(3)

Important

(4)

Essential

(5)
Value

7

Does the on line data entry

needs the input operation to be

built over many screens or

operations?

5 5

8
Is the original file updated on

line?
5 5

9
Is the inputs, outputs, files, or

inquiries complex?
3

3

10
Is the internal processing

complex?
3

3

11
Is the code designed to be

reusable?
4

4

12
Are change and installation

included in the plan?
2

2

13

Is the system designed for

many installations in different
organizations?

4

4

14

Is the application designed to

ease change and ease of use

by the user?

4

4

15

Is the system using indexed or

list data (single index or multi

index)?

2

2

16
Whether the system using

more than one SDLC models?
2

2

17

Is the system using more than

one programming language,

Data Base Management

System (DBMS), Web tools,

Drivers etc.?

2

2

18

Is the networking environment

using more than one network
topologies?

3

3

19

Is the system installed in

different nations and uses

different social, cultural,

economic and environmental

law?

0

0

20
Is the system giving multiple

form of output?
5 5

21

Is the trial version and model

version of software

development affecting the

system?

3

3

22
Is User Interface influencing

the system?
5 5

Total CAF 82

The complexity of modern software is derived based

on the technology used in software, standardization

and development models associated to software,

distribution and processing of application, novelty

and innovation of developing system and uncertainty

of the software system. The complexity of Aadhar

processing system is also derived based on these

factors. The complexity adjustment factor of this

software is 82.

May – June 2020
ISSN: 0193-4120 Page No. 235 - 246

244

Published by: The Mattingley Publishing Co., Inc.

D. Mm Complexity Adjustment Factor

The value of MMCAF is calculated using the

Equation 1,

MMCAF = 0.25 + 0.01 * CAF

 = 0.25 + 0.01 * 82

 = 1.07

E. Modern Metrics Software Size

MMSize of the software is calculated using the

Equation 2,

MMSize = UMMFP * MMCAF

 = 855 * 1.07

 = 914.85 MMFP

F. Productivity Factor

Total number of days required for completing the

project = 120

Total number of persons involved for the

development = 6

Total number of hours required to complete the

project = 120 * 6 * 8

 = 5760 Hours

 MMPF = 5760 / 914.85

 = 6.29

(6 Hours and 18 Minutes required for completing a

MM Function Point)

G. Effort
 = 914.85 * 6.29

 = 5754.40

(5754 Hours and 24 Minutes) Man Hours required

for completing the project Aadhar Card Processing

System.

H. Duration

 MMD = 5754.40 / (176 * 6)

 = 5.18 Months

 (5 Months and 7 Days) of time required to

complete the project.

I. Cost

The average remuneration of a software developer

per month = 22950.75 (Indian Rupee)

Total number of months required for completing

project = 5.18

Average remuneration for a developer

 = 22950.75 * 5.18

 = 118884.88 (Indian Rupee)

Management Cost =210000 (Indian Rupee)

MMC =118884.88 * 6 + 210000

 =923309.28 (Indian Rupee)

J. Unit Cost of MMFP

MMUC =923309.28/914.85

 = 1009.24 (Indian Rupee)

K. Price of the Software

 Let we assume, the maintenance cost is 40%

of the MM cost and percentage of profit is 30%, then

price of the software is

MM Price = 923309.28 + (923309.28+

(923309.28*40/100)) * 30/100

 = 923309.28+

(923309.28+ (923309.28* 0.4)) *0.3

 = 1311099.17(Indian Rupees)

II. Conclusion

This proposed innovative approach MM is used for

calculating the size of the software at the early

stages of SDLC. The difficulties with budgeting and

delivery of the software product is overwhelmed.

The traditional FPA based sizing techniques are

considering only the user perspectives but, the

proposed MM technique considers user and

developer perspectives. So, the defects in functional

units of MM technique is negligible.

The MM technique uses eight functional units over

traditional FPA’s five functional units. The MM

technique uses twenty two complexity factors over

traditional FPA’s fourteen complexity factors. This

updates are increasing the accuracy of the size of the

software.

The MM technique reduces the inflated functional

units of traditional FPA. Therefore, MM technique

reduces around 20% to 30% of size in application

software over FPA. The MM technique considers

internal operations, multiple forms of outputs and

database used in the application. Therefore, MM

technique gives actual size of the scientific, artificial

intelligence, webpages and game playing software.

May – June 2020
ISSN: 0193-4120 Page No. 235 - 246

245

Published by: The Mattingley Publishing Co., Inc.

 The undefined functional units of design and

modelling software like Computer Aided Designing,

Computer Aided Modelling etc. shall be considered

in the future studies.

References

[1] Abran A., Cuadrado J., and Desharnais J. M.

(2006), “Convertibility of Function Points to

COSMICFFP: Identification and Analysis of

Functional Outliers”, MENSURA 2006, Cadiz

(Spain), pp. 6-8.

[2] Boehm B. W. (1981), “Software Engineering

Economics”, Prentice-Hall.

[3] Capers Jones (2007), “Estimating Software

Costs: Bringing Realism to Estimating”, Tata

McGraw Hill, Second Edition.

[4] Capers Jones (2008), “Applied Software

Measurement-Global Analysis of Productivity

and Quality”, Tata McGraw Hill.

[5] Capers Jones (2010), “Software Engineering

Best Practices: Lessons from Successful projects

in the top companies”, Tata McGraw Hill.

[6] Dalkey N. and Helmer O. (1963), “An

Experimental Application of the Delphi Method

to the Use of Experts”, Management Science, pp.

458-467.

[7] Daniel V. Ferens (1999), “The Conundrum

Software Estimation Models”, Air Force

Research Laboratory (AFRLIIFSD), IEEE, pp.

23-29.

[8] Edilson J. D. Cândido and RoselySanches

(2003), “Estimating the size of web applications

by using a simplified function point method”,

IEEE.

[9] Galorath D. D. and Evans M. W. (2006),

“Software Sizing, Estimation, and Risk

Management”, Boston, MA, USA: Auerbach

Publications.

[10] Hughes R. T. (1996), “Expert Judgement as an

Estimating Method”, Information and Software

Technology, pp. 67-75.

[11] ImanAttarzadeh and Siew Hock Ow (2009),

“Proposing a New High Performance Model for

Software Cost Estimation”, Second International

Conference on Computer and Electrical

Engineering, IEEE, pp. 112-116.

[12] ISO/IEC 20968 (2002), “Software Engineering

– Mk II Function Point Analysis – Counting

Practices Manual”, International Organization

for Standardization – ISO, Geneva.

[13] ISO/IEC 19761 (2003),”Software Engineering –

COSMIC-FP A Functional Size Measurement

Method”, International Organization for

Standardization – ISO, Geneva.

[14] ISO/IEC 20926 (2003), “Software Engineering

– IFPUG 4.1 Unadjusted functional size

measurement method – Counting Practices

Manual”, International Organization for

Standardization – ISO, Geneva.

[15] ISO/IEC 24750 (2005), “Software Engineering

– NESMA functional size measurement method

version 2.1 – Definitions and counting guidelines

for the application of Function Points Analysis”,

International Organization for Standardization –

ISO, Geneva.

[16] Karner G. (1993), “Resource Estimation for

Objectory Projects”, Objective Systems.

[17] Linda M. Laird (2006), “The Limitations of

Estimation. IEEE Computer Society”, IEEE, pp.

40–45.

[18] Mahir Kaya and OnurDemirörs (2011), “E-

Cosmic: A Business Process Model Based

Functional Size Estimation Approach”, 37th

EUROMICRO Conference on Software

Engineering and Advanced Applications, IEEE,

pp. 404-408.

[19] Md.Forhad Rabbi, ShailendraNatraj and

OlorisadeBabatundeKazeem (2009), “Evaluation

of convertibility issues between IFPUG and

COSMIC function points”, Fourth International

Conference on Software Engineering Advances,

IEEE, pp. 277-281.

[20] Mehwish Nasir and Farooq Ahmad H. (2006),

“An Empirical Study to Investigate Software

Estimation Trend in Organizations Targeting

CMMISM”, Proceedings of the 5th IEEE/ACIS

May – June 2020
ISSN: 0193-4120 Page No. 235 - 246

246

Published by: The Mattingley Publishing Co., Inc.

International Conference on Computer and

Information Science and 1st IEEE/ACIS

International Workshop on Component-Based

Software Engineering, Software Architecture

and Reuse (ICIS-COMSAR’06), IEEE.

[21] Putnam L. H. (1978), “A General Empirical

Solution to the Macro Software Sizing and

Estimating Problem”, IEEE Transactions on

Software Engineering, pp. 345-361.

[22] Richard D. Stutzke (2005), “Estimating

Software-Intensive Systems: Projects, Products

and processes”, SEI Series in Software

Engineering, Addison Wesley.

[23] Robert T. Futrell, Donald F. Shafer and Linda

I. Shafer (2008), “Quality Software Project

Management”, Pearson Education.

