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Abstract: Alzheimer’s disease (AD) plays an important role in the medical 

image processing. It is an irreversible neurodegenerative dementia that 

often occurs at the age of 65. It is a kind of memory loss that related with 

thinking and behavior of people’s day to day lives. Therefore, the 

researchers are taking more efforts to find proper treatment and improve 

the quality of patient’s life. This paper organizes120 subjects with normal 

and abnormal images in cognitive model.  Therefore, it can be concluded 

that sensitivity as 78.5%, specificity 85% and accuracy as 90.2% using 

SVM algorithm. 
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_____________________________________________________________________________________________ 

 

I. INTRODUCTION 

Brain is one of the important and complex organs 

in our human body which is located at the center 

of the nervous system. It consists of several 

billons of cells to communicate trillion 

connections like synapses. The brain includes 

some major task such as visualization, thinking, 

language processing, emotional response and 

learning. As it locates at the center of the nervous 

system, is there any abnormal behavior inside the 

cells it may affect our entire functionalities of the 

body which leads to Alzheimer’s disease (AD). It 

is otherwise known as dementia that occurs often 

at the age of 65. It is a kind of memory loss with 

improper thinking and behavior, also in current 

progress there is no treatment for dementia. Thus, 

the experts are taking more effort to find the 

proper treatment and improve the quality of 

patient’s life. To achieve this, some of the 

automatic development was progressed for the 

early detection of AD. It is one of the top 10 

diseases in America that affects more than 5 

million people of Americans and it may exceed up 

to 16 million people in 2050. The Alzheimer’s 

disease was developed in the plaques and tangles 

of the brain, which leads to block the 

communication among the nerve cells, reduce its 

function and respective cells will die. Hence, the 

death of the nerve cells and distraction may cause 

memory failure and problem of changes in 

personal and daily activities [1].  

 

In recent reviews, the segmentation based on 

different methods of aspects and it can be 

concluded in different ways. Following that, Jose 

Vicente Manjon, et.al, contributes some 

segmentation results using tissue classification in 

TMS method. It highlights the biomarker key in 

AD,temporal lobe atrophy are the early path 

physiological event that associated with early life 
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of patients risk factors [7]. Pier rick Coupe, et.al 

proposes methods of segmentation in life span 

analysis of brain trajectory using inferred models 

in AD that exhibits the early divergence between 

normal and pathological models [8]. The MRI 

images are used to detect the Alzheimer’s disease 

with the help of neuroimaging Initiative (ADNI) 

dataset which obtains high accuracy with new 

biomarker images [9]. The following results are 

evaluated by ADNI datasets and determine the 

ability of the suggested biomarker with SVM 

algorithm for better results [10]. Then the 

limitations of previous analysis of neuroimaging 

in biomarkers were concluded in [11]. The 

evolution of brain Atrophy subtypes includes all 

types of segmentation methods that predict long-

term cognitive decline and future clinical 

syndrome of Alzheimer’s disease [12]. Frank de 

Vos, et.al, proposes anatomical measurements of 

MRIto increase the classification of AD into two 

different methods for combining the different 

measures offeatures [13]. The measure of all 

weighted combination is better than concatenated 

combination. These results may be to concatenate 

with the study of early diagnosis AD and other 

neurodegenerative diseases. 

 

This paper represents the review and classification 

of Alzheimer’s disease using SVM algorithm. 

Further, it organizesseveral datasets it consists of 

161 subjects with AD and normal patients 

datasets. Finally, the results and graph are shown 

as below with accurate results. 

 

II. CLASSIFICATION 

SVM Algorithm 

SVM is a supervised algorithm which consists of 

two stages: training and testing. The basic SVM 

takes a set of input data and predicts for each 

given input which of two classes forms the output, 

making it a non-probabilistic linear classifier as 

shown in the fig.1. It has ability grouping of all 

the classes in two disjoints groups of classes. This 

grouping is then used to train a SVM classifier in 

the root node of the decision tree, using the 

samples of the first group as positive examples 

and the samples of the second group as negative 

examples. 

 

 

 

 

 

 

 

 

 

Fig.1 Block diagram using SVM algorithm 
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Table.1 Classification result analysis using SVM algorithm 

Classifiers TN FP TP FN Sensitivity Specificity Accuracy 

SVM 45 10 52 12 78.5 85 90.2 

 

III. RESULTS AND DISCUSSION 

In order to develop a generalized network model, 

the training samples are randomly selected from the 

total samples of 120 datasets.In that, 60% of dataset 

has been used for training the neural network and 

the remaining 40% of dataset has been used to test 

the performances of the neural network using 

confusion matrix.  

  

The performance analyses as shown in Table.1. It 

observes the values of accuracy, sensitivity, and 

specificity which obtained from the feature of SVM 

algorithm. 

IV. CONCLUSION 

Alzheimer’s disease (AD) is otherwise known as 

Dementia which is most vulnerable disease in our 

human brain. Totally it consists of 120 subjects 

with normal and abnormal images in cognitive 

model.Hence, it can be concluded that sensitivity as 

78.5%, specificity 85% and accuracy as 90.2% 

using SVM algorithm. 
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