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Abstract 

This paper deals with an M/M/1 queue which has a coxian-2 server vacations and random 

breakdowns..Atthe moment of service completion, the serverdecides to go for vacation with 

probability potherwise continue service in the system with probability 1-p. The vacation 

phases follow coxian-2 distribution, which hascompulsory first phase and optional second 

phase. The system suffers random breakdowns with Poisson rate. The flow balance 

equations corresponding to the model have been derived and closed form expression of 

system size probability has been generated. 
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I. INTRODUCTION 

Extensive research is being carried out in vacation 

queueing models as it has umpteen applications in 

telecommunications, data networks, manufacturing 

sectors and supply chain systems. As an extension of 

classical queueing theory, vacation theory was 

developed in 1970's, so that the server may take 

vacations rather than serving customers who arrive 

at random. Survey papers on the works carried out 

in vacation queueing models, in the last decades, 

were reported by Doshi[8],  Ke[7] and many others, 

in which Doshi[8]  had reported the works on single 

server queues with vacations, extensively. Levy and 

Yechiali[9]  has done an extensive work on 

multiserverMarkovian queues with vacation. The 

concept of breakdown during service has been 

investigated by umpteen researchers including 

K.C.Madan[1], where he studies a queue with bulk 

service that suffers random breakdowns. The 

interruptedservice,of a customer, due to breakdown 

will resume once the system starts functioning after 

under repair for exponential time. 

Jararha and Madan[2] have analyzed single channel 

queue with deterministic service and coxian-2 server 

distribution under steady state where the vacations 

are optional. Gray et.al[6] studied a vacation queue  

subject to breakdown during service, where he 

extends the vacation process, service process and 

repair process follow PH distribution.  

Our paper briefly discusses an M/M/1 queue in 

which the random variables corresponding to arrival 

time and service time follow Poisson and 

exponential distribution. The queue hasserver 

vacations which are optional with Bernoulli 

schedule and coxian-2 distribution, and the system is 

subject to random breakdowns. Once the customer’s 

servicehas been completed,there are two options to 

the server, either, with probability p, it can go for a 

vacation or continue service to the next customer 

with probability 1-p. Our queue has two phases of 

vacation in which the first phase is mandatory and 

the second phase is voluntary. The server may 

decide to take another phase vacation with a 

probability parameterb or revert to the system with 

1-b. Here it has been considered single vacation 

policy 
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II. MODEL DESCRIPTIONS 

 Arrivals follow Poisson with mean arrival 

rateλ (λ > 0)  

 Exponential distribution is followed to 

service time with mean 1/µ (µ > 0) 

 After service is over for a customer, the 

server can go for vacation process with probability p 

or choose to be in the systemwith probability 1-p. 

 Server's vacation is of 2 phases- Phase 1, 

being a compulsory vacation, is exponential with 

mean 1/β_1 (β_1> 0). Optional Phase 2 is 

exponential with mean 1/β_2 (β_2> 0). Server may 

opt to go for second phase ofvacation (probability 

b)or revert to stay in the system (probability 1-b), 

after taking compulsory phase 1 vacation.  

 System may suffer a breakdown, when the 

server is functioning, with Poisson rate η (η > 0). 

The service channel immediately undergoes a repair 

process which is exponential with mean γ (γ > 0). 

The ongoing service of a customer is suspended 

until repair and it resumes once the server starts 

functioning.  

 The stochastic processes involved are 

independent of one another. 

FCFS discipline is followed. 

Definitions, Notations 

• 𝑊𝑛(𝑡) : Probability for n (n > 0) customers 

being present in the system both in queue and in 

service at time t (t > 0) 

• 𝑉𝑛
𝑗
(𝑡) : Probability for the server to be in the 

jth phase of vacation where j = 1,2 and there are n 

units in the system at time t (t > 0) 

• 𝑃𝑛(𝑡) : Probability for n (n > 0) customers in 

the system at time t (t > 0) without regard to the 

system’s state. 

• 𝑅𝑛(𝑡) : Probability that the system is under 

repair and there are n (n > 0) units in the system at 

time t. 

 𝑃𝑛(𝑡) =  𝑊𝑛(𝑡) + ∑ 𝑉𝑛
𝑗(𝑡)2

𝑗=1 + 𝑅𝑛(𝑡) 

Define the steady state PGF 

𝑊(𝑧) =  ∑ 𝑊𝑛𝑧𝑛∞
𝑛=0     (1) 

𝑉𝑗(𝑧) = ∑ 𝑉𝑛
𝑗
𝑧𝑛∞

𝑛=0 ,   𝑗 =  1,2  (2) 

𝑅(𝑧) = ∑ 𝑅𝑛𝑧𝑛∞
𝑛=0     (3) 

𝑃(𝑧) = ∑ 𝑃𝑛𝑧𝑛∞
𝑛=0     (4) 

 Steady state equationsof the system 

(λ + μ + η)Wn = (1 − p)μWn+1 + (1 −

p)λWn−1 + (1 − b)β1Vn
1 + β2Vn

2 + γRn, 𝑛 ≥ 1 (5) 

(λ + η)W0 = (1 − p)μW1 + (1 − b)β1V0
1 +

β2V0
2 + γR0, n = 0                                      (6) 

(λ + β1)Vn
1 = λVn−1

1 + 𝑝µ𝑊𝑛+1 + 𝑝λWn−1,  n≥1  

   (7) 

(λ + β1)V0
1 = 𝑝µ𝑊1, n = 0 (8) 

(λ + β2)Vn
2 = λVn−1

2 + 𝑏𝛽1𝑉𝑛
1, n≥1    

      (9) 

(λ + β2)V0
2 = 𝑏𝛽1𝑉0

1, n = 0                         (10) 

(λ + γ)Rn = λRn−1 +  η𝑊𝑛, n≥1   11) 

(λ + γ)R0 = ηW0,  n=0    (12) 

2.2 System size probability generating functions 

Multiplying (5) by 𝑧𝑛+1 and summing over from 1 

to ∞ together with (6) yields, 

W(z)=
𝑧𝜇𝑊0+𝑧𝛽1(1−𝑏)𝑉(1)(𝑧)+𝑧𝛽2𝑉(2)(𝑧)+𝑧𝛾𝑅(𝑧)−(1−𝑝)𝜇𝑊0

(𝜆+µ+𝜂)𝑧−𝜆(1−𝑝)𝑧2−𝜇(1−𝑝)

  (13) 

Similarly multiplying (7) by 𝑧𝑛+1 and summing 

over from 1 to ∞ together with (8) yields, 

𝑉(1)(𝑧) = 
(𝑝𝜆𝑧2+𝑝𝜇)𝑊(𝑧)−𝑝𝜇𝑊0

(𝜆+𝛽1)𝑧−𝜆𝑧2    14) 

Multiplying (9) by 𝑧𝑛 and summing over from 1 to 

∞ together with (10) yields, 

𝑉(2)(𝑧) = 
𝑏𝛽1𝑉(1)(𝑧)

𝜆+𝛽2−𝜆𝑧
     (15) 
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Similarly multiplying (11) by 𝑧𝑛 and summing over 

from 1 to ∞ together with (12) yields, 

R(z) =
𝜂𝑊(𝑧)

𝜆+𝛾−𝜆𝑧
     (16) 

Using equations (13),(14),(15) and (16) we solve for 

𝑊(𝑧), 𝑉(1)(𝑧), 𝑉(2)(𝑧), R(z) 

W(z) = 
𝐴

𝐸(𝑧)
      (17) 

𝑉(1)(𝑧) = 
𝐵

𝐸(𝑧)
      (18) 

𝑉(2)(𝑧) = 
𝐶

𝐸(𝑧)
      (19) 

R(z) = 
𝐷

𝐸(𝑧)
      (20) 

Where, 

A = 𝜇𝑧𝑤0𝑔2(𝑧)𝑔3(𝑧)𝑔4(𝑧) − 𝜇(1 −

𝑝)𝑤0𝑔2(𝑧)𝑔3(𝑧)𝑔4(𝑧) − 𝑧𝛽1(1 −

𝑏)𝑝𝜇𝑤0𝑔3(𝑧)𝑔4(𝑧) 

− 𝑧𝛽1𝛽2𝑏𝑝𝜇𝑤0𝑔4(𝑧) 

B = 𝑝𝜆𝑧3𝜇𝑔3(𝑧)𝑔4(𝑧)𝑤0 + 𝑝𝜇2𝑧𝑔3(𝑧)𝑔4(𝑧)𝑤0 −

𝜇(1 − 𝑝)𝑝𝜆𝑧2𝑔3(𝑧)𝑔4(𝑧)𝑤0 

−𝑝𝜇2(1 − 𝑝)𝑔3(𝑧)𝑔4(𝑧)𝑤0

− 𝑝𝜇𝑔1(𝑧)𝑔3(𝑧)𝑔4(𝑧)𝑤0

+ 𝛾𝑧𝜂𝑝𝜇𝑔3(𝑧)𝑤0 

C = b𝛽1[𝑝𝜆𝑧3𝜇𝑔2(𝑧)𝑔4(𝑧)𝑤0 +

𝑝𝜇2𝑧𝑔2(𝑧)𝑔4(𝑧)𝑤0 − 𝜇(1 − 𝑝)𝑝𝜆𝑧2𝑔2(𝑧)𝑔4(𝑧)𝑤0 

−𝑝𝜇2(1 − 𝑝)𝑔2(𝑧)𝑔4(𝑧)𝑤0

− 𝑝𝜇𝑔1(𝑧)𝑔2(𝑧)𝑔4(𝑧)𝑤0

+ 𝛾𝑧𝜂𝑝𝜇𝑔2(𝑧)𝑤0] 

D = 𝜂[𝜇𝑧𝑤0𝑔2(𝑧)𝑔3(𝑧) − 𝜇(1 −

𝑝)𝑤0𝑔2(𝑧)𝑔3(𝑧) − 𝑧𝛽1(1 − 𝑏)𝑝𝜇𝑤0𝑔3(𝑧) 

− 𝑧𝛽1𝛽2𝑏𝑝𝜇𝑤0] 

𝑔1(𝑧) = (𝜆 + µ + 𝜂)𝑧 − 𝜆(1 − 𝑝)𝑧2 − 𝜇(1 − 𝑝) 

𝑔2(𝑧) =  (𝜆 + 𝛽1)𝑧 − 𝜆𝑧2 

𝑔3(𝑧) = 𝜆 + 𝛽2 − 𝜆𝑧 

𝑔4(𝑧) = 𝜆 + 𝛾 − 𝜆𝑧 

E(z) = 𝑔1(𝑧)𝑔2(𝑧)𝑔3(𝑧)𝑔4(𝑧) − 𝑧3𝛽1(1 −

𝑏)𝑝𝜆𝑔3(𝑧)𝑔4(𝑧) − 𝑧𝛽1(1 − 𝑏)𝑝𝜇𝑔3(𝑧)𝑔4(𝑧) 

−𝑧3𝛽1𝛽2𝑏𝑝𝜆𝑔4(𝑧) − 𝑧𝛽1𝛽2𝑏𝑝𝜇𝑔4(𝑧)

− 𝜂𝑧𝛾𝑔2(𝑧)𝑔3(𝑧) 

Now, adding equations (17),(18),(19) and (20) we 

get, 

𝑃(𝑧) =  𝑊(𝑧) + 𝑉1(𝑧) + 𝑉(2)(𝑧) + 𝑅(𝑧)  (21) 

To find the only unknown 𝑤0 which appears on the 

numerator on the RHS of equation (21), it has been 

used P(1) = 1 to check for the normality condition. 

But, when z=1, W(z),𝑉1(𝑧), 𝑉(2)(𝑧), R(z) are 

indeterminate (
0

0
𝑓𝑜𝑟𝑚)which implies P(z) is 

indeterminate. Hence we apply L's Hospital rule on 

(17), (18), (19) and (20) and simplifying, 

𝑊(1) = ∑ 𝑊(𝑧)𝑧→1  = 
[𝜇𝛽1𝛽2𝛾−𝜇𝑝𝜆𝛽2𝛾−𝜇𝑝𝜆𝑏𝛽1𝛾]𝑤0

𝛽1𝛽2[𝜇𝛾−𝜆𝛾−𝜂𝜆]−(𝜆+𝜇)[𝑝𝛾𝛽2𝜆+𝑏𝛽1𝑝𝜆𝛾]
  (22) 

𝑉(1)(1) = ∑ 𝑉(1)(1)𝑧→1  = 
𝑝𝜇𝜆𝛽2[2𝛾+𝜂]𝑤0

𝛽1𝛽2[𝜇𝛾−𝜆𝛾−𝜂𝜆]−(𝜆+𝜇)[𝑝𝛾𝛽2𝜆+𝑏𝛽1𝑝𝜆𝛾]
  (23) 

𝑉(2)(1) = ∑ 𝑉(2)(1)𝑧→1  = 
𝑏𝑝𝛽1𝜇𝜂𝜆𝑤0

𝛽1𝛽2[𝜇𝛾−𝜆𝛾−𝜂𝜆]−(𝜆+𝜇)[𝑝𝛾𝛽2𝜆+𝑏𝛽1𝑝𝜆𝛾]
  (24) 

𝑅(1) = ∑ 𝑅(𝑧)𝑧→1  = 
[𝛽1𝛽2𝜇𝜂−𝑝𝜆𝜇𝜂(𝛽2+𝑏𝛽1)]𝑤0

𝛽1𝛽2[𝜇𝛾−𝜆𝛾−𝜂𝜆]−(𝜆+𝜇)[𝑝𝛾𝛽2𝜆+𝑏𝛽1𝑝𝜆𝛾]
  (25) 

Now, summing (22),(23),(24) and (25) and equating 

it to 1, we have, 

𝑤0 =
𝛽1𝛽2[𝜇𝛾−𝜆𝛾−𝜂𝜆]−(𝜆+𝜇)[𝑝𝛾𝛽2𝜆+𝑏𝛽1𝑝𝜆𝛾]

𝛽1𝛽2𝜇(𝛾+𝜂)+𝑝𝜆𝜇𝛾(𝛽2−𝑏𝛽1)
  (26) 

Equation (26) is the idle time probability of the 

server. The steady state stability condition is given 

by, 

(𝜆 + 𝜇)[𝑝𝛾𝛽2𝜆 + 𝑏𝛽1𝑝𝜆𝛾] < 𝛽1𝛽2 

Using 𝑤0 in (23), (24), (25) and (26) we obtain 

𝑊(1)  =
𝜇𝛽1𝛽2𝛾−𝜇𝑝𝜆𝛽2𝛾−𝜇𝑝𝜆𝑏𝛽1𝛾

𝛽1𝛽2𝜇(𝛾+𝜂)+𝑝𝜆𝜇𝛾(𝛽2−𝑏𝛽1)
   (27) 
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𝑉(1)(1) = 
𝑝𝜇𝜆𝛽2[2𝛾+𝜂]

𝛽1𝛽2𝜇(𝛾+𝜂)+𝑝𝜆𝜇𝛾(𝛽2−𝑏𝛽1)
   (28) 

𝑉(2)(1) = 
𝑏𝑝𝛽1𝜇𝜂𝜆

𝛽1𝛽2𝜇(𝛾+𝜂)+𝑝𝜆𝜇𝛾(𝛽2−𝑏𝛽1)
  29) 

𝑅(1) = 
𝛽1𝛽2𝜇𝜂−𝑝𝜆𝜇𝜂(𝛽2+𝑏𝛽1)

𝛽1𝛽2𝜇(𝛾+𝜂)+𝑝𝜆𝜇𝛾(𝛽2−𝑏𝛽1)
   (30) 

Equations (27), (28), (29) and (30) give the 

probability for the server to be available in the 

system, is on phase-1 vacation, is on phase-2 

vacation and the server is under repair, respectively 

in steady state. 

To find the utilization factor 𝜌, that is, the busy 

period, we subtract𝑤0 from W(1), since W(1)  

includes idle period𝑤0 

𝜌 = 𝑊(1) − 𝑤0 =
𝛽1𝛽2𝜆(𝛾+𝜂)+𝑝𝜆2𝛾[𝛽2+𝑏𝛽1]

𝛽1𝛽2𝜇(𝛾+𝜂)+𝑝𝜆𝜇𝛾(𝛽2−𝑏𝛽1)
  (31) 

By substituting for 𝑤0from (26) into equations (17), 

(18), (19) and (20), we have determined W(z), 

𝑉(1)(𝑧), 𝑉(2)(𝑧)and R(z) completely and explicitly. 

2.3 System performance measures 

The PGF of the steady-state probability distribution 

for the system size is given by 

𝑃(𝑧) =  𝑊(𝑧) + 𝑉1(𝑧) + 𝑉(2)(𝑧) + 𝑅(𝑧) (32) 

• By differentiating (32) w.r.t z, and 

substituting for z as 1, we get the average system 

size 

 𝐿 = ∑
𝑑

𝑑𝑧
[𝑃(𝑧)]𝑧→1  (33) 

• The average queue size is obtained as,  

𝐿𝑞 = 𝐿 − 𝜌 (34) 

where𝜌 is given by (31) 

• The mean system time W, and the mean 

waiting time in the queue 𝑊𝑞, is derived from 

Little’s formula 

𝑊 =
𝐿

𝜆
 (35) 

 𝑊𝑞 =
𝐿𝑞

𝜆
     (36) 

Special case 

M/M/1 queue without vacations and breakdown  

For this case we let, p=0 in (31), (26), (17), (18), 

(19) and (20) and get, 

𝑉1(𝑧) = 𝑉(2)(𝑧) = 𝑅(𝑧) = 0 

𝑊(𝑧) =
𝜇𝑧𝑤0 − 𝜇𝑤0

[𝜆 + 𝜇 + 𝜂]𝑧 − 𝜆𝑧2 − 𝜇
 

Which on simplifying yields, 

𝑊(𝑧) =
𝜇 − 𝜆

𝜇 − 𝜆𝑧
=

1 − 𝜌

1 − 𝜌𝑧
 

Equations (26) and (31) yields, 

𝑤0 = 1 − 𝜌 

𝜌 =
𝜆

𝜇
 

Which corresponds to the results of the conventional 

M/M/1 queueing model. 

III. CONCLUSION 

In our paper, a single server queue with coxian-2 

server vacation and server breakdown has been 

analyzed. We have derived PGF for the system size 

explicitly. We have also derived average system size 

and queue size. System's performance measures 

have been found.This work can be extended to find 

waiting time distribution function in steady state or 

the entire model can be extended for transient state 

solutions. 
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