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In the proposed article, we analyze the effects of results to a primary issue, that are
inadequately analyzed, hence stimulating to trace a development of the reaction
exercise with dissemination. The main results of numerical and analytical studies of
nonlinear mathematical models describing population processes in a homogeneous

and inhomogeneous medium with nonlinear diffusion by quasilinear parabolic
equations were presented. We studied such categories of nonlinear differential
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equations where an unspecified function and imitative of this function penetrate in a
power-law manner, thus actual physical exercises were nonlinear, and non-linear
numerical models should be used to describe them adequately.

. INTRODUCTION

To solve the Cauchy problem of the reaction-diffusion
equation, self-similar solutions satisfying the ordinary
differential equation are of great interest.

Studies of the self-similar problem carried out in [1-
12]. The one-dimensional case well studied. In
particular, it proved that there are a finite number of
solutions to the self-similar problem on the line.
Two-dimensional problem is less studied. In its study,
usually using numerical methods, and there are certain
difficulties. The differential problem posed on the entire
plane and it is necessary to choose the domain of
numerical integration so that the constructed solution is
sufficiently small on its boundary. In addition, when
using purely implicit difference schemes, the Newton
method usually used for iterations over nonlinearity.
Therefore, it is necessary to learn how to build good
initial approximations, that is, it is necessary to imagine
in advance the form of the desired solution.

In [1] considered, the following Cauchy problem in
Q =R"x(0,T),N>1:

S-S o)
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u(x,0)=u,(x), xeR", uy(x)=0 2)
suppu, € B, E{|x|< Ro}, Up, g <0 ()
p=(1+[¥)", 1>0 )
In [2], the mentioned equation is considered:
ut—div(um’1|Du|p_2 Du):O 6 0, =Qx(0,T). (6)
m— p-2 OU _
u l|Du| %—0 Ha 8Q><(0,T,) @)
u(x,0)=uy(x), xeQ ®)

whereQeR", N>2 - atm+p-3<0 (6) describes a
fast diffusion process.

In [3], the Cauchy problem of the following form is
considered:

u, = div(u“ |Dul™ Du)+ u®
thusO<m+a<1.

In [4], the existence and non-existence in time for the
result to the following Cauchy complication of an initial
data slowly tending to zero are established. Considered:
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u, :div(u“|Du|m*l Du)+up )

)

(xt)eQ =R"x(0,T), T>0, N>1

u(0,x)=u,(x), xeR"

(10)

wherem+a <1,m>0, m+a>max{0 1_mT+l} p>1.

Atm+a—-1<0, equality (9) refers to the equations of
fast diffusion, the case m =1arises in plasma physics [3].

In [5] it is shown that if p<p =1+2/N, then any
non-negative solution to problem (9) - (10) “explodes” at
definable duration. In case of exacerbation p>p”.

Il. FORMULATION OF THE PROBLEM.

Under Q={(t,x): 0<t<oo,x € R"}consider the
cross-diffusion system of a biological population

%:VO fp_ZVug‘l)+k1(ul—ufl),
aaut (| |p2Vu{”2)+kl(u2—uf2),

(11)

U |t:0: Uo(X), U, |t:0: Uy (X)
wherem;,m,,n, p>0, BB =20,
u, =u,(t,x)=0.

In this paper, analyze the effects of results from

equation (11) depend upon a self-identical way by the
practice of nonlinear distributing [12].

u, =u(t,x)=0,

Replace in (11
U (t,x) =e v, (z(t),x), u,(t,x) ="V, (z(t),x) :
%W(I A Vv;”l)—alr*’lvfa
o (12)
-2
a_;zv( “° Vv{“?)—azrbzvfz,
v, |t=O: Vig (X) v Vs |t:0: Voo (X) .
Here
[myko +( p—2)kky —k Jt [maky +(p—2)kk, —k, It
() = e e

mk, +(p—2)kk, —k, M.k +(p—2)kk, K,
b1: 1ﬂ1_(p_2)kk1_m1k2
mk, + (p—2)kk, — k,
— kzﬂz _(p_z)kk1_m2k1
i m2k1+(p_2)kk1_k2 .

Subsequently the result of structure (2) is pursued in the
format
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vi(t,x) =_\_/1(T W, (z (1), (X)),
v, (1, %) = V2 (1), (z (1), (X))

(@) =T +7) ", V()= +7)7*, T, >0,
(13)
1
Where at b =0, b,=0:y, = LV, = ,and at
b, > N 51 e 5, -1
b,#0, b, #0: » b+1 y2:b2+1.
ﬂl ﬂz_

After for W, (r,(p(|x|)), I =1,2 obtain the structure
of equations:

8\N1 _ 1—si s—1
=9 20 [?
k

or
_ 1-s 8 s-1 aW
=9 6(0[(0

p-2 m

aWk
- 6(; +y (W —wi), (14)

op

p-2 m,

OW.
—2 : }'H//z(wz_wzﬁz)n

or

op op

1
A-rl(p-2k-1]-y,m)z,
1
A=7,[(p-2)k-1]-y,m,)z,
Here atp>n: o(|x)) =[x/ p,,
s=pN/(p-n),
Andatp=n: p(x)=In(x)),

Self-identical outcome of structure (14)
have a format

wherey/; =

W, =

=(p-n)/p,

W(r).0)= (). E=p(x) /"

(15)

Then substituting (15) in (14) for f.(&)get a
system of self-similar equations

1-s d s-1 dflk " 2 é df Ay _
$ @(5 E df) 242 +(f,— 1) =0,
s d o |dfy df m & df, Ay
4 déf(g df dé‘) 2 de +u,(f,— 1/2)=0.
(16)
h = L d
A T -k -1 7ym) ™
1
Hy =

@-7[(p-2)k -1]-ym,)
System (16) has an approximate solution of the form

=A@-¢),", f,=B(a-¢).",

where
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o = (P=DIk(p-2)~(m, +1)]
b k(p-2)-1P-mm,
o = (P=DIk(p-2)—(m, +1)]
© k(p-2)-1F-mm,

I1l. PARABOLIC

Structure of two quasilinear reaction-diffusion equations.
Observe within an area Q ={(t,x): 0<t,x e R}.parabolic

structure of two quasilinear reaction-diffusion equations:

-2
oy o 1]éu P au au
A _ 9 py™m L) =2 4k (D (1-ufr),
= ax(u ax} O+ Ou (1-ujt)

%:E Dumz_1
o ox

au
OX

au,

2¥1 X

p-2
ou ou
a—)f}+l(t)§2+ Ky (t)u, (1—u12),

(17)
U1|t:0: U (%), .

-2
ou, P

m -1
D,u, o

Diffusion coefficients are equal

p-2
D,y Ny and convective transport with speedI(t),

wheremy,m,, p,A3,5,-  favorable  real  numerals,
U = Uy (t,X) >0, u, =u,(t,x) >0- pursued solutions.

Next, evaluated the quality measurement elements of
the equation under consideration by building a self-
identical structure of equations of (17).

We develop the self- identical structure of equations
through the technique of nonlinear distributing [1].

Substitution in (17):

—ikmd: t
u(t,x)=e vy (z(t),7), 1= X—I|(§)d§,
0
—jkz(g)dg t
Lt =e v (et)n), n=x-[1()ds
0

will lead (1) to the type

M _ 0 g mtda)
or 0n

on
% = i Dzvinzfl
or 0On

V1|t:0= Vip (1), Vs, |t:0= Vo (7).
If (m, —1)k, + (p—2)k; = (M, —1)k, +(p—2)k,, then
choosing

on

aVZ
on

on

(18)

Published by: The Mattingley Publishing Co., Inc.

p-2 v
1 J —k, (t)e[(?-— p)kﬁ(ﬂr”h*l)kz]tvlvéﬁ ,

p-2 v
2 | k2 (t)e[(ﬂ2*m2 +1)k +(2-p)k, ]tvigz Vza,.s
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© e[(mrl)szr(FJ*Z)‘H]t e[(f“zfl)kﬁ(P*Z)kz]t
7(t) = = ,
(m =Dk, +(p—2)k; (M, =Dk, +(p—-2)k,

we get the mentioned structure of calculations:

p-2
or 0On on on
N, 0 ov,|P % ov
No_ O pypt| D2l N | g (1) vy,
or On on on

(19)
where
a =k ((p—2)ky + (M ~Dk, )",
b = (2—p)ky + (B —my + 1)k,
(P—2)ky +(m; 1k,
8, =k, (M, —Dk; +(p—2)k; )% .4
(B, —my +Dk; +(2— p)k,
(m, —Dk;, +(p—2)k,
If b =0 following a(t)=const, i=12, the structure
will use this type

o 0

=—| Dyt
or 677[ 12
v, o v, P2 v
e D VA 2 e R Va8
or On on on

The Cauchy calculation of structure (19) in this
scenario while b, =b, =0, analyzed in [2-6], where a
presence of ripple universal results and blow-up
outcomes was also determined.

In order to obtain a self-identical for the structure of
calculations (19), it first located the result to the system
of normal differential calculations:

, =

M
on

p-2
oV,
—lJ —a,vvi,
on

dv, __

2 =—aiif,
dr

dv. _p_

2= —az‘/lﬂz Vo,
dr

In the form
(@) =c(r+Ty) ™, vo(r) =C,(r+Tp) 72, Ty >0,
where

1 1
a=lL,n=— =1 yyp=—

A B
And further the outcome to structure (17) was pursued

Vi (t.77) = va(t)wy(z,7),

Yy (t,7) = V2 ()W, (7,7),
and r = z(t) is chosen like this:
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7 (0) = [vP 2 (vi™ P (©)dt =
0

1
1-[n(p=2)+y,(m —1)]
= ecu 1=[y1(p—2)+y,(m 1] =0,

In(T +7),  ecau 1-[y(p=2) +y,(m -1)] =0,
(T+7), eciu p=2 u m =1

if 71 (p—=2)+ 7, (M —1) =y, (P —2) + y5(m, —1).

After for w, (7, x), i =12 we obtain the structure of

equations:

% = ﬁ [ DlW;nl_l

O’ + T)l*[h( p—2)+7,(m-1)] ,

-2
ow, P

on

Y

on

or 0On

%:i D. sz—l
or 0n

] +y (Wlwzﬂ1 -W)

p-2 '
MWy %]ﬂ//z(wzwlﬂ2 —W,)

21 677

on

(20)
where
1
w, =1 A=[1(p=2)+ yp(m D]z’

_(1’[?1( p-2)+r2(m-1)] )
'

4

ecnu 1=y (p—-2)+y,(m 1) >0,

ecnt 1[4 (p—2) + 7, (my ~1) =0,

1 .
Jif 1- -2 -1)]>0,
v, =4(1—[72(p—2)+y1(m2—1)])1 it 1-lr2(p=2)+ra(m, =11 >

7261*(1*[72(P*2)+h(m2*1)]) , if 1_[},2 (P _ 2) + 71(’"2 _1)] -0
The description of structure (18) within a kind of (20)
suggests that with  —oou y; — 0the solution of the last

system asymptotically at the front may tend to solve the

system
-2
a\N]. _ a Dwml—l aNl P a\N].
Iyt Bl S o B
or 0n on on
p-2
a\NZ _ a D sz—l a\NZ a\Nz
—_— s — 2 l _— — .
or On on on

This circumstance is used to find the initial
approximation for the construction of the iterative
process. If 1-[y(p—2)+y,(m —1) =0,then system (20)
has the wave solution:

W (z(t). ) = (&), S=crxp, 1=12,

while ¢ is the wave velocity along with functions

W, (z(t),n) = f; (&) find from the system of self-similar

equations:

-2
d o me|dfy P df, dfy P
St Bl Py B -, £ =0,
dg 7 dg| g Tge T (21)
d . omaldf, P df,.  df
E(fl 2 1(?;2: d7§)+cd7§+#2(f2_f2 f1ﬂ2)=0|
Hi L =12

= L
A-[ri(p=2) + y3i(m; =1)])

which has a localized solution

fl = A(a_§)+nl7 f2 = B(a_é)JrnZa

Published by: The Mattingley Publishing Co., Inc.
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oo (P D(-(mD) - (p-1)(p—(m;+1),

n=(p-2)"~(m -1)(m, -1),

if
p>2+[(m ~1)(m, ~1)I"%, p—(m;+1)>0,i=12,
P=1Iny, pp=1Iny.
As well as, coefficients A and B have been ascertain

through the result of a structure of nonlinear algebraic
calculations:

(n)PAPIB™ T —¢, (n,)PtA™ B =,
Then taking into account the expressions

t
~[lu($)dg

ul(tlx):e 0 Vl(T(t),T]),

t
~[kp()d¢

Up(t,x)=e ° Vo (z(1),7)

Include,

t
-l ($)d¢

 (t,x) = Ae ° (cz(® - &),

t
-[le($)dg

U, (t,x) =Be ° (cz(t)- &), ¢>0.

Due to the fact that [bz(t) —Jt'l(n)dq -x]=0,
if 0
X2 [br(t)—jl(n)dn—x] <0, Vt>0,
then 0
Uy (t,X) =0, uy(t,x) =0, X > [br(t)—jl(n)dn—x] <0,
0

vt > 0.
Hence, the state for localizing the results of structure
(17) was the conditions
[1(y)dy <0, z(t) <o for vt > 0. (22)
0
Condition (22) is the state of an illusion for the recent
consequence — this internalization of ripple results (22).
If condition (22) is not satisfied, then the circumstance of
a definable velocity of propagation of a distraction will be
carried out, i.e.

¢
t —(m+p-3) [k (y)dy
Ui (t,X) =0at|x > b(t), 7(t) = [e 0 de,
0

moreover, the front goes as far as the time goes by, since
7(t) > catt - .

6891



THEST

Engineering & Management

IV. SLOW DIFFUSION.
Case n, >0,n, >0,n>0 (slow diffusion). Using the

method [1] to solve equation (17), we obtain the
following functions:

68 =@-9)." 6&)=(a-¢)."
wherea>0, (y), =max(y, 0), £ <a.

It is clear [1, 2] that for the universal presence of the
result of calculation (17) the function f (&)should fulfill

the below mentioned inequality:

p-2
L sy -t 12 <0,
dé d&|  d&”  dé
p-2
i(flmz—lﬂ £)+C£+ﬂ2(f2_f2 flﬂZ)SO,
de dé& d¢& d¢
and

Take functions (&), 6,(&)and show that they will be

the asymptotics of the finite solutions of system (21).
and show that they will be the asymptotics of the finite
solutions of system (21). &-—>a_has asymptotics

fi(5)~3 ().
Evidence. It will seek a result to equation (21) like a
subsequent type:

fi=3(5)yi@). i=12, (23)
wherer7=—In(a—¢).and7 —+oo0at& — a_, which
allows us to study the asymptotic stability 7 — +oo.
Substituting (23) into (21), for y; (77) we get the following

March-April 2020
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—Hi

— Vi @re Ay, ).

To investigate the final expression, we establish a
fresh auxiliary function

o(z,m) :_[ai:‘” —nijr—c[%_niyij_

-7
— ey M,

where7 - real number.
Therefore, this is simple to view for each value 7
functiong(z,n7) retains a mark at some interval

—H;

[1h,+0) =[17,,+00)and for all 77 €[n,+0)one of the
inequalities
@ (7)>0, @ (1)<0.
In addition, of the function e (77) there is a restrain
for 77 €[n,,+00). From the expression for @, (77) pursues

as

lim o (17) =
n—>+0
= lim

e’ dy;
| == gl -
ne | (a—e” dn

Hence, given that
&—>(a)=h, lime” >0, lima-e” >a, «=0,

n—>+0 1n—>+00

e’ n )
Y ) Y () (L+e Wy, oy
a-e

we obtain the following algebraic equation:

equation: .
d [ mes|dy " dy e ! dly) T
m, = i i m; i i _ 1 po
ﬁ Yali E_niyi (dn_niyi) +[a—e"7 —ni] Y3l dn —NYi dy —(fhl)/)‘) Yo lyf t=c

dy; e’ B .
+C(d—y' — MY J — g ———Y; ()(L+e >y, iy =0,
n a

_e
(24)

wheren - function defined above.

Note that studying a result of the final calculation is
parallel to analyzing the results of equation (21), every of
that in a particular interval [77,,+o0) completes an

inequality
dy;
Yi (7)>0, E_niyi #0.

We indicate primary of all the outcomes 'y, ()
equations (21) has the definable restrain Y, at 7 —+o0.
We initiate the subsequent manner:
dy;
dn
Then equation (21) takes the form

p-2

dv:
(d_):;_niyi)-

o, (m)=vysi -0y,

Published by: The Mattingley Publishing Co., Inc.

p£l  m,-1, p-1
na) Vi Yh

The solution to the latter system gives y, =1and by
virtue (21), f,(&)~3(&)-

2)Bi =1/n;,i=12, y;should be a solution to the
system

=C.

p-1 -1,,p-2 -1
(nl) yrznl yf + ylnl ygl(ﬁl ) _ c,
p-1 -1,,p-2 -1
(ny)" yreyh 2y Py =
Thorem 1 is proved.

V. FAST DIFFUSION

Case n, >0,n, >0, n<O0 (fast diffusion). For (21) we
have

n@)=@+& )", r)=(@+&)™,
wherea > 0.

6892
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Theorem 2. At& — +oothe solution problem (21)
disappearing at infinity has the asymptotics
fi(&)~x (). i=12

Proof. To prove the theorem, we use the
transformation

fi=x©ym), i=12
where 77 =In(a+¢&), which leads (22) to the following

form.
Substituting (22) into (21), fory;(r7) we get the

following equation:
p- el
nY, (——n Yi) [+ — N y3—i
a+e
77

d m,—1 dy| _
dﬂ[ySI - Y
+c[%+n y,j n

wheren - unction defined above.

Note that studying the result of the final equation is
parallel to studying those solutions of equation (21), each
of which in a certain interval[r,,+o0)satisfies the

inequality

e Ay, Fy=0,

(25)

dv.
Yi (77)>0, d_);;_ni)'i #0.

We indicate primary of all the outcomes vy, (7)
equations (22) has the definable restrain Yy atr7 — 0.
We initiate the subsequent manner:

1|dy;

aHPs
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@/ (n)>0, o (n7)<0.
Hence, for function @, (77) there is a restrain for
11 €[n,,+0o0). From the expression for e (77) follows that

lim &/(17) =
n—>+0
n
_L € - _niJa}l —C(%—n y,j
= lim{ \&°¢ 4 =0.

17—+

e “n B _
Hi —,, yi(m)(L+e VA y3_iﬁ' )
a—

Fro phaara with &§— oo, B; >1,1=12, we obtain the
ient éltg_gbrglé‘ idgifation:

(—ry )Pty tyPt =,

(-n2)" vyt =c
Calculating the last equation gives y; =1and by virtue

@), 1(&)~x($)--
Theorem 2 is proved.

V1. COMPUTATIONAL EXPERIMENT
To numerically solve calculation (17), we

develop a consistent grid and a temporary grid [13-14].
We substitute equation (17) with an complete

distinction plan and get a distinction calculation with an

delusion O(h? .
a)|(77)=Y37| d):; |y| (__ny|) ( +hl)
Then equation (22) takes the form As it is clear, the major obstacle for the numerical
/ e’ dy; e _n,z0utcome in nonlinear calculations is the suitable option of
o == o n | —C -y Hi o ——Vi(n)d+e . . . . .
a-¢ the primary estimation along with the technique of

To investigate the final expression, we establish a
fresh auxiliary function

-1 -1
o) =—| - |- (diy] LA
a-e™” dn a—e™"

where7 - real number.
Therefore, this is simple to view for every valuer
functiong(z,n7) retains a mark at some interval

[171,+00) =[175,+00) ¥ 1pu Beex 77 €[r3,,+00)one of the
inequalities

Published by: The Mattingley Publishing Co., Inc.

linearizing the structure (17).

The created application authorizes you to visually

y; (7)(1+e monitor the development of the procedure for various

values of parameters as well as data.
Numerical computations indicate that in the scenario of
arbitrary values m, p >0, >0 qualitative elements of

outcomes will not alter. Furnished were the outcomes of
numerical examinations for several parameter values
(Fig. 1-2).
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1. Fast diffusion

xl=[1;x2=1; x1=[30;x2=30; x1=[30;x2=40;
Parameter values X|=+2 [x|=3ov2 50
m =08,m,=07 p=21
eps =107

B=2 B,=5

n<0

m =0.4,m,=05 p=22
eps =10
131 =2 ﬂz =2

n<0

2 . Slow diffusion

x1=[1;x2=1,; x1=30;x2=30; x1=30; x2=40;

Parameter values X|=~2 |x|=[30+/2 50

m =19, m,=5 p=25
eps =107
=15 f, =2

n>0

m=15m,=2 p=25

eps =10"°

=15 §,=2

n>0

Published by: The Mattingley Publishing Co., Inc. 6894
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VIl. CONCLUSION

Above properties are established on the basis of the
solution comparison theorem, the asymptotics of self-
similar solutions are obtained, including for the case of
fast diffusion. Based on the solutions found, numerical
calculations are performed.

Evolution of solutions developing in an aggravated
regime involves several stages. In particular, a
guasistationary stage (slow solution growth) and an
explosive growth stage are necessarily present. Using the
example of finite solutions, it is possible to study the
rarely considered stages, when the solution first decreases
in amplitude, its carrier increases (“spreading of the
solution™), then localization occurs (the carrier ceases to
change) and only then the solution begins to grow. Our
goal was to find out the relationship between the form of
the initial perturbation and the duration of these stages.
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