

March-April 2020

ISSN: 0193-4120 Page No. 6035 - 6041

6035

 Published by: The Mattingley Publishing Co., Inc.

Hybrid Firefly based Software Defect Prediction on

Imbalanced Data

1 Dr. S. A. Sahaaya Arul Mary, Professor and Head,Computer Science and Engineering

Saranathan College of Engineering, Trichy, Tamilnadu, India.

.
2 C. Shyamala, Assistant Professor, Dept. of Computer Science and Engineering, Saranathan College of

Engineering, Trichy, Tamilnadu, India.

Email: samjessi@gmail.com.

Article Info

Volume 83

Page Number: 6035 - 6041

Publication Issue:

March - April 2020

Article History

Article Received: 24 July 2019

Revised: 12 September 2019

Accepted: 15 February 2020

Publication: 01 April 2020

Abstract:

Increasing complexity of software systems has led to the increased necessity for

analyzing and testing these software for their efficient functioning. This work

proposes a meta-heuristic based software defect prediction model for faster and better

performance. The proposed model is composed of two major stages; the feature

selection stage and the defect prediction stage. The feature selection stage uses

Cuckoo Search, a metaheuristic classifier model as the search method to identify the

features that are mandatory. The defect prediction stage uses the Hybridized Firefly

model to identify defects in the software. Experiments with state-of-the-art models

from literature indicates enhanced performances, exhibiting the efficiency of the

proposed model.

Keywords: Software Defect Prediction; Cuckoo Search; Firefly Algorithm;

Simulated Annealing; Feature Selection

I.INTRODUCTION

Software defect prediction is the process of

identifying defects in software modules to enable

faster and more efficient testing process. Prior

identification of prospective defective modules leads

to better analysis of the identified modules. Testing

can be concentrated on these defective modules [1],

hence providing better focus on the defective

modules. Such indications can also be highly useful

for guiding the code review process, hence

providing better quality assurance for the software

being analyzed.

Defect prediction in software is a complex task,

mainly due to the large number of inconsistencies

involved in the process and the fact that software

systems are large-scale and complex. Further,

another major issue in this field is that sufficient

training data pertaining to the required module

might not be available. Hence it is always a practice

to perform cross-project prediction [2]. Cross-

project prediction is the process of using log records

from past data to perform training and to create a

trained model. This trained model is used tao predict

defects for the current software system.

Software defect prediction is a supervised learning

problem, which has several major issues that has to

addressed for effective prediction. The first and the

major issue is the presence of data imbalance. Log

records pertaining to defect prediction is composed

of several records depicting the non-defective cases

and a very few instances depicting the defective

cases. This leads to an imbalance in the data, hence

affecting the prediction process. Another vital issue

is the complex relationships existing between

March-April 2020

ISSN: 0193-4120 Page No. 6035 - 6041

6036

 Published by: The Mattingley Publishing Co., Inc.

attributes and faults [3,4]. Since log records are used

as the base data, it could be observed that the

records contain huge number of attributes, hence

leading to huge data sizes. However, on analysis it

could be revealed that not all attributes contribute to

the prediction process. Elimination or appropriate

handling of such data is mandatory. The final issue

is the absence of standard measures for analysis [5].

This work presents a hybridized Firefly based

prediction model and Cuckoosearch based Feature

Selection model that aims to address most of the

issues to provide enhanced predictions.

The remainder of this paper is structured as follows;

section II presents a review of the literature, section

3 presents a detailed view of the proposed

architecture, section 4 presents the results and

discussions and section 5 concludes the work.

II.RELATED WORKS

Defect prediction is an emerging domain due to the

increased use of software products. This section

discusses some of the recent and prominent

contributions in this domain.

An Artificial Neural Network based approach for

software defect prediction, HyGRAR was proposed

by Miholca et al. in [6]. This model proposes a

hybrid combination of gradual relational association

rule mining and artificial neural networks to predict

defective software modules from non-defective

modules. The HyGRAR model is an extension of the

GRAR model proposed by Czibula et al. [7]. This

model extends the association rules using fuzzy

relations for effective defect predictions. A cross-

project model-based software defect prediction

model was proposed by Yu et al. [8]. The model

operates based on Binary Logistic Regression and is

considered to be a self-assessment model. A similar

model, using multiple linear regression and Genetic

Algorithm was proposed by Afzal et al. [9]. A three

way decision framework for software defect

prediction was proposed by Li et al. [15]. This is a

cost-sensitive decision making framework, based on

the widely used two-stage classification model.

This domain was also explored in an unsupervised

learning context. A self-organizing maps based

model proposed by Abaej et al. [10] performs

grouping by creating weighted vectors and threshold

based labeling. Other studies using clustering

includes K-means clustering based model proposed

by Bishnu et al. [11], which uses quad trees to

identify the cluster centers and a similar K-means

clustering based model by Varade et al. [12], which

uses hyper-quad trees to initialize cluster centers. An

X-means clustering model for defect prediction was

proposed by Catal et al. [13]. This model identifies

clusters and uses threshold values for software

metrics to determine if the clusters are defective or

non-defective. Other similar model includes feature-

selection based defect prediction models by Park et

al. [14].

III.HYBRID FIREFLY BASED SOFTWARE DEFECT

PREDICTION

Defect prediction in software is one of the major

activities that can aid in reduced testing costs and in-

turn overall software cost. This paper presents a

metaheuristic model-based software defect

prediction model that aids in faster and more

accurate prediction of defects. The proposed hybrid

Firefly architecture is composed of two major

phases; Cuckoo Search based Feature Selection

module and the defect prediction module using the

Hybrid Firefly classifier. Workflow of the proposed

architecture is shown in figure 1.

3.1 Cuckoo Search based Feature Selection

Defect prediction in software is usually performed

on the log files pertaining to programming. These

files contain all the information related to the

software being constructed, hence is bound to be

large with huge number of attributes. Although most

of these attributes are representative of the

software’s state and do not contribute in terms of

predicting defects, it is mandatory to record them for

logging purposes. Hence analyzing the attributes and

identifying the best set of attributes can result in

providing better predictions and can also enable

March-April 2020

ISSN: 0193-4120 Page No. 6035 - 6041

6037

 Published by: The Mattingley Publishing Co., Inc.

huge reduction in cost.

Figure 1: Hybrid Firefly Architecture for Defect

Prediction

Feature selection techniques in-general can be

categorized as filters and wrappers. Wrapper based

feature selection models perform feature reduction

using learning algorithms, while filter based feature

selection models uses correlation between features

as a major criterion for selecting or eliminating

features. The proposed model uses wrapper-based

feature selection method, with CFS based subset

evaluator as the attribute evaluation model and

Cuckoo Search as the search method.

 CFS Subset evaluator [16] operates by selecting a

subset of the best features and hence subsequently

identifying the best subset for features. A subset

with high class correlation and low inter-correlation

is used as the selection criterion.

A feature is said to be relevant iff there exists some

vi and c for which p(Vi = vi) > 0 such that

If the correlation between the components are

known, and the inter-correlation between is

provided, then the correlation can be predicted by

 Where rzc is the correlation between the summed

components and the outside variable, k is the

number of components, () is the average of the

correlations between the components and the outside

variable, and () is the average inter-correlation

between components [17, 18, 19].

Cuckoo search, being a prediction model has been

incorporated as the search mechanism, while the

subset evaluation is being performed by the CFS

subset evaluator. This results in a sub-set of the log

data that can effectively provide better predictions

and reduced computation complexity.

3.2 Hybrid Firefly for Defect Prediction

Firefly algorithm [20] is a swarm based model,

operating based on the behaviour of fireflies.

Movement of Fireflies is determined by the

brightness or light intensity of the fireflies in the

swarm. Light intensity of the Fireflies is considered

as the fitness with which the swarm movement is

performed.

The major assumptions of Firefly algorithm are as

follows:

• A firefly has the probability to get attracted

to any other Firefly, and all the Fireflies are

considered unisexual

• Level of attraction exhibited by a Firefly is

directly proportional to its light intensity or

brightness

• All Fireflies are attracted towards the

brightest Firefly

March-April 2020

ISSN: 0193-4120 Page No. 6035 - 6041

6038

 Published by: The Mattingley Publishing Co., Inc.

• Brightness of a Firefly is determined by its

distance

• If no firefly is brighter than a given firefly,

then it moves randomly

The process of Hybrid Firefly based defect

prediction is performed in three major phases; the

search space creation phase, Firefly distribution

phase and the Firefly movement phase using

hybridized local search model.

1.1.1. Search Space Creation using Log Data

The software defect log records obtained after

feature selection is used as the base for creating the

search space. Every node is considered as a solution

and forms the search space. The number of features

contained in the log records determines the

dimension of the search space. Along with the

training data, a single instance from test data is also

added to the search space. After every convergence,

the test data is changed to the next instance and the

same process is repeated. Hence every iteration

converges with predicting a final class for the test

instance.

1.1.2. Firefly Distribution

Search space creation is followed by distributing

fireflies on the nodes in search space. Since the

problem under analysis is a classification problem,

all the fireflies are distributed on the test instance.

Firefly movement begins from the test data and the

final location of Fireflies is used to determine the

prediction for the test data.

1.1.3. Firefly Movement using Hybridized Local

Search

Local search is the process in which the Fireflies are

moved towards the best available solution.

Movement of fireflies is determined by the fitness

function. Light intensity/ brightness of a firefly is

considered as the fitness function. Fitness is

determined by the distance criterion and is given by,

Where Xtest,j refers to the jth attribute of the test data

and Xi,jrefers to the jthattribute of the firefly i.

Hybrid Firefly Algorithm

1. Input Log Data (D) for Defect Prediction

2. Apply Cuckoo Search based Feature

selection to obtain pre-processed data (D’)

3. Generate Search Space using D’

4. Generate initial population of Fireflies

5. Distribute Fireflies on the test instance to be

predicted

6. Initiate random Firefly movement

7. Formulate light intensity of Fireflies using

Eq.1

8. For each Firefly i

a. Use Simulated Annealing based local search

to identify the best Firefly j

b. Compare the intensities of Firefly i to j

c. Initiate movement depending on the firefly

with best intensity

d. Update intensity of Firefly

9. If stopping criterion not reached goto step 8

10. Identify the node n with maximum firefly

concentration

11. Provide Prediction based on the selected

node n

Firefly movement is initiated with each Firefly

comparing its intensity with the intensity of the all

the other Fireflies. However, since all the Fireflies

are distributed on the test data, an initial random

movement is initiated. The movement is initiated by

identifying the most attractive firefly within the

vicinity of the current Firefly. The actual Firefly

algorithm compares each firefly with every other

firefly prior to movement. However, it is

computationally intensive. Hence the

proposedmodel hybridizes this local search approach

using Simulated Annealing.

Simulated Annealing (SA) is a metaheuristic-based

model that operates by identifying the global

March-April 2020

ISSN: 0193-4120 Page No. 6035 - 6041

6039

 Published by: The Mattingley Publishing Co., Inc.

optimum of a function based on heating and

controlled cooling of materials. The major

advantage of Simulated Annealing is that it has the

ability to operate on very large search spaces to

provide optimal results.

The proposed model incorporates Simulated

Annealing as a local search process to reduce the

computational requirements of the Firefly local

search mechanism. Intensity levels of all the

Fireflies are passed to the Simulated Annealing

module. The intensity levels are analyzed and the

Firefly with best intensity is returned by the

Simulated Annealing module. This results in all the

other Fireflies moving towards the selected Firefly

and the selected Firefly moves in a random

direction.

This process is repeated until the swarm reaches

defined number of iterations or until the swarm

experiences stagnation. Stagnation is the process in

which all the Fireflies converge into a single best

solution and hence they exhibit no movement. The

converged point in identified as the prediction for

the test data.

IV.RESULTS AND DISCUSSION

Experiments were conducted on the Promise data

(cm1), a huge corpus of data taken from spacecraft

instrument management from NASA. It contains 22

attributes (21 features+1 class) and 498 instances.

The data exhibits an imbalance ratio of 9.3.

Comparisons were performed with the three-way

decision-based software defect prediction model

(3WD) [15] and Cuckoo search and BFO based

model (CS-FS & CS-BFO) [21].

ROC curve of the proposed model and the CS-FS &

CS-BFO model is shown in figure. It could be

observed that the ROC curve of the proposed model

exhibits higher surface area compared to the ROC

curve of the compared model. Higher surface area in

ROC curve refers to better prediction levels, hence

superiority of a classifier. This shows the enhanced

predictability of the proposed model.

Figure 2: ROC Curve

A comparison of the accuracy levels of the proposed

model with the 3WD model and CS-FS&CS-BFO

model is shown in figure. It could be observed that

the proposed model exhibits higher accuracy levels

compared to the models proposed in literature. The

proposed model was observed to exhibit 2%-8%

improved accuracy levels compared to the other

models.

Figure 3: Accuracy

A comparison of the F-Measure levels of the

proposed model with the CS-FS & CS-BFO model

is shown in figure. It could be observed that the

proposed model exhibits 28% improved F-Measure

levels compared to the existing model in literature.

March-April 2020

ISSN: 0193-4120 Page No. 6035 - 6041

6040

 Published by: The Mattingley Publishing Co., Inc.

This exhibits the high prediction efficiency of the

proposed model.

Figure 4: F - Measure

A tabulated view of the performance metrics is

shown in table 1. It could be observed that the

proposed model exhibits better performances in

terms of all the metrics, hence exhibiting the

efficiency of the proposed model.

Table 1: Performance Metrics

 CS-FS & CS+BFO CS-FS & Firefly

FPR 0.032467532 0.022727273

TPR 0.117647059 0.333333333

Recall 0.117647059 0.333333333

Precision 0.285714286 0.666666667

Accuracy 0.883040936 0.9

F-Measure 0.166666667 0.444444444

TNR 0.967532468 0.977272727

FNR 0.882352941 0.666666667

4 CONCLUSION

Defect prediction in software systems is of vital

significance due to the increased usage of software

systems in all areas. Effectively identifying defects

can lead to a huge reduction in the cost involved in

developing the software, which in turn can be

beneficial to the customers. This work proposes a

hybrid Firefly based defect prediction model,

composed of two major stages; the feature selection

stage and the defect prediction stage. The feature

selection stage uses Cuckoo Search as the search

mechanism and CFS as the subset evaluator. The

defect prediction module uses Hybridized Firefly

algorithm with enhance local search, hybridized

using Simulated Annealing. Experiments were

performed on the NASA dataset and results indicate

improve accuracy levels at 2%-8% and improved F-

Measure levels of upto 28% when compared to

existing models in literature. Future works will

concentrate on improving the predictions and

reducing the computational complexity of the

model.

REFERENCES

[1] Chang, R. H., X. D. Mu, and Li

Zhang.2011"Software defect prediction using

non-negative matrix factorization." Journal of

Software Volume 6 No 11 2114-2120.

[2] Panichella, R. Oliveto, A. D. Lucia, 2014Cross-

project defect prediction models: L’union fait la

force, in: IEEE Conference on Software

Maintenance, Reengineering and Reverse

Engineering (CSMR-WCRE), 2014 Software

Evolution Week, 164–173.,

[3] Arora, Ishani, Vivek Tetarwal, and Anju

Saha.2015 "Open issues in software defect

prediction." Procedia Computer Science Volume

46: 906-912.

[4] Sandhu PS, Brar AS, Goel R, Kaur J, Anand S.

A 2010model for early prediction of faults in

software systems. In: 2nd International

Conference on Computer and Automation

Engineering. Singapore; 281-285..

[5] Gray D, Bowes D, Davey N, Sun Y,

Christianson B. 2011Further thoughts on

precision. In: 15th Annual Conference on

Evaluation & Assessment in Software

Engineering. Durham;. . 129-133.

[6] Miholca, Diana-Lucia, Gabriela Czibula, and

Istvan Gergely Czibula. 2018"A novel approach

for software defect prediction through

March-April 2020

ISSN: 0193-4120 Page No. 6035 - 6041

6041

 Published by: The Mattingley Publishing Co., Inc.

hybridizing gradual relational association rules

with artificial neural networks." Information

Sciences Volume 441 152-170.

[7] G. Czibula, I. G. Czibula, D.-L. Miholca,

2017Enhancing relational association rules with

gradualness, International Journal of Innovative

Computing, Communication and Control,

Volume 13 No 1 289–305.

[8] L. Yu, A. Mishra, 2012Experience in predicting

fault-prone software modules using complexity

metrics, Quality Technology & Quantitative

Management Volume 9 No 4, 421–433.

[9] W. Afzal, R. Torkar, R. Feldt,2012 Resampling

methods in software quality classification,

International Journal of Software Engineering

and Knowledge Engineering Volume 22 No 2

203–223.

[10] G. Abaei, Z. Rezaei, A. Selamat, 2013Fault

prediction by utilizing self-organizing map and

threshold, in: 2013 IEEE International

Conference on Control System, Computing and

Engineering (ICCSCE), 465–470.

[11] P. Bishnu, V. Bhattacherjee, 2012Software

fault prediction using quad tree-based k-means

clustering algorithm, IEEE Transactions on

Knowledge and Data Engineering Volume 24

No 6 1146–1150.

[12] S. Varade, M. Ingle, 2013Hyper-quad-tree

based k-means clustering algorithm for fault

prediction, International Journal of Computer

Applications Volume 76 No 5, 6–10.

[13] C. Catal, U. Sevim, B. Diri, 2009Software

fault prediction of unlabeled program modules,

in: Proceedings of the World Congress on

Engineering (WCE), 212–217.

[14] M. Park, E. Hong, 2014Software fault

prediction model using clustering algorithms

determining the number of clusters

automatically, International Journal of Software

Engineering and Its Applications Volume 8 No 7

199–205.

[15] Li, W., Huang, Z., and Li, Q., 2016 ‘Three-

way decisions based software defect

prediction.’, Knowledge-Based

Systems, Volume 91, 263-274.

[16] Miholca, Diana-Lucia, Gabriela Czibula,

and Istvan Gergely Czibula. 2018"A novel

approach for software defect prediction through

hybridizing gradual relational association rules

with artificial neural networks." Information

Sciences Volume 441 152-170.

[17] Loo, Robert.2002 "A caveat on using single-

item versus multiple-item scales." Journal of

managerial psychology Volume 17 No 1 68-75.

[18] Hogarth, Robert M. 1977"Methods for

aggregating opinions." Decision making and

change in human affairs. Springer, Dordrecht,.

231-255.

[19] Zajonic R.B. 1962. “A note on group

judgements and group size.” Human Relations,

Volume 15:177–180,

[20] Johari, N. F., Zain, A. M., Noorfa, M. H., &

Udin, A.2013 Firefly algorithm for optimization

problem. In Applied Mechanics and Materials.

Trans Tech Publications. Vol. 421, 512-517

[21] Keerthi, S. S., & Lin, C. J. 2003Asymptotic

behaviors of support vector machines with

Gaussian kernel. Neural computation, Volume

15 No 7, 1667-1689

