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Abstract: 

Increasing complexity of software systems has led to the increased necessity for 

analyzing and testing these software for their efficient functioning. This work 

proposes a meta-heuristic based software defect prediction model for faster and better 

performance. The proposed model is composed of two major stages; the feature 

selection stage and the defect prediction stage. The feature selection stage uses 

Cuckoo Search, a metaheuristic classifier model as the search method to identify the 

features that are mandatory. The defect prediction stage uses the Hybridized Firefly 

model to identify defects in the software. Experiments with state-of-the-art models 

from literature indicates enhanced performances, exhibiting the efficiency of the 

proposed model.  
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I.INTRODUCTION 

Software defect prediction is the process of 

identifying defects in software modules to enable 

faster and more efficient testing process. Prior 

identification of prospective defective modules leads 

to better analysis of the identified modules. Testing 

can be concentrated on these defective modules [1], 

hence providing better focus on the defective 

modules. Such indications can also be highly useful 

for guiding the code review process, hence 

providing better quality assurance for the software 

being analyzed.  

Defect prediction in software is a complex task, 

mainly due to the large number of inconsistencies 

involved in the process and the fact that software 

systems are large-scale and complex. Further, 

another major issue in this field is that sufficient 

training data pertaining to the required module 

might not be available. Hence it is always a practice 

to perform cross-project prediction [2]. Cross-

project prediction is the process of using log records 

from past data to perform training and to create a 

trained model. This trained model is used tao predict 

defects for the current software system.  

Software defect prediction is a supervised learning 

problem, which has several major issues that has to 

addressed for effective prediction. The first and the 

major issue is the presence of data imbalance. Log 

records pertaining to defect prediction is composed 

of several records depicting the non-defective cases 

and a very few instances depicting the defective 

cases. This leads to an imbalance in the data, hence 

affecting the prediction process. Another vital issue 

is the complex relationships existing between 
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attributes and faults [3,4]. Since log records are used 

as the base data, it could be observed that the 

records contain huge number of attributes, hence 

leading to huge data sizes. However, on analysis it 

could be revealed that not all attributes contribute to 

the prediction process. Elimination or appropriate 

handling of such data is mandatory. The final issue 

is the absence of standard measures for analysis [5]. 

This work presents a hybridized Firefly based 

prediction model and Cuckoosearch based Feature 

Selection model that aims to address most of the 

issues to provide enhanced predictions.  

The remainder of this paper is structured as follows; 

section II presents a review of the literature, section 

3 presents a detailed view of the proposed 

architecture, section 4 presents the results and 

discussions and section 5 concludes the work. 

II.RELATED WORKS  

Defect prediction is an emerging domain due to the 

increased use of software products. This section 

discusses some of the recent and prominent 

contributions in this domain. 

An Artificial Neural Network based approach for 

software defect prediction, HyGRAR was proposed 

by Miholca et al. in [6]. This model proposes a 

hybrid combination of gradual relational association 

rule mining and artificial neural networks to predict 

defective software modules from non-defective 

modules. The HyGRAR model is an extension of the 

GRAR model proposed by Czibula et al. [7]. This 

model extends the association rules using fuzzy 

relations for effective defect predictions. A cross-

project model-based software defect prediction 

model was proposed by Yu et al. [8]. The model 

operates based on Binary Logistic Regression and is 

considered to be a self-assessment model. A similar 

model, using multiple linear regression and Genetic 

Algorithm was proposed by Afzal et al. [9]. A three 

way decision framework for software defect 

prediction was proposed by Li et al. [15]. This is a 

cost-sensitive decision making framework, based on 

the widely used two-stage classification model. 

This domain was also explored in an unsupervised 

learning context. A self-organizing maps based 

model proposed by Abaej et al. [10] performs 

grouping by creating weighted vectors and threshold 

based labeling. Other studies using clustering 

includes K-means clustering based model proposed 

by Bishnu et al. [11], which uses quad trees to 

identify the cluster centers and a similar K-means 

clustering based model by Varade et al. [12], which 

uses hyper-quad trees to initialize cluster centers. An 

X-means clustering model for defect prediction was 

proposed by Catal et al. [13]. This model identifies 

clusters and uses threshold values for software 

metrics to determine if the clusters are defective or 

non-defective. Other similar model includes feature-

selection based defect prediction models by Park et 

al. [14]. 

III.HYBRID FIREFLY BASED SOFTWARE DEFECT 

PREDICTION  

Defect prediction in software is one of the major 

activities that can aid in reduced testing costs and in-

turn overall software cost. This paper presents a 

metaheuristic model-based software defect 

prediction model that aids in faster and more 

accurate prediction of defects. The proposed hybrid 

Firefly architecture is composed of two major 

phases; Cuckoo Search based Feature Selection 

module and the defect prediction module using the 

Hybrid Firefly classifier. Workflow of the proposed 

architecture is shown in figure 1.  

3.1 Cuckoo Search based Feature Selection 

Defect prediction in software is usually performed 

on the log files pertaining to programming. These 

files contain all the information related to the 

software being constructed, hence is bound to be 

large with huge number of attributes. Although most 

of these attributes are representative of the 

software’s state and do not contribute in terms of 

predicting defects, it is mandatory to record them for 

logging purposes. Hence analyzing the attributes and 

identifying the best set of attributes can result in 

providing better predictions and can also enable 
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huge reduction in cost. 

 
Figure 1: Hybrid Firefly Architecture for Defect 

Prediction 

Feature selection techniques in-general can be 

categorized as filters and wrappers. Wrapper based 

feature selection models perform feature reduction 

using learning algorithms, while filter based feature 

selection models uses correlation between features 

as a major criterion for selecting or eliminating 

features. The proposed model uses wrapper-based 

feature selection method, with CFS based subset 

evaluator as the attribute evaluation model and 

Cuckoo Search as the search method. 

 CFS Subset evaluator [16] operates by selecting a 

subset of the best features and hence subsequently 

identifying the best subset for features. A subset 

with high class correlation and low inter-correlation 

is used as the selection criterion.  

A feature is said to be relevant iff there exists some 

vi and c for which p(Vi = vi) > 0 such that 

 
If the correlation between the components are 

known, and the inter-correlation between is 

provided, then the correlation can be predicted by 

 
   Where rzc is the correlation between the summed 

components and the outside variable, k is the 

number of components, ( ) is the average of the 

correlations between the components and the outside 

variable, and ( ) is the average inter-correlation 

between components [17, 18, 19]. 

Cuckoo search, being a prediction model has been 

incorporated as the search mechanism, while the 

subset evaluation is being performed by the CFS 

subset evaluator. This results in a sub-set of the log 

data that can effectively provide better predictions 

and reduced computation complexity. 

3.2 Hybrid Firefly for Defect Prediction  

Firefly algorithm [20] is a swarm based model, 

operating based on the behaviour of fireflies. 

Movement of Fireflies is determined by the 

brightness or light intensity of the fireflies in the 

swarm. Light intensity of the Fireflies is considered 

as the fitness with which the swarm movement is 

performed. 

 

The major assumptions of Firefly algorithm are as 

follows: 

• A firefly has the probability to get attracted 

to any other Firefly, and all the Fireflies are 

considered unisexual 

• Level of attraction exhibited by a Firefly is 

directly proportional to its light intensity or 

brightness  

• All Fireflies are attracted towards the 

brightest Firefly  
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• Brightness of a Firefly is determined by its 

distance  

• If no firefly is brighter than a given firefly, 

then it moves randomly 

The process of Hybrid Firefly based defect 

prediction is performed in three major phases; the 

search space creation phase, Firefly distribution 

phase and the Firefly movement phase using 

hybridized local search model. 

 

1.1.1. Search Space Creation using Log Data 

The software defect log records obtained after 

feature selection is used as the base for creating the 

search space. Every node is considered as a solution 

and forms the search space. The number of features 

contained in the log records determines the 

dimension of the search space. Along with the 

training data, a single instance from test data is also 

added to the search space. After every convergence, 

the test data is changed to the next instance and the 

same process is repeated. Hence every iteration 

converges with predicting a final class for the test 

instance. 

1.1.2. Firefly Distribution  

Search space creation is followed by distributing 

fireflies on the nodes in search space. Since the 

problem under analysis is a classification problem, 

all the fireflies are distributed on the test instance. 

Firefly movement begins from the test data and the 

final location of Fireflies is used to determine the 

prediction for the test data. 

1.1.3. Firefly Movement using Hybridized Local 

Search  

Local search is the process in which the Fireflies are 

moved towards the best available solution. 

Movement of fireflies is determined by the fitness 

function. Light intensity/ brightness of a firefly is 

considered as the fitness function. Fitness is 

determined by the distance criterion and is given by,  

 

 

Where Xtest,j refers to the jth attribute of the test data 

and Xi,jrefers to the jthattribute of the firefly i. 

 

 

Hybrid Firefly Algorithm 

 

1. Input Log Data (D) for Defect Prediction 

2. Apply Cuckoo Search based Feature 

selection to obtain pre-processed data (D’) 

3. Generate Search Space using D’ 

4. Generate initial population of Fireflies 

5. Distribute Fireflies on the test instance to be 

predicted 

6. Initiate random Firefly movement 

7. Formulate light intensity of Fireflies using 

Eq.1 

8. For each Firefly i 

a. Use Simulated Annealing based local search 

to identify the best Firefly j 

b. Compare the intensities of Firefly i to j 

c. Initiate movement depending on the firefly 

with best intensity 

d. Update intensity of Firefly 

9. If stopping criterion not reached goto step 8 

10. Identify the node n with maximum firefly 

concentration 

11. Provide Prediction based on the selected 

node n 

Firefly movement is initiated with each Firefly 

comparing its intensity with the intensity of the all 

the other Fireflies. However, since all the Fireflies 

are distributed on the test data, an initial random 

movement is initiated. The movement is initiated by 

identifying the most attractive firefly within the 

vicinity of the current Firefly. The actual Firefly 

algorithm compares each firefly with every other 

firefly prior to movement. However, it is 

computationally intensive. Hence the 

proposedmodel hybridizes this local search approach 

using Simulated Annealing.  

 

Simulated Annealing (SA) is a metaheuristic-based 

model that operates by identifying the global 
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optimum of a function based on heating and 

controlled cooling of materials. The major 

advantage of Simulated Annealing is that it has the 

ability to operate on very large search spaces to 

provide optimal results.  

 

The proposed model incorporates Simulated 

Annealing as a local search process to reduce the 

computational requirements of the Firefly local 

search mechanism. Intensity levels of all the 

Fireflies are passed to the Simulated Annealing 

module. The intensity levels are analyzed and the 

Firefly with best intensity is returned by the 

Simulated Annealing module. This results in all the 

other Fireflies moving towards the selected Firefly 

and the selected Firefly moves in a random 

direction.  

 

This process is repeated until the swarm reaches 

defined number of iterations or until the swarm 

experiences stagnation. Stagnation is the process in 

which all the Fireflies converge into a single best 

solution and hence they exhibit no movement. The 

converged point in identified as the prediction for 

the test data. 

 

IV.RESULTS AND DISCUSSION 

Experiments were conducted on the Promise data 

(cm1), a huge corpus of data taken from spacecraft 

instrument management from NASA. It contains 22 

attributes (21 features+1 class) and 498 instances. 

The data exhibits an imbalance ratio of 9.3. 

Comparisons were performed with the three-way 

decision-based software defect prediction model 

(3WD) [15] and Cuckoo search and BFO based 

model (CS-FS & CS-BFO) [21]. 

ROC curve of the proposed model and the CS-FS & 

CS-BFO model is shown in figure. It could be 

observed that the ROC curve of the proposed model 

exhibits higher surface area compared to the ROC 

curve of the compared model. Higher surface area in 

ROC curve refers to better prediction levels, hence 

superiority of a classifier. This shows the enhanced 

predictability of the proposed model. 

 

 
Figure 2: ROC Curve 

 

A comparison of the accuracy levels of the proposed 

model with the 3WD model and CS-FS&CS-BFO 

model is shown in figure. It could be observed that 

the proposed model exhibits higher accuracy levels 

compared to the models proposed in literature. The 

proposed model was observed to exhibit 2%-8% 

improved accuracy levels compared to the other 

models.   

 

 
 

Figure 3: Accuracy 

 

A comparison of the F-Measure levels of the 

proposed model with the CS-FS & CS-BFO model 

is shown in figure. It could be observed that the 

proposed model exhibits 28% improved F-Measure 

levels compared to the existing model in literature. 
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This exhibits the high prediction efficiency of the 

proposed model. 

 

 
 

Figure 4: F - Measure 

 

A tabulated view of the performance metrics is 

shown in table 1. It could be observed that the 

proposed model exhibits better performances in 

terms of all the metrics, hence exhibiting the 

efficiency of the proposed model. 

 

Table 1: Performance Metrics 

 CS-FS & CS+BFO CS-FS & Firefly 

FPR 0.032467532 0.022727273 

TPR 0.117647059 0.333333333 

Recall 0.117647059 0.333333333 

Precision 0.285714286 0.666666667 

Accuracy 0.883040936 0.9 

F-Measure 0.166666667 0.444444444 

TNR 0.967532468 0.977272727 

FNR 0.882352941 0.666666667 

 

4 CONCLUSION 

Defect prediction in software systems is of vital 

significance due to the increased usage of software 

systems in all areas. Effectively identifying defects 

can lead to a huge reduction in the cost involved in 

developing the software, which in turn can be 

beneficial to the customers. This work proposes a 

hybrid Firefly based defect prediction model, 

composed of two major stages; the feature selection 

stage and the defect prediction stage. The feature 

selection stage uses Cuckoo Search as the search 

mechanism and CFS as the subset evaluator. The 

defect prediction module uses Hybridized Firefly 

algorithm with enhance local search, hybridized 

using Simulated Annealing. Experiments were 

performed on the NASA dataset and results indicate 

improve accuracy levels at 2%-8% and improved F-

Measure levels of upto 28% when compared to 

existing models in literature. Future works will 

concentrate on improving the predictions and 

reducing the computational complexity of the 

model. 
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