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Abstract: 

In the present problem magnetic field effect on flow of blood in 

stenosed artery having porous substances is discussed. Model 

geometry, a long circular vessel with axisymmetric stenosis for blood 

flow is considered. The modelled problem is solved by Adomian’s 

Decomposition method to obtain velocity field. Hartmann number 

effect, porosity, stenosis thickness of the stenosis on flow, shear 

stress, skin friction are discussed. In the last of this study generated 

data were analyzed by graphical representations. 
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1. INTRODUCTION 

The stenosis is occurredby the irregular growth in 

the arterial wall and is one of the frequently 

occurring diseases in mammalian arteries. It is 

well established that once an obstruction has 

developed, the flow of blood will be disturbed 

which may result into circulatory disorders. The 

effect of stenosis in the lumen of an artery over 

the flow characteristics has been studied by many 

mathematicians. The magnetic field influence is 

endorsed on the basis of the composition of blood. 

Since the constituents of blood areplasma and 

cells (RBC, WBC and platelets other particles). 

The red blood cells which contain, iron, that is 

magnetic conducting in nature, the core region, 

the region of RBC may be treated as magnetic 

fluid. Flow rate and viscous drug in arteries with 

pressure gradient was studied by Womersley in 

1955 [21]. Two fluid blood flow model through 

small diameter tubes was discussd by Chaturani 

and Upadhya in 1979 [2] and found that with the 

increase in tube radius effective viscosity 

increases. Resistive impedance, wall share stress 

and immediate flow rate of oscillatory blood flow 

through stenosed artery was obtained numerically 

by Haldar in 1987 [4].Haldar and Ghosh in 1994 

[3]found as magnetic field increases the pressure 

gradient increased significantly. Effects of 

magnetic field and hematocrit control the velocity 

and point out the flattening of velocity profile at 

the control region of the tube. As the wall shear 

stress increases strength of magnetic field also 

increases. At higher magnetic field it increases so 

significantly that it may cause the stenosis to 

break away and there is a chance of paralysis or 

sudden death. Unsteady oscillatory flow of blood 

through indented tube with single construction 

was discussed by Sanyal and Maji in 1999 

[13]and found that as hematocrit value increased 

the pressure gradient also increases. Also in high 
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systolic and low diastolic pressure, peripheral 

blood flow will increases but coronary arterial 

blood flows will decreases.Srivastava in 2002 [17] 

studied affects of stenosis shape and hematocrit on 

flow of blood as particulate suspension with 

stenotic arteries. In this study it was noticed that 

as shape parameter increases the flow resistance 

decreases but increases with hematocrit. In 

2005Tzirtzilakis [19] studied a model for flow of 

blood in the presence of magnetic field and found 

that flow is influenced by magnetic field. In 

2006Celik, et al [1] discussed the solution of 

differential algebraic Eqs. by Adomian 

decomposition method. They obtained 

approximate solutions usingAdomian’s 

method.Newtonian blood flow in constricted 

blood vessel with uniformly applied transverse 

magnetic field with the help of Adomin’s 

decomposition was discussed by Haldar in 2009 

[5].Sankar & Lee in 2010 [12]analyzedthe 

pulsatile blood flow in catheterized blood vessel. 

They observed that in comparison to Casson 

model for blood flow the velocity of flow, flow 

rate and velocity distribution are higher for 

Herschel-Bulkley model.Kumar et al2011 [9] 

described a model for stenosed artery having 

variable shapes and observed different effectsof 

magnetic field, stenosis shape on the flow 

resistance.Unsteady pulsatile flow of blood 

through porous substance was studied by Sharma 

et al 2012 [16] and found that magnetic field and 

porous medium both affect transportation of blood 

to the organs and magnetic field is influenced by 

Hematocrit concentration.Sharma et alin 2013, 

2015 [14] [15]formulate bio- fluid mathematical 

model for non-Darcy porous medium. They 

transformed nonlinear PDE into linear PDE and 

obtained numerical solutions by using finite 

difference method further they extended their 

study with heat source.The power-law & 

Herschel-Bulkley blood flow model are used by 

Kumar in 2015 [7] to study the influence of non-

Newtonian characteristics of blood through an 

artery. They observed that fluid velocity decreases 

with the downstream for each value of elasticity 

of the vessel but in case of small value of 

elasticity the downstream velocity from the 

transition point decreases enormously compare to 

higher elastic value of the vessel. Kumar in 2016 

[8] studied two phase blood flow in stenosed 

artery and analyzed magnetic field, stenosis 

thickness, width of plasma layer, effect on share 

stress, plug flow for core and plasma.The wall 

shear stress and flow resistance with hematocrit 

level by using power-law fluid model was studied 

by Malek and Hoque in 2017 [10] and observed 

that resistance of flow is proportional to stenosis 

height.Jamil et al 2018 [6] presented the flow of 

blood with periodic acceleration through arterial 

stenosis and for solution of their problem they 

used Mathcad software.These different studies 

motivated for the proposed study to analyzed 

theproblem related to flow of blood through a 

stenosied artery having porous medium. 

 

2.PROBLEM FORMULATION  

In this paper the laminar, steady axially symmetric 

blood flow in a stenosed artery with magnetic 

field and porous medium is considered. Blood, 

flowing through an artery is considered as 

conducting Newtonian. The stenosis in the artery 

is mild and axially symmetric. To remove 

entrance end effects flow is considered in long 

cylindrical tube. A transverse static magnetic field 

is applied on the flow of blood.  

 

 

 

 

 

Figure 1 Flow 

model of the problem 

 

Axis of artery considered asz-axis and the shape 

of stenosis as follow: 

 (1) 

Where, R0: Tube radius, (z):Tube radius in the 

stenotic region and :Maximum height of the 
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(ii) The arterial wall is porous 

(iii) Induced electric and magnetic field is 

negligible 

(iv) Viscosity of blood and density are 

considered constant  

Considering the above assumptions the governing 

Eqs of motion in (r*,*, z*) are given by 

 

 

 

  (2) 

  

(3) 

and the continuity Eq. is  

  (4) 

Corresponding conditions are  

  (5) 

 (6) 

The volumetric flux Q* across any cross section of 

the tube remains constant, therefore  

   (7) 

where (w*, u*): Velocity components  

: Electromagnetic induction  

: Transverse component of the magnetic field  

K*: Permeability of the porous medium. 

 

3. MATHEMATICAL SOLUTION 

Introducing non-dimensional parameters 

,   

  

 (8) 

where : Dimensionless velocity components 

w0:Characteristic velocity 

p:Non-dimensional fluid pressure 

K:Permeability factor 

M: Hartmann number and  

Re: Reynolds number 

The Eqs. (1) to (7), reduces into  

 (9) 

 

 (10) 
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   (12) 

  (13) 

 (14) 

  (15) 

Introducing the stream function given by 

and     (16)  

The Eqs. (10) and (11), can be combined to yield 

the following Eq. in the stream function 

Mazumdar in  1992 [11] 
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The corresponding boundary conditions are  

  and   at  r = h   (18) 

  (19)   

where     (20) 

and  (21) 

the Jacobian. 

The Eq. (17), is a non-linear partial differential 

Eq. To obtain its solution with Adomian 

decomposition method, rewriting it in the 

following form  
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(22) 

where    

 (23) 

Taking the linear operator 

     (24) 

The Eq. (22), reduces into     

  

   (25) 

If 0 is the solution of the homogenous Eq.  

then the general  solution of the Eq.(25)  be   

  

 (26) 

The solution of the homogenous Eq. is 

given by  

 

    (27) 

Considering  regular decomposition of   and N 

in the following  forms  

,                           (28) 

where  are Adomian’s special polynomials, 

given by  

  (29)

  

    

 (30) 

 ............................................ 

 ............................................. 

The corresponding conditions on boundary 

conditions: 

 (31) 

  

   (32) 

Using Eqs.  (28), (29) in (26), we get  

 

(33) 

Further taking parameterized decomposition of 

 as defined by  
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 ,  ,  
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Using above double decomposition, we get  
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Invoking above values in the eq. (27) and (35),

and  , are given by 
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The expressions of  , are 

lengthy, so for the sake of brevity there 

expressions are given in Annexure. 

 

3.1 Skin friction  

Coefficientof skin friction: 

Cf=  

   

 

 

4. RESULTS AND DISCUSION 

The model geometry of the problem is 

axisymmetric and therefore for the sake of bravity  

the graphs are plotted for the upper portion of the 

tube. In figure 2 the velocity profiles are plotted 

against radial distance at two locations in the tube 

for different values of stenosis considering other 

parameters as constant. We observed that at the 

initial position in stenosed region the up stream 

flow is less affected with the increase of stenosis 

length while at centre of the stenosis for 60% 

reduction of arterial cross section the change in 

velocity is very high and it increases proportional 

with the stenosis width. While at the entrance in 

the stenosis, the velocity profile  pattern at centre 

line is same as that of at the middle of stionsis 

along the length ,but near the wall of the stenosis 

this pattern turned reverse.  From figure 3 it is 

observed that the axial velocity in the stenosed 

region increases with the increase of length of 

stenosis while in the proximity of the wall the 

velocity of the fluid decreases. Figure 4 shows 

that in the stenosed region the velocity profiles are 

affected with the Hartman number. At the centre 

line the velocity decreases with the increase of 

Hartmann number irrespective of the location in 

the stenosed region, where as on moving towards 

tube wall a critical point is arisesaway from that 

the effect of Hartmann number turned reverse. 

Figure 5 demonstrate that the velocity of fluid 

near to the tube wall decreases with the increase 

of permeability parameter while on moving near 

the centre line the effect of stenosis  is 

experienced and the flow behaviour become 

reversed with the increase of permeability 

parameter. The effect of Reynolds number on the 

flow field is demonstrated in figure 6.  The shear 

stress in the flow through stenosis with porous 

medium increases in magnitude with the increase 

of length of stenosis, shown in figure 7. At the 

surface of the stenosis there is 166% increase in 

shear stress with the increase of 50% in the length 

of stenosis, while when there is an increase of 

15% in the length of the stenosis from 25% R0 to 

40% of R0 the shear stress at the surface of the 

stenosis increases by 50%. The figure 8 shows the 

variation in skin friction along the stenosis and 

depict that with the increase of Hartmann number 

the magnitude of the skin-friction increases. There 

is maximum skin-friction in the proximity of the 

peak of the stenosis at upstream and downstream 

flow from the peak of the stenosis. The effects of 

the Reynold’s number and permeability on the 

shear stress are shown in the figure 9 and 10 

respectively. The magnitude of shear stress 

increases with the increase of Reynolds number. 

Also with the  increase of permeability, the 

magnitude of skin friction decreases.  

 

 
Fig. 2Graph between flow velocity and radial 

distance (at Re= 100, M = 1, K = 0.5) 

 

 
 

Fig.3Graph between flow velocity and radial 

distance (at K= 0.5, M = 1, Re = 100,  = 25% of 

R0) 
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Fig. 4Graph between flow velocity and radial 

distance 

(at K= 0.5, Re = 100,  = 25% of R0, L0 = 2) 

 
 

Fig. 5Graph between flow velocity and radial 

distance 

(at = 25% of R0, M = 1, Re = 100) 

 

 
 

Fig. 6Graph between flow velocity and radial 

distance (at  = 25% of R0, M = 1, K = 0.5) 

 
 

Fig. 7Graph between shear stressandradial 

distance  

 (at K = 0.5, M = 2, Re= 100) 

 
 

Fig. 8 Variation in skin friction on the stenosis 

versus axial distance  

(at K = 0.5, Re = 100,  = 25% of R0) 

 

 
 

Fig. 9Graph between shear stress and radial 

distance  

 (at K = 0.5, M = 2,   = 25% of R0) 

 

 
 

Fig. 10Graph between stress and radial 

distance  

(at  = 25% of R0, M = 2, Re = 100) 
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(r*, *, z*)     Cylindricalpolar co-ordinates 

      u * V e l o c i t y  c o m p o n e n t  i n  t h e  r a d i a l  d i r e c t i o n  

 

 

 

 

M              Hartmann number 

L0Length of stenosis 
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