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Abstract 
The replication has been widely used to ensure data availability in a distributed file system. 
In addition, the erasure coding has been adopted to overcome a problem of space efficiency 
in the replication. However, the erasure coding has a number of performance degradation 
factors. In particular, the replication requires only replacement of replica and original data, 
whereas the erasure coding requires reading distributed data in many nodes and restoration 
of original data through decoding. In this paper, a number of characteristics related to fault 
recovery are studied prior to identifying an efficient restoration in the erasure coding. 
Through this, a number of characteristics that are considered when introducing the erasure 
coding in the distributed file system are derived. In particular, problems and considerations 
of the erasure coding in relation to fault recovery are verified.  
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1. Introduction 

In recent years, the data replication that stores 
replica data over physically distributed devices 
has been widely used to ensure data availability in 

the distributed file system. The replication is a 
technique that stores a number of replications of 
original data in distributed locations and replaces 
the original data with replicated data during fault 
occurrence [1].  

 
Figure 1. Example of the triple replication 
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Figure 1 shows an example of the triple 
replication, which creates two replicas of the 
original data. Here, a file stored in each data 
server (DS) is called a chunk, and a set of chunks 
storing original and replicated data is called a 
chunk set. In Figure 1, a file consisting of a single 
chunk set in triple replication is shown; a single 
chunk set consists of three chunks in the figure. 
Since the same data are stored in a number of 
servers in the replication, failures in DSs or disks 
can be recovered simply using replicated data [2]. 

However, the replication incurs a large amount of 
space waste due to the large volume of replicated 
data. As a result, the cost of system construction 
and management is increased rapidly, in 
proportion to an increase in system size. In 
particular, the space efficiency problem becomes 
more important when higher availability is 

required. To overcome the space efficiency 
problem, the Erasure Coding (EC) has been 
adopted [3,4]. The EC has been used in many file 
systems, including HDFS [5], GlusterFS [6], and 
Ceph [7]. The EC is to encode data using erasure 
code and recover original data through decoding 
upon fault occurrence [8].  

The EC generates M parities through encoding 
after dividing the original data into K datasets. 
This is called K+M EC. The encoding is 
performed at a unit of encoding called a stripe, 
which refers to a set of original data and parity 
data blocks related to a single encoding operation. 
Figure 2 shows the distributed file system that 
supports the EC. 

 
Figure 2. Example of the 4+2 EC 

Figure 2 shows an example of 4+2 EC, which 
generates two parity blocks through encoding 
after dividing the original data into four datasets. 
The generated 4+2 blocks are divided and then 
stored in different DSs, and each file that is stored 
in each DS is called a chunk, and a set of chunks 
(which stores a parity block and original data 
block) is called a chunk set. In the EC, when the 
original data block is lost due to the failure of DS 
or disks, another original data block and parity 
block located in another DS is read and decoded 
to recover the original data.  

The EC has high space efficiency. However, since 
it requires data division and encoding, a number 
of performance degradation factors are present, 

such as parity calculation, data distribution cost, 
small I/O problem, read-modify-write, and 
degraded I/O (repair I/O) [9-11]. This study 
analyzes various characteristics of the EC in 
comparison with the replication to derive the 
problems prior to studying the recovery method 
using EC. In particular, this study discusses the 
characteristics, problems, and consideration in the 
EC in relation to fault recovery. 

2. Fault tolerance of EC and replication 

To ensure high availability, multi-fault tolerance 
should be provided in a distributed file system. 
The number of faults that are processed is 
dependent on the number of replicated datasets in 
the replication and the number of parities in the 
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EC. The higher the number of replicated datasets 
or parities is, the stronger the fault tolerance is. 
That is, the higher the fault tolerance is, the higher 
the data availability is in both the replication and 
EC. 

However, as fault tolerance increases, space 
efficiency is degraded due to the increasing 
replicated data or parities. The space efficiency in 
a storage is represented by a proportion of original 
data out of the entire storage capacity in general. 
Figure 3 shows the space efficiency according to 
fault tolerance of replication and EC. 

As shown in Figure 3, space efficiency in the EC 
is basically better than that in the replication. 
Based on the generally used dual fault tolerance, 
the space efficiency of the EC (K = 4) is twice 
that of the replication, and that of the EC (K = 16) 
is approximately 2.7 times efficient than that of 
the replication. Based on the quintuple fault 
tolerance, the space efficiency of the EC (K = 16) 
is approximately 4.6 times better than that of the 
replication. 

 Figure 3. Space efficiency according to fault 
tolerance 

Space efficiency is rapidly degraded as fault 
tolerance increases in the replication. In the case 
of the EC, space efficiency depends on the change 
in K and M values, and the maximum space 
efficiency is determined by the K value (i.e., the 
number of original datasets). Thus, it is necessary 
for users to setup K and M values according to the 
required space efficiency and reliability.  

The EC is absolutely superior in terms of space 
efficiency compared to the replication. However, 
the EC has a number of performance degradation 
factors. This is because the EC is basically based 
on original data split. In particular, the EC has a 
large number of chunks that have to be managed 
in exchange for higher space efficiency by 
increasing the K value. 

3. Fault tolerance and the number of chunks 

In the replication, original and replicated chunks 
exist. However, original data is divided into K 
datasets and M parities are generated in the EC. 
Thus, the number of distributed chunks is 
different between replication and EC. Figure 4 
shows the number of chunks required to store files 
when dual fault tolerance is enforced (M = 2). 

 Figure 4. Number of chunks assigned during 
dual fault tolerance (single chunk set) 

As shown in Figure 4, EC (K = 16) has six times 
more chunks that are managed compared to the 
replication. That is, when a file is generated, the 
replication requires three chunks, whereas EC (K 
= 4) and (K = 16) require six and 18 chunks, 
respectively. Generally, the larger the number of 
chunks that are managed in a distributed file 
system is, the larger the management cost is.  

However, since the EC has a large number of 
chunks, a large volume of data can be stored in a 
single chunk set. For example, when size of a 
chunk is 64 MB, the size that can be stored in a 
single chunk set is 64 MB in the replication, 
whereas 4 + 2 EC is 256 MB and 16 + 2 EC is 
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1,024 MB. Next, an equation that calculates the 
number of chunk sets according to a file size is 
presented. 

 (1) 
 

where K refers to the split number of original data. 
For example, K is one in the case of triple 
replication, four in the case of 4 + 2 EC, and 16 in 
the case of 16 + 2 EC. The reason for rounding 
numbers up is because at least one chunk set has 
to be assigned, even if a size of data is small.   

Figure 5 shows an example of the number of 
chunk sets required according to a file size when 
dual fault tolerance is enforced with a chunk size 
of 100 MB 

 Figure 5. No. of chunk sets according to a file 
size (M=2) 

In Figure 5, the number of chunk sets becomes 
smaller as the K value increases. In particular, the 
difference in the number of chunk sets between 
EC and replication increases as file size increases 
when size of chunk set is 100 MB. This is because 
the number of chunks included in a single chunk 
set increases as the K value increases, so that the 
data that can be stored in a single chunk set 
increases. Thus, the actual number of chunks 
distributed over the DSs is different from the 
number of chunk sets. Next, an equation that 
calculates the number of chunks according to a 
file size is presented. 

 = 
 (2) 

where K refers to the split number of original data, 
and M refers to the number of replicated data for 
fault tolerance. Thus, in the case of triple 
replication, K is one and M is two. In the case of 4 
+ 2 EC, K is four and M is two. Figure 6 shows an 
example of the number of chunks required 
according to file size when dual fault tolerance is 
enforced with a chunk size of 100 MB. 

 Figure 6. No. of chunks according to file size 
when a chunk size is 100 MB (M = 2) 

As shown in Figure 6, the number of chunks is 
determined by the K value, M value, chunk size, 
and file size. If a file size is a single chunk set size, 
the number of chunks is the least in the replication. 
However, the required number of chunks 
increases as file size increases and K becomes 
smaller; thus, the number of chunks managed in 
the case of the replication is the largest if a file 
size is larger than 600 MB. In the case of the EC, 
the number of chunks that is managed varies 
depending on the EC setup and file size.  

However, more than 99% of files in a storage are 
less than 1 MB in size [12], and most of files are 
still less than 1 GB even if average file size has 
been increased due to the development of the 
high-performance computing field [13]. In 
addition, generally, a chunk size is set to a large 
size to solve the chunk problem in the replication 
over a distributed file system when there are many 
large files. That is, most files can be stored in a 
single chunk set, and the number of chunks that 
have to be managed increases when the space 
efficiency is set to high. 
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4. Characteristics of fault recovery of erasure 
coding and replication 

Generally, disk faults occur more frequently as the 
numbers of servers and disks per server increase 
in a large-capacity storage system. Furthermore, 
the number of files requiring recovery will 
increase upon disk failure as the EC is applied and 
disk capacity increases [14]. This section 
discusses the characteristics of fault recovery in 
detail in consideration of the above circumstances.  

When 100 files are stored, both triple replication 
and 16 + 2 EC methods require 100 chunk sets. 
However, the number of chunks stored in DSs is 
300 in the case of triple replication but 1,800 in 
the case of 16 + 2 EC. Thus, the number of chunks 
stored per disk is different, which means that the 
probability that a corresponding file becomes a 
recovery target during fault occurrence would be 
different in the same system. The next equation 
represents probability that a specific file becomes 
a recovery target out of the entire files during a 
fault in a specific disk of the storage system. 

 
      (3) 

 
Figure 7 shows the probability of becoming a 
recovery target during disk faults according to the 
number of 24 disk-mounted DSs. 

 
Figure 7. Probability of becoming a recovery 

target 

As shown in Figure 7, probability of a file 
requiring fault recovery during a single disk 
failure is up to six times larger in the EC than in 
the replication. In particular, as the number of DSs 
becomes smaller, a fault probability increases. 
When the number of DSs is 20, only 0.6% of the 
entire files are faults, whereas 1.3% and 3.8% are 
faults in the case of EC (K = 4) and EC (K = 16) 
upon a single disk failure.  

Figure 8 shows the number of damaged files upon 
a single disk failure assuming that 100,000 files of 
a single chunk set size are distributed evenly in 20 
DSs, each mounted with 24 disks as in Figure 7. 

 Figure 8. No. of files that require recovery 
upon single disk failure 

As shown in Figure 8, the replication has the least 
damaged files, while the EC (K = 16) has the 
largest. In addition, the replication and EC have 
approximately six times difference in the number 
of damaged files, but the number of damaged files 
is not so large compared to the numbers of DSs 
and entire files. Figure 9 shows the number of 
chunks that require access for recovery-needed 
files as shown in Figure 8. 

As shown in Figure 9, the replication and EC have 
significant difference in the number of chunks 
requiring read access to recover damaged files. In 
particular, read access is rapidly increased in EC 
as K value increases. That is, when comparing 
replication (K = 1) and EC (K = 16), the number 
of damaged files is six times greater but the 
number of total chunks that needed to be accessed 
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for recovery is approximately 100 times greater. 
Thus, the number of input/output (I/O) requests 
for fault recovery in the EC increases rapidly, 

which causes various bottlenecks, increasing a 
performance delay significantly.

 
Figure 9. No. of chunks that require access for fault recovery 

 
Table 1: No. of chunks that require access for fault recovery (M = 2) 

 1Kbyte 4Kbyte 16Kbyte 64Kbyte 256Kbyte 1024Kbyte 
Replication (K=1) 1,024Byte 4,096Byte 16,384Byte 65,536Byte 262,144Byte 1,048,576Byte 

EC (K=4) 256Byte 1,024Byte 4,096Byte 16,384Byte 65,536Byte 262,144Byte 
EC (K=8) 128Byte 512Byte 2,048Byte 8,192Byte 32,768Byte 131,072Byte 

EC (K=16) 64Byte 256Byte 1,024Byte 4,096Byte 16,384Byte 65,536Byte 
 
As presented in Table 1, 4 KB I/O can be possible 
in the replication when a file size is 4 KB, 
whereas only 256 byte I/O can be possible in the 
case of EC (K = 16). Due to this difference, the 
replication does not require special processing for 
fault recovery. However, the EC experiences small 
I/O processing for large-size files during fault 
recovery so that storage performance can be 
degraded rapidly if efficient processing is not 
supported. 

5. Conclusion 

The replication has low space efficiency because 
it stores a large volume of replicated data. Thus, it 
can increase system size as well as construction 
and management cost exponentially. On the other 
hand, EC has high space efficiency; thus, system 

size is not significantly increased accordingly. 
However, EC requires a process of original data 
recovery through decoding after reading a large 
number of original data and parity blocks during 
fault recovery. In EC, probability of files 
becoming a fault recovery targets during fault 
recovery is also increased significantly, although 
its space efficiency is high. In particular, the 
number of chunks required during recovery 
increases rapidly in EC. 
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