

March - April 2020
ISSN: 0193-4120 Page No. 4651 - 4657

4651 Published by: The Mattingley Publishing Co., Inc.

Analysis of Recovery Characteristics of
Erasure Coding and Replication

Jeong-Joon Kim1, Dong-Oh Kim2, Heong-Yeon Kim2, Seung-Hwa Lee3, Jeong-Min Park*4
1Professor, Department of Software, Anyang University, 22 Samdeok-ro 37 beon-gil, Manan-gu, Anyang, Gyeonggi-

do, 14028, South Korea
2Researcher, Electronics and Telecommunications Research Institute, 218 Gajeong-ro Yuseong-gu Daejeon, 34129,

South Korea
3Professor, Division of Information and Communication, Baekseok University, 76, Munam-ro, Dongnam-gu,

Cheonan-si, Chungcheongnam-do, South Korea
*4Professor, Department of Computer Engineering, Korea Polytechnic University, 237 Sangidaehak-ro Gyeonggi-Do

Siheung, 15073, South Korea
jjkim@anyang.ac.kr1, dokim@etri.re.kr2, kimhy@etri.re.kr2, sh.lee@bu.ac.kr3, jmpark@kpu.ac.kr*4

Article Info
Volume 83
Page Number: 4651 - 4657
Publication Issue:
March - April 2020

Article History
Article Received: 24 July 2019
Revised: 12 September 2019
Accepted: 15 February 2020
Publication: 26 March 2020

Abstract
The replication has been widely used to ensure data availability in a distributed file system.
In addition, the erasure coding has been adopted to overcome a problem of space efficiency
in the replication. However, the erasure coding has a number of performance degradation
factors. In particular, the replication requires only replacement of replica and original data,
whereas the erasure coding requires reading distributed data in many nodes and restoration
of original data through decoding. In this paper, a number of characteristics related to fault
recovery are studied prior to identifying an efficient restoration in the erasure coding.
Through this, a number of characteristics that are considered when introducing the erasure
coding in the distributed file system are derived. In particular, problems and considerations
of the erasure coding in relation to fault recovery are verified.

Keywords: Replication, Erasure Coding, Distributed File System, Fault Recovery

1. Introduction

In recent years, the data replication that stores
replica data over physically distributed devices
has been widely used to ensure data availability in

the distributed file system. The replication is a
technique that stores a number of replications of
original data in distributed locations and replaces
the original data with replicated data during fault
occurrence [1].

Figure 1. Example of the triple replication

mailto:jjkim@anyang.ac.kr
mailto:kimhy@etri.re.kr
mailto:sh.lee@bu.ac.kr

March - April 2020
ISSN: 0193-4120 Page No. 4651 - 4657

4652 Published by: The Mattingley Publishing Co., Inc.

Figure 1 shows an example of the triple
replication, which creates two replicas of the
original data. Here, a file stored in each data
server (DS) is called a chunk, and a set of chunks
storing original and replicated data is called a
chunk set. In Figure 1, a file consisting of a single
chunk set in triple replication is shown; a single
chunk set consists of three chunks in the figure.
Since the same data are stored in a number of
servers in the replication, failures in DSs or disks
can be recovered simply using replicated data [2].

However, the replication incurs a large amount of
space waste due to the large volume of replicated
data. As a result, the cost of system construction
and management is increased rapidly, in
proportion to an increase in system size. In
particular, the space efficiency problem becomes
more important when higher availability is

required. To overcome the space efficiency
problem, the Erasure Coding (EC) has been
adopted [3,4]. The EC has been used in many file
systems, including HDFS [5], GlusterFS [6], and
Ceph [7]. The EC is to encode data using erasure
code and recover original data through decoding
upon fault occurrence [8].

The EC generates M parities through encoding
after dividing the original data into K datasets.
This is called K+M EC. The encoding is
performed at a unit of encoding called a stripe,
which refers to a set of original data and parity
data blocks related to a single encoding operation.
Figure 2 shows the distributed file system that
supports the EC.

Figure 2. Example of the 4+2 EC

Figure 2 shows an example of 4+2 EC, which
generates two parity blocks through encoding
after dividing the original data into four datasets.
The generated 4+2 blocks are divided and then
stored in different DSs, and each file that is stored
in each DS is called a chunk, and a set of chunks
(which stores a parity block and original data
block) is called a chunk set. In the EC, when the
original data block is lost due to the failure of DS
or disks, another original data block and parity
block located in another DS is read and decoded
to recover the original data.

The EC has high space efficiency. However, since
it requires data division and encoding, a number
of performance degradation factors are present,

such as parity calculation, data distribution cost,
small I/O problem, read-modify-write, and
degraded I/O (repair I/O) [9-11]. This study
analyzes various characteristics of the EC in
comparison with the replication to derive the
problems prior to studying the recovery method
using EC. In particular, this study discusses the
characteristics, problems, and consideration in the
EC in relation to fault recovery.

2. Fault tolerance of EC and replication

To ensure high availability, multi-fault tolerance
should be provided in a distributed file system.
The number of faults that are processed is
dependent on the number of replicated datasets in
the replication and the number of parities in the

March - April 2020
ISSN: 0193-4120 Page No. 4651 - 4657

4653 Published by: The Mattingley Publishing Co., Inc.

EC. The higher the number of replicated datasets
or parities is, the stronger the fault tolerance is.
That is, the higher the fault tolerance is, the higher
the data availability is in both the replication and
EC.

However, as fault tolerance increases, space
efficiency is degraded due to the increasing
replicated data or parities. The space efficiency in
a storage is represented by a proportion of original
data out of the entire storage capacity in general.
Figure 3 shows the space efficiency according to
fault tolerance of replication and EC.

As shown in Figure 3, space efficiency in the EC
is basically better than that in the replication.
Based on the generally used dual fault tolerance,
the space efficiency of the EC (K = 4) is twice
that of the replication, and that of the EC (K = 16)
is approximately 2.7 times efficient than that of
the replication. Based on the quintuple fault
tolerance, the space efficiency of the EC (K = 16)
is approximately 4.6 times better than that of the
replication.

 Figure 3. Space efficiency according to fault
tolerance

Space efficiency is rapidly degraded as fault
tolerance increases in the replication. In the case
of the EC, space efficiency depends on the change
in K and M values, and the maximum space
efficiency is determined by the K value (i.e., the
number of original datasets). Thus, it is necessary
for users to setup K and M values according to the
required space efficiency and reliability.

The EC is absolutely superior in terms of space
efficiency compared to the replication. However,
the EC has a number of performance degradation
factors. This is because the EC is basically based
on original data split. In particular, the EC has a
large number of chunks that have to be managed
in exchange for higher space efficiency by
increasing the K value.

3. Fault tolerance and the number of chunks

In the replication, original and replicated chunks
exist. However, original data is divided into K
datasets and M parities are generated in the EC.
Thus, the number of distributed chunks is
different between replication and EC. Figure 4
shows the number of chunks required to store files
when dual fault tolerance is enforced (M = 2).

 Figure 4. Number of chunks assigned during
dual fault tolerance (single chunk set)

As shown in Figure 4, EC (K = 16) has six times
more chunks that are managed compared to the
replication. That is, when a file is generated, the
replication requires three chunks, whereas EC (K
= 4) and (K = 16) require six and 18 chunks,
respectively. Generally, the larger the number of
chunks that are managed in a distributed file
system is, the larger the management cost is.

However, since the EC has a large number of
chunks, a large volume of data can be stored in a
single chunk set. For example, when size of a
chunk is 64 MB, the size that can be stored in a
single chunk set is 64 MB in the replication,
whereas 4 + 2 EC is 256 MB and 16 + 2 EC is

March - April 2020
ISSN: 0193-4120 Page No. 4651 - 4657

4654 Published by: The Mattingley Publishing Co., Inc.

1,024 MB. Next, an equation that calculates the
number of chunk sets according to a file size is
presented.

 (1)

where K refers to the split number of original data.
For example, K is one in the case of triple
replication, four in the case of 4 + 2 EC, and 16 in
the case of 16 + 2 EC. The reason for rounding
numbers up is because at least one chunk set has
to be assigned, even if a size of data is small.

Figure 5 shows an example of the number of
chunk sets required according to a file size when
dual fault tolerance is enforced with a chunk size
of 100 MB

 Figure 5. No. of chunk sets according to a file
size (M=2)

In Figure 5, the number of chunk sets becomes
smaller as the K value increases. In particular, the
difference in the number of chunk sets between
EC and replication increases as file size increases
when size of chunk set is 100 MB. This is because
the number of chunks included in a single chunk
set increases as the K value increases, so that the
data that can be stored in a single chunk set
increases. Thus, the actual number of chunks
distributed over the DSs is different from the
number of chunk sets. Next, an equation that
calculates the number of chunks according to a
file size is presented.

 =
 (2)

where K refers to the split number of original data,
and M refers to the number of replicated data for
fault tolerance. Thus, in the case of triple
replication, K is one and M is two. In the case of 4
+ 2 EC, K is four and M is two. Figure 6 shows an
example of the number of chunks required
according to file size when dual fault tolerance is
enforced with a chunk size of 100 MB.

 Figure 6. No. of chunks according to file size
when a chunk size is 100 MB (M = 2)

As shown in Figure 6, the number of chunks is
determined by the K value, M value, chunk size,
and file size. If a file size is a single chunk set size,
the number of chunks is the least in the replication.
However, the required number of chunks
increases as file size increases and K becomes
smaller; thus, the number of chunks managed in
the case of the replication is the largest if a file
size is larger than 600 MB. In the case of the EC,
the number of chunks that is managed varies
depending on the EC setup and file size.

However, more than 99% of files in a storage are
less than 1 MB in size [12], and most of files are
still less than 1 GB even if average file size has
been increased due to the development of the
high-performance computing field [13]. In
addition, generally, a chunk size is set to a large
size to solve the chunk problem in the replication
over a distributed file system when there are many
large files. That is, most files can be stored in a
single chunk set, and the number of chunks that
have to be managed increases when the space
efficiency is set to high.

March - April 2020
ISSN: 0193-4120 Page No. 4651 - 4657

4655 Published by: The Mattingley Publishing Co., Inc.

4. Characteristics of fault recovery of erasure
coding and replication

Generally, disk faults occur more frequently as the
numbers of servers and disks per server increase
in a large-capacity storage system. Furthermore,
the number of files requiring recovery will
increase upon disk failure as the EC is applied and
disk capacity increases [14]. This section
discusses the characteristics of fault recovery in
detail in consideration of the above circumstances.

When 100 files are stored, both triple replication
and 16 + 2 EC methods require 100 chunk sets.
However, the number of chunks stored in DSs is
300 in the case of triple replication but 1,800 in
the case of 16 + 2 EC. Thus, the number of chunks
stored per disk is different, which means that the
probability that a corresponding file becomes a
recovery target during fault occurrence would be
different in the same system. The next equation
represents probability that a specific file becomes
a recovery target out of the entire files during a
fault in a specific disk of the storage system.

 (3)

Figure 7 shows the probability of becoming a
recovery target during disk faults according to the
number of 24 disk-mounted DSs.

Figure 7. Probability of becoming a recovery

target

As shown in Figure 7, probability of a file
requiring fault recovery during a single disk
failure is up to six times larger in the EC than in
the replication. In particular, as the number of DSs
becomes smaller, a fault probability increases.
When the number of DSs is 20, only 0.6% of the
entire files are faults, whereas 1.3% and 3.8% are
faults in the case of EC (K = 4) and EC (K = 16)
upon a single disk failure.

Figure 8 shows the number of damaged files upon
a single disk failure assuming that 100,000 files of
a single chunk set size are distributed evenly in 20
DSs, each mounted with 24 disks as in Figure 7.

 Figure 8. No. of files that require recovery
upon single disk failure

As shown in Figure 8, the replication has the least
damaged files, while the EC (K = 16) has the
largest. In addition, the replication and EC have
approximately six times difference in the number
of damaged files, but the number of damaged files
is not so large compared to the numbers of DSs
and entire files. Figure 9 shows the number of
chunks that require access for recovery-needed
files as shown in Figure 8.

As shown in Figure 9, the replication and EC have
significant difference in the number of chunks
requiring read access to recover damaged files. In
particular, read access is rapidly increased in EC
as K value increases. That is, when comparing
replication (K = 1) and EC (K = 16), the number
of damaged files is six times greater but the
number of total chunks that needed to be accessed

March - April 2020
ISSN: 0193-4120 Page No. 4651 - 4657

4656 Published by: The Mattingley Publishing Co., Inc.

for recovery is approximately 100 times greater.
Thus, the number of input/output (I/O) requests
for fault recovery in the EC increases rapidly,

which causes various bottlenecks, increasing a
performance delay significantly.

Figure 9. No. of chunks that require access for fault recovery

Table 1: No. of chunks that require access for fault recovery (M = 2)

 1Kbyte 4Kbyte 16Kbyte 64Kbyte 256Kbyte 1024Kbyte
Replication (K=1) 1,024Byte 4,096Byte 16,384Byte 65,536Byte 262,144Byte 1,048,576Byte

EC (K=4) 256Byte 1,024Byte 4,096Byte 16,384Byte 65,536Byte 262,144Byte
EC (K=8) 128Byte 512Byte 2,048Byte 8,192Byte 32,768Byte 131,072Byte

EC (K=16) 64Byte 256Byte 1,024Byte 4,096Byte 16,384Byte 65,536Byte

As presented in Table 1, 4 KB I/O can be possible
in the replication when a file size is 4 KB,
whereas only 256 byte I/O can be possible in the
case of EC (K = 16). Due to this difference, the
replication does not require special processing for
fault recovery. However, the EC experiences small
I/O processing for large-size files during fault
recovery so that storage performance can be
degraded rapidly if efficient processing is not
supported.

5. Conclusion

The replication has low space efficiency because
it stores a large volume of replicated data. Thus, it
can increase system size as well as construction
and management cost exponentially. On the other
hand, EC has high space efficiency; thus, system

size is not significantly increased accordingly.
However, EC requires a process of original data
recovery through decoding after reading a large
number of original data and parity blocks during
fault recovery. In EC, probability of files
becoming a fault recovery targets during fault
recovery is also increased significantly, although
its space efficiency is high. In particular, the
number of chunks required during recovery
increases rapidly in EC.

6. Acknowledgment

This work was partly supported by Institute for
Information & communications Technology
Planning & Evaluation(IITP) grant funded by the
Korea government(MSIT) (No.2019-0-00118,
Research and Development on Memory-Centric

March - April 2020
ISSN: 0193-4120 Page No. 4651 - 4657

4657 Published by: The Mattingley Publishing Co., Inc.

OS Technologies of Unified Data Model for Next-
Generation Shared/Hybrid Memory) and IITP
grant funded by the Korea government(MSIP)
(No.2018-0-00201, Development of High
Confidence Information Trading Platform Based
on blockchain (PON algorithm))

References

[1] Mirzoev T. Synchronous replication of remote
storage. Journal of Communication and Computer
2009;6(3), 34-9.

[2] Abhijith S. The Pros and Cons of Erasure Coding
& Replication vs. RAID in Next-Gen Storage
Platforms.

[3] Jun L, Baochun L. Erasure coding for cloud
storage systems: A survey. Tsinghua Science and
Technology 2013;18(3):259-72

[4] Erasure Coding Support inside HDFS.
https://issues.apache.org/jira/browse/HDFS-7285/.

[5] Apache Hadoop 3.0.0.
http://hadoop.apache.org/docs/r3.0.0-alpha4.

[6] Glusterfs. https://access.redhat.com/products/red-
hat-storage/.

[7] Ceph. http://docs.ceph.com/docs/master/rados/.
[8] James SP. Erasure Codes for Storage Systems.

The Usenix Magazine 2013;38(6):44-50.
[9] Dongdong S, Yinlong X, Yongkun L, Si W,

Chengjin T. Efficient Parity Update for Scaling
RAID-like Storage Systems. Proceedings of the
2016 IEEE International Conference on
Networking 2016;1-10.

[10] Haddock W, Curry ML, Bangalore PV, Skjellum
A. GPU Erasure Coding for Campaign Storage.
Proceedings of the Int. Conf. High Performance
Computing 2017;145-159.

[11] Mohan LJ, Harold RL, Caneleo PIS, Parampalli
U, Harwood A. Benchmarking the Performance
of Hadoop Triple Replication and Erasure Coding
on A Nation-Wide Distributed Cloud.
Proceedings of the 2015 International Symposium
on Network Coding (NetCod). 2015;61-5.

[12] Tanenbaum AS, Herder JN, Bos H. File Size
Distribution on UNIX Systems-Then and Now.
ACM SIGOPS Operating Systems Review.
2006;40(1):100-4.

[13] Welch B, Noer G. Optimizing a hybrid SSD/HDD
HPC storage system based on file size

distributions. Proceedings of the 2013 IEEE 29th
Symposium on Mass Storage Systems and
Technologies (MSST). 2013;1-12.

[14] Anton S. Market Views: HDD Shipments Down
20% in Q1 2016, Hit Multi-Year Low.
https://www.anandtech.com/show/10315/market-
views-hdd-shipments-down-q1-2016/3.

