

March - April 2020
ISSN: 0193-4120 Page No. 4638 - 4650

4638 Published by: The Mattingley Publishing Co., Inc.

Search Method for Moving Sensors on
a Big Data-based Road Network

Jeongmin Park1, Seunghwa Lee2, Jeong-Joon Kim*3
1Professor, Department of Computer Engineering, Korea Polytechnic University, 237 Sangidaehak-ro

Gyeonggi-Do Siheung, 15073, South Korea
2Professor, Division of Information and Communication, Baekseok University, 76, Munam-ro, Dongnam-gu,

Cheonan-si, Chungcheongnam-do, South Korea
*3Professor, Department of Software, Anyang University, 22 Samdeok-ro, Manan-gu, Anyang, Gyeonggi-do,

14028, South Korea
jmpark@kpu.ac.kr1, sh.lee@bu.ac.kr2, jjkim@anyang.ac.kr*3

Article Info
Volume 83
Page Number: 4638 - 4650
Publication Issue:
March - April 2020

Article History
Article Received: 24 July 2019
Revised: 12 September 2019
Accepted: 15 February 2020
Publication: 26 March 2020

Abstract
KNN search, which is a representative location-based query, is used to search the K
moving sensors with the closest network distance from the query point by setting the
network peripheral object as the query point. Typical examples of the KNN search method
in a road network include the IER and INE techniques. However, existing KNN search
methods have the disadvantage that the storage space increases as the number of moving
sensors increases, and the search time length increases due to the inefficient search process.
Therefore, this paper proposes a Middle Point-based QR-tree (MPBQR) based on a QR-
tree using the midpoint and an efficient KNN search method that uses MPBQR to solve the
problem of existing KNN search methods in road network environments and to support the
efficient processing of large capacity sensor data.

Keywords: Bigdata, Moving Sensor, Road Network, Quad-tree, R-tree.

1. Introduction

This paper focuses on KNN [1,2] search and
range retrieval, which are most commonly used in
road network environments [3,4]. Typical
examples related to searching moving sensor data
in a road network include the IER and INE
techniques. The IER technique [5] finds sensor
data candidates using Euclidean distance and
search sensor data using the actual network
distance. Since the IER technique uses the actual
network distance to repeat the Euclidean region
query several times, the search performance drops
significantly. The INE technique [5] retrieves the
POI from the query point while sequentially
expanding the line strings that constitute the
network. Since the INE technique searches the R-

tree storing the moving sensor several times, its
search performance is poor. Therefore, this paper
proposes the Middle Point-based QR-tree
(MPBQR), which is a QR-tree [6] that uses the
midpoint (MP, Middle Point) and the KNN and
range search method based on MPBQR to solve
the problem of existing search methods of moving
sensors and supports more efficient processing of
large capacity sensor data.

MPBQR proposed in this paper can be used in
various GIS applications such as ITS, telematics,
and LBS [7] services, which mainly use KNN
search and range search because the search
process is uncomplicated and its structure does
not depend on a specific system. In addition, it
can be extended to KNN search and range search

March - April 2020
ISSN: 0193-4120 Page No. 4638 - 4650

4639 Published by: The Mattingley Publishing Co., Inc.

for moving sensors used in services such as when
monitoring moving sensor data.

2. Related Works

2.1. Incremental Network Expansion (INE)

INE is a method of performing KNN searches by
extending line strings individually [5]. In the
KNN search, when a query point is given, it first
searches for a line string that contains the query
point. Thereafter, the adjacent line strings are
expanded individually from the corresponding
line string, and whether there is a movement
sensor in the corresponding line string is retrieved
using the R-tree [8,9] in which the movement
sensor is stored. The above process is repeated
until the user finds the K moving sensors
requested by the user to expand the line string.
Figure 1 shows an example KNN search using
INE.

As shown in Figure 1, when there is a moving
sensor in the road network, P represents the
moving sensor point, q represents the query point,
and n represents the node. When processing a
KNN query through INE, the first step is to find
the line string that contains the query point. Since
a two-dimensional R-tree that consists of a line
string is constructed, a line string that contains the
query point is searched.

Both nodes of the searched line string are inserted
into the priority queue in ascending order of
distance. The existence of the moving sensor in
the line string is determined using the position of
the detected line string that is inquired to the R-
tree in which the moving sensor is stored. In
Figure 1, since no moving sensor is found, the
nearest node is popped into the priority queue to
search for another line string connected to that
node.

INE manages the linking relationship between
line strings as a linked list with nodes. Thus, it is
possible to extend from node n1 to the line string
n1n7. After the node n7 of the extended line string
is inserted into the priority queue, the moving
sensor’ s existence is detected in the extended
line string using the R-tree that stores the moving
sensor.

Here, finding the moving sensor P5 in the line
string n2n4 means that the network distance from
the query point to P5 can be calculated. If this
network distance is greater than the distance from
the query point to the next node to be popped, P5
is the closest moving sensor, a result is returned,
and the query is terminated. Otherwise, since
there may be a moving sensor closer to P5, the
query is continued by extending the line string. In
Figure 1, the network distance from the query
point to P5 is seven, and the network distance of
node n4 to be popped next is eight, so P5 is
returned as a result and the search is terminated.

INE has the advantage of saving the storage space
because it stores the line string and moving sensor
in each R-tree. However, the search performance
deteriorates when expanding a line string because
each time it searches, it used the R-tree in which
the moving sensor is stored to check for the
presence of the moving sensor on the line string.

Figure 1. Example of KNN search using INE.

2.2. Incremental Euclidean Restriction (IER)

IER is a method that performs a KNN search
using the property that the network distance

between two points is always ≥ the Euclidean
distance [1,2]. First, K candidate moving
sensors nearest the query point are searched

March - April 2020
ISSN: 0193-4120 Page No. 4638 - 4650

4640 Published by: The Mattingley Publishing Co., Inc.

based on the Euclidean distance [10] using the
R-tree that is storing the moving sensor. Then,
the actual network distance from the candidate
moving sensors to the query point is calculated
and the region query on the Euclidean space is
performed with the largest value as the radius.

In the presently retrieved moving sensor, the
nearest moving sensor based on the Euclidean
distance is searched to determine the network
distance from the query point except for the

candidate moving sensors in the previous step. If
this distance is closer to the moving distance of
the candidate moving sensor than the moving
distance from the query point, the Kth moving
sensor is dropped from the candidate and the
newly detected moving sensor is inserted into K
candidate moving sensors. The above process is
repeated to search for K closest moving sensors at
the query point. Figure 2 shows an example of
KNN search processing through IER.

Figure 2. Example of KNN search through IER.

In Figure 2, q denotes the query point and P
denotes the moving sensor coordinates. When the
query point q is given, IER finds the closest
moving sensor PE1 on the Euclidean distance.
The IER searches the moving sensor using the R-
tree that stores the moving sensor in the same
manner as the INE.

After this, the network distance of PE1 is
calculated from the query point. The network
distance to PE1 is defined as dEmax and the
Euclidean distance is defined as dE. From the
query point, the moving sensor is searched
between the dE and dEmax through the area query
in Euclidean space. The network distances of the
retrieved moving sensors are all calculated to
determine whether the network distance is smaller
than dEmax.

In the case of Figure 2, since the network distance
of PE2 is less than dEmax from the query point,
PE1 is excluded from the result set and the values
of dEmax and dE are changed to PE2 after
inserting PE2. In the case of PE3, the Euclidean
distance is larger than the changed dEmax, so PE2
is returned as a result and the search is terminated.

However, since both the calculation of the actual
network distance from the candidate movement
sensors to the query point and the area query
regarding the Euclidean space that has the largest
value as the radius are repeated many times, the
search performance is greatly degraded.

3. Middle Point-based QR-tree (MPBQR)

3.1. Overview of MPBQR

The proposed system is shown in Figure 3. The
sensors located around the road provide sensor

March - April 2020
ISSN: 0193-4120 Page No. 4638 - 4650

4641 Published by: The Mattingley Publishing Co., Inc.

data for road conditions such as temperature,
humidity, weather, etc. and messages about
abnormal conditions such as earthquakes, fires,
car accidents, the speed of surrounding cars,
pedestrian count, pedestrian crossing waiting
times, traffic light information, etc. are collected
from the road network such as bridges and tunnels
and stored in the Hadoop Distribute File System
(HDFS) of this system, which uses HDFS and
Map Reduce. HDFS stores various collected
sensor data, and Map Reduce plays the role of
storing, updating, and searching through the

MPBQR presented in this paper. Finally, the
complexity of the traffic environment will be
eliminated, and rapid disaster propagation,
pedestrian safety enhancement and facility risk
detection are possible.

MPBQR consists of a Quad-tree, a cell
component, an LN component, an MP component,
a cell connection component, a cell R-tree, and an
MP R-tree. Figure 3 shows an example of
generated MPBQR when cell segmentation is
performed for a road network and moving sensor.

Figure 3. MPBQR Architecture.

(a) Cells created by moving sensors and links (b) Storage structure example

Figure 4. MPBQR Architecture.

In Figure 4, the circle represents the movement
sensor and is represented by Pi, the triangle
represents the link node and is denoted by LNi,
while the rectangle represents the middle point

and is denoted by MPi. Since seven cells are
generated as in the example, the seven terminal
nodes of 00, 0100, 0101, 0110, 0111, 10, and 11
are generated in the quad-tree that constitutes the

March - April 2020
ISSN: 0193-4120 Page No. 4638 - 4650

4642 Published by: The Mattingley Publishing Co., Inc.

MPBQR. There are zero mobile sensors, two LNs,
and two MPs stored in the cell component
indicated by the 0101 terminal node, and IDs 4
and 5 of the stored LNs and IDs 2 and 3 of the
MPs are stored. The cell R-tree of cell 0101 stores
the link in which the link node is included in the
cell 0101 or link segments (MP2, LN4), (LN1,
LN3), and (LN4, MP3).

The MP component of cell 0101 stores the
network distance between MP2 and MP3 stored in
the cell component of cell 0101. The LN
component of cell 0101 stores the network
distance from the two LNs stored in the cell
component of cell 0101 to MP2 and MP3. The
cell connection component stores the cell ID that
stores the MP. That is, MP1 stores 10 and 0110,
MP2 stores 0101 and 0110, MP3 stores 0101 and
0111, and MP4 stores 11 and 0111. In KNN search
and range search, this information is used to
expand the cell and perform the search. Before
describing MPBQR generation, we define
Inner_MP and Outer_MP, which are used for cell
division and merging. Inner_MPS is a set of MPs
stored only in the cell components of a given cell
and sibling cells, and Outer_MP is the set of MPs

excluding Inner_MP in all MPs stored in the cell
components of a given cell and sibling cells.

When MP1, MP2, MP3, and MP4 are generated as
shown in Figure 3, the Inner_MP of cells 0100,
0101, 0110, and 0111 is {MP2, MP3} and
Outer_MP is {MP1, MP4} because MP1 and MP4
are also stored in cells 10 and 11; although the
MPs included in cells 0100, 0101, 0110, and 0111
are respectively MP1, MP2, MP3, and MP4,
Inner_MP becomes MP2 and MP3, and Outer_MP
becomes MP1 and MP4.

3.2. MPBQR Creation

When MP1, MP2, MP3, and MP4 are generated as
shown in Figure 3, the Inner_MP of cells 0100,
0101, 0110, and 0111 is {MP2, MP3} and
Outer_MP is {MP1, MP4} because MP1 and MP4
are also stored in cells 10 and 11; although the
MPs included in cells 0100, 0101, 0110, and 0111
are respectively MP1, MP2, MP3, and MP4,
Inner_MP becomes MP2 and MP3, and Outer_MP
becomes MP1 and MP4.

Figure 5. Input data.

Before inputting the link data, the initial region is
set using the values x_min, x_max, y_min, and
y_max of the link data to be input, and the root
node and the cell component of the MPBQR are

generated; the link is then inserted. Figure 6
shows an example of inserting the first link.

March - April 2020
ISSN: 0193-4120 Page No. 4638 - 4650

4643 Published by: The Mattingley Publishing Co., Inc.

(a) Insertion of cell link (b) Storage structure example

Figure 6. Example of first link insert.

As shown in Figure 6, by inserting the first link
(LN1, LN2), two link nodes LN1 and LN2
included in the link are stored in the cell
component and the link (LN1, LN2) is stored in
the cell R-tree. Insertion is performed for all links
in the same manner as the first link insertion
process.

After all links have been inserted, the moving
sensor is inserted, during which cell division

occurs. In this example, the cell division criterion
is set to six. Insertion is performed for the first
moving sensor; it is inserted into the cell
component of the cell in which the link or link
segment that contains the moving sensor is located.
Figure 7 shows the insertion example for the
moving sensor coordinate 1.

(a) Insertion of the moving sensor into cell (b) Storage structure

Figure 7. Insertion example of the moving sensor coordinate.

As shown in Figure 7, the terminal node area
where the moving sensor is located is first
searched. Here, the moving sensor is located in

the root terminal node area. Then, whether the
link or link segment stored in the cell R-tree of the
next root terminal node includes the moving

March - April 2020
ISSN: 0193-4120 Page No. 4638 - 4650

4644 Published by: The Mattingley Publishing Co., Inc.

sensor is checked. Since moving sensor 1 is
included in the links (LN1, LN2), it is inserted
into the root cell component. The insertion of the
remaining moving sensor from 2 to 7 is performed
using the same method as for moving sensor 1.

After all moving sensors stored in the cell
component of the root cell have been inserted, the

root cell component and root cell R-tree are
deleted. Finally, an LN component and MP
component are generated using the link or link
segment stored in each cell of the cell component
and the cell R-tree. The network distance
calculation uses the Daikstra algorithm; Figure 8
shows an example of creating an LN component
and MP component.

(a) Completion of link and POI insertion into the cell (b) Storage structure

Figure 8. Example of creating LN component and MP component.

As shown in Figure 8, an LN component and MP
component are created for each cell. The LN
component of cell 00 stores the network distances
from each LN of cell 00 to the moving sensor and
the MP in ascending order. In the MP component
of cell 00, the network distances from each MP of
cell 00 to the moving sensor and MP are stored in
ascending order. Moving sensor insertion is the
process of inserting a moving sensor in addition to
the MPBQR already created. Therefore, the
process of inserting the moving sensor is the same
as the process of inserting the moving sensor in
the MPBQR generation process. However, in the

MPBQR generation process, after completing the
insertion of all moving sensors, the LN and MP
components are generated by collectively
calculating the network distance. However, when
the mobile sensor is inserted, the LN and MP
components of the divided cell are newly created
when the cell is divided by inserting the moving
sensor. When the cell is undivided, the
corresponding moving sensor is inserted into the
LN and MP components. Figure 9 shows an
example insertion of moving sensor 9.

March - April 2020
ISSN: 0193-4120 Page No. 4638 - 4650

4645 Published by: The Mattingley Publishing Co., Inc.

(a) Completion of link and POI insertion into the cell (b) Storage structure

(c) After Insertion

Figure 9. Insertion example for moving sensor 9.

As shown in Figure 9, when moving sensor 9 is
inserted, it is located on the links (LN3, LN5) of
cell 11 so that moving sensor 9 is inserted into the
cell component of cell 11. Since cell 11 into which
moving sensor 9 is inserted does not exceed the
division criterion, moving sensor 9 is inserted into
the LN and MP components of cell 11.

The insertion of a link is the process of inserting a
new link into the already-created MPBQR. When
inserting a link, first check the overlap between
the link node of the link to be inserted and that

stored in the MPBR, and then insert the link after
confirming the link node of the link to be inserted.
If the cell in which the link has been inserted
exceeds the division criterion, the LN and MP
components are generated using the network of
divided cells after performing the cell division
operation. If the division criterion has not been
exceeded, an LN component and MP component
are newly created specifically for the cell in which
the link has been inserted. Figure 10 shows an link
insertion example (LN18, LN19).

March - April 2020
ISSN: 0193-4120 Page No. 4638 - 4650

4646 Published by: The Mattingley Publishing Co., Inc.

(a) Link insertion (b) Link split

Figure 10. Example of link(LN18, LN19) insertion.

As shown in Figure 10, first check to see whether
there are link nodes that overlap the two link
nodes of the link to be inserted. In the example,
LN18 overlaps with LN9 and LN19 overlaps with
LN5, so the (LN18, LN19) link is replaced with
(LN9, LN5) and inserted into MPBQR. The link
insertion process is the same as that in the index
creation process. First, whether the link exceeds
the division criterion with respect to the inserted
cell is checked. In this example, no partitioning is
performed because the partitioning criterion is not
exceeded. Finally, an LN component and MP
component are newly created for the cell in which
the link is inserted.

3.3. MPBQR based Search

For the KNN search, the search count K is
received as an input value. An example KNN
search process is explained. First, Search_Count is
set by comparing the number K of inputted
searches and the total number of moving sensors
stored in the current MPBQR. In this example, the
number of searches is set to three and the total
number of movement sensors stored is eight, so
Search_Count is set to three. The link or link
segment where the next query point q is located is
searched using cell R-tree and MP R-tree. Figure
11 shows an example of the result of processing
for a moving sensor.

Figure 11. Example of processing result for the moving sensor 8.

March - April 2020
ISSN: 0193-4120 Page No. 4638 - 4650

4647 Published by: The Mattingley Publishing Co., Inc.

As shown in Figure 11, after the process is
completed for movement sensor 8, since the
Result_Count is three, the search is terminated
and the result is returned. The returned result
returns the value from the first value of the search
buffer to the cursor position and the network
distance and path from the query point q to the
movement sensor using the search buffer and the
MP buffer.

The three results in this example are P7 = 7, P6 =
8, P8 = 9. The search buffer, the MP buffer, and
the shortest path for each cell. Therefore, the final
result is P1 = 7, path q→LN1→P1; P6 = 8, path q
→LN9→P6; and P8 = 9, path q→LN1→P8.
Figure 12 shows an example 3NN search result.

Figure 12. 3NN search result example.

The range search performs a search based on the
MPBQR, and the search method is similar to the
KNN search method.

Figure 13. Example of performing a search until a cursor points to null.

As shown in Figure 13, if the cursor points to null,
the search is terminated and the result is returned.
The returned result returns the value from the first

value of the search buffer to the previous position
of the cursor, and returns the network distance and
path from the query point q to the movement

March - April 2020
ISSN: 0193-4120 Page No. 4638 - 4650

4648 Published by: The Mattingley Publishing Co., Inc.

sensor using the search buffer and deleted MP
storage buffer. That is, the path is ultimately
guided using the search buffer, the MP buffer, and
the shortest path for each cell.

The result in this example is P1 = 7, path q→LN1
→P1; P6 = 8, path q→LN3→LN9→P6; P8 = 9,
path q→LN1→P8; and P5 = 10, path q→LN3→
LN9→P5. Figure 14 shows an example 10 range
result.

Figure 14. A 10 range result example.

4. Performance evaluation

In this paper, the system used for performance
evaluation was a distributed structure that used
five PCs. The Hadoop system consists of one
main node and four slave nodes. INE and IER
were implemented and compared to evaluate the
performance of KNN search and range search
using MPBQR.

In this paper, 30,000 arbitrary sensors were
distributed over 100,000 line strings and 40,000
line segments, which were virtually implemented
to justify the experimental results.

The performance of the moving sensor insertion
time and the line string insertion time were
evaluated in the insertion performance evaluation.
The insertion rate of the moving sensor was set to
a value obtained by dividing the number of
inserted moving sensors by the amount of moving
sensor data generated in Seoul and then

multiplying this by 100% and setting the line
string insertion ratio value to a value obtained by
dividing the number of inserted line strings by the
number of generated line strings and then
multiplying this by 100%. Figure 15 shows the
results of the insertion time performance
evaluation according to the moving sensor’s
insertion ratio.

Figure 15. Insertion time according to the
moving sensor insertion ratio.

March - April 2020
ISSN: 0193-4120 Page No. 4638 - 4650

4649 Published by: The Mattingley Publishing Co., Inc.

In Figure 15, as a result of comparing the insertion
time performance evaluation according to the
moving sensor insertion ratio, the performance of
MPBQR is improved by 65% on average and 90%
for IER compared to INE.

Figure 16 shows the insertion time performance
evaluation result according to the line string
insertion ratio.

Figure 16. Insertion time according to line
string insertion ratio.

In Figure 16, as a result of comparing the insertion
time performance according to the line string
insertion ratio, MPBQR was improved 43% on
average and 23.3% when comparing IER to INE.

The performance of the KNN search time and
range search time were evaluated in the search
performance evaluation. In the performance
evaluation of KNN search, the search time
performance was evaluated according to the K
value. Figure 17 shows the performance
evaluation result for the KNN search time
according to the K value.

Figure 17. KNN search time according to the K
value.

In Figure 17, as a result of comparing the KNN
search time performance with the K value,
MPBQR improved by 60% on average and 26%
for IER compared to INE.

Figure 18 shows the performance evaluation result
of the range search time according to the R value.
The R value used in the range search was set to a
value that was obtained by dividing the query
range value by the length of the large side of the
whole area and then multiplying this by 100%.

Figure 18. Range search time according to the
range search ratio.

In Figure 18, in the results of comparing the range
search time performance evaluation according to
the search range value, the MPBQR was improved
by 23% on average and 39% on average when
compared to IER.

5. Conclusion

This paper proposed MPBQR to solve the
problems in existing moving sensor search
methods and to support more efficient processing
of large capacity spatial data, and proposed KNN
search and range search methods that use MPBQR.

MPBQR creates a quad-tree by dynamically
dividing the cells based on the number of moving
sensors and number of midpoints to reduce the
storage space, stores the network distance between
LN, MP, and the moving sensors in the cell in the
LN and MP components. The search performance

March - April 2020
ISSN: 0193-4120 Page No. 4638 - 4650

4650 Published by: The Mattingley Publishing Co., Inc.

is improved by managing the neighboring
information of the cells using the midpoint so that
the moving sensor stored in the adjacent cell can
be quickly searched. The network distance is
calculated from the LN and MP to the moving
sensor in advance for the LN component and MP
component, and these are stored in ascending
order. The network distance calculation process
from the query point to the MP and the movement
sensor and search buffer storage process of the
MP and movement sensor are simplified.
Therefore, since MPBQR divides the network area
into cells using a quad-tree and manages adjacent
information between cells using the midpoint, the
storage information is low and the storage
efficiency and search performance are excellent.

References

[1] Zhao G, Xuan K, Taniar D, Srinivasan B.
Incremental K-Nearest-Neighbor Search on Road
Networks. Journal of Interconnection Networks
2008;09(04):455-70.

[2] Liao W, Wu X, Yan C, Zhong Z. Processing of
Continuous k Nearest Neighbor Queries in Road
Networks. Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed
Computing 2009:31-42.

[3] Lin H. Efficient and compact indexing structure
for processing of spatial queries in line-based
databases. Data & Knowledge Engineering
2008;64(1):365-80.

[4] Vazirgiannis M, Wolfson O. A Spatiotemporal
Model and Language for Moving Objects on
Road Networks. Advances in Spatial and
Temporal Databases 2001:20-35.

[5] Papadias D, Zhang J, Mamoulis N, Tao Y. Query
Processing in Spatial Network Databases.
Proceedings 2003 VLDB Conference 2003:802-
13.

[6] Manolopoulos Y, Nardelli E, Papadopoulos A,
Proietti G. QR-tree: A Hybrid Spatial Data
Structure. Proceedings of the International
Conference on Geographic Information Systems
in Urban, Regional and Environmental Planning
1996:3-7.

[7] Wu S, Wu K. Effective Location Based Services
with Dynamic Data Management in Mobile
Environments. Wireless Networks
2006;12(3):369-81.

[8] Proietti G, Faloutsos C. I/O complexity for range
queries on region data stored using an R-tree.
Proceedings 15th International Conference on
Data Engineering (Cat No99CB36337) 1999:628-
35.

[9] Guttman A. R-Tree: A Dynamic Index Structure
for Spatial Searching. Proceeding of the
International Conference on Association for
Computing Machinery Special Interest Group on
Management of Data 1984;14(2):47-57.

[10] Demiryurek U, Banaei-Kashani F, Shahabi C.
Efficient Continuous Nearest Neighbor Query in
Spatial Networks Using Euclidean Restriction.
Advances in Spatial and Temporal Databases
2009:25-43.

