

March - April 2020

ISSN: 0193-4120 Page No. 4096 - 4101

4096 Published by: The Mattingley Publishing Co., Inc.

The Parallel Decoding Architecture

of Multi-Format VLD

Ki-Bum Suh

Professor, Dept. of Rail Electrical System Engineering, Woosong University, 171 Dong-Dae-jun-Ro Dong-ku,

Daejeon, 34606 Korea

kbsuh@wsu.ac.kr

Article Info

Volume 83

Page Number: 4096 - 4101

Publication Issue:

March - April 2020

Article History

Article Received: 24 July 2019

Revised: 12 September 2019

Accepted: 15 February 2020

Publication: 26 March 2020

Abstract

Establishment and focus: In this paper, we propose an efficient architecture of MF-VLD

(Multi-Format Variable Length Decoder), which is capable of variable length decoding and

inverse quantization of various codec standards. The proposed MF-VLD is designed to be

suitable for MPSOC (Multiprocessor System on Chip), and the bandwidth of AHB bus is

reduced by applying bit-plane algorithm to inverse quantized data. It supports H.264,

MPEG-2, MPEG-4, AVS, and VC-1 codec standards.

System: Parallel Decoding method using multi-processor is verified using INEXT board,

which is emulation board with Xilinx Vertex5 XC4VL330 FPGA. The designed MF-VLD

operates at 200 MHz in a 0.18 μm process and is approximately 620 K gates in size. The

memory used is about 27 K bytes. In order to reduce the chip size, each variable-length

decoding modules are arranged independently without combining, so that it is easy to add

and remove according to the market situation later, and the design and verification shorten

the time.

Keywords: Multi-processor, Multi-Format VLD, Parallel Decoding, Video Codec, MPSOC.

1. Introduction

As H.261 became the first international standard

for video compression in 1990, video codecs have

been constantly evolving. Currently, MPEG-2 is

widely used for television broadcasting, and

H.264 / AVC is also used for domestic terrestrial

digital multimedia broadcasting (DMB), European

satellite broadcasting, and digital video

broadcasting-handheld (DVB-H). For UHD

broadcasting, H.265 / HEVC is used. DivX and

XviD, MPEG-4 series, are also widely used for

web and mobile, and AVS is developed and used

as a national standard in China, which has a huge

multimedia market. In addition, the VC-1,

developed by Microsoft, is standard on high-

definition DVD (HD DVD), Blu-ray, and Xbox

360[1]. Therefore, there is a need for production

of products that support high-definition video and

process various video codecs.

There has been much research on Multi-Format

Video Decoder (MFD). Among the previously

published studies, the high-definition multi-format

video decoder [2] with separate structure supports

the decoding of high-definition video and is

designed with separate structure for MPEG-2,

MPEG-4, H.264, and VC-1 codec. Although

similar in this regard, this paper shows a big

difference in that it is designed for support of AVS

codec and multiprocessor. In addition, there are

good studies on MFD such as Chien [3], Cheng

[4], and Jo [5], but they show a big difference

from this paper in terms of supporting codec and

design architecture. Efficient video decoding of

H.264 and VC-1 using parallel cores [6] can be

March - April 2020

ISSN: 0193-4120 Page No. 4096 - 4101

4097 Published by: The Mattingley Publishing Co., Inc.

used as a multi-decoder combined with MF_VLD

of this paper by suggesting a parallel processing

method using multi-core macroblock lines. For

the HEVC decoder, the HEVC video decoder

Chip [7-10]can be combined with this proposed

design.

2. The architecture of MF-VLD

The architecture of the proposed MF-VLD is

shown in Figure 1. It is designed to be combined

with multiprocessor using AHB 32bit bus. This

module consists of AHB REG_slave, AHB

READ_Master, Stream Buffr, B-Direct SRAM,

AHB WRITE_Master, BitPlane processing unit

and VLD of each image standard.

AHB

REG_S lave

AHB

READ

Master AHB

WRITE

Mas ter

H264

VLD

MPEG- 2

VLD

MPEG- 4

VLD

AVS

VLD

Port

REG

Port

DATA

B- Direct

S ram

BitPlane

VC- 1

VLD

Port

STRM

Stream

Buffer

 Figure 1. The architecture of the proposed

MF-VLD.

AHB REG_Slave receives register data from

external controller and transfers decryption status

of MF-VLD to external controller. AHB

READ_Master reads video stream and reads data

from external memory (B-Direct Sram).

WRITE_Master transmits the decoded data to

Port DATA, Stream Buffer stores the video stream,

and B-Direct Sram stores the motion vector of the

reference picture to support the B-Direct

prediction mode for B pictures. The remaining

modules consist of a module that processes bit-

plane information on inverse quantized data and a

variable length decoding module of H.264,

MPEG-2, MPEG-4, AVS, and VC-1. The

operation of MF-VLD is as follows. When the

input signal is received from the external

controller and the start signal is received, the MF-

VLD reads the external video stream through

READ_Master and stores it in the internal

memory. According to the type of the stored video

stream, the variable length decoding module reads

the video stream and starts decoding. After

decoding the macroblock, it is stored in external

memory through WRITE_Master. Inverse

quantization is saved in external memory after bit-

plane processing. Finally, the decoded data is

stored in an external memory area in units of

macroblock lines.

2.1 Bit-plane application of inverse quant-

ization data

Int 16 Residual_Luma[256] 3 1 2 0 0 0 0 0

 64 pixel

2 0 0 0 0 0

 64 pixel

0 0 7 0 0 0

 64 pixel

0 0 0 0 0 0

 64 pixel

Int 32 bitplane_Luma[0]

Int 32 bitplane_Luma[1]

Int 32 bitplane_Luma[2]

Int 32 bitplane_Luma[3]

[MSB] 1 1 0 0 0 0 · · · 0 0 0 0 0 0 [LSB]

[MSB] 1 0 0 0 0 0 · · · 0 0 0 0 0 0 [LSB]

[MSB] 0 1 0 0 0 0 · · · 0 0 0 0 0 0 [LSB]

[MSB] 0 0 0 0 0 0 · · · 0 0 0 0 0 0 [LSB]

Int 16 Residual_Cb[64] 7 3 6 0 0 4 0 0

 64 pixel

0 0 0 1

Int 32 bitplane_Cb [MSB] 1 1 1 0 1 0 · · · 0 0 0 0 0 0 [LSB]

Int 16 Residual_Cr[64] 0 0 1 0 2 4 0 0

 64 pixel

0 0 0 0

Int 32 bitplane_Cr [MSB] 0 1 1 0 0 0 · · · 0 0 0 0 0 0 [LSB]

 Figure 2. Bit-plane configuration

Most inverse quantization data has a value of zero.

By using the characteristics of the inverse

quantization data, zero-value data is not stored in

the external memory, but only a valid value can be

stored to reduce the bandwidth of the bus. Figure

2 shows how the bit-plane is constructed for

inverse quantization data. It collects two

consecutive coefficients and determines whether

all of them are 0 or not, and if they are all 0, the

corresponding bit-plane value is written as 0, and

if any pixel is not 0, 1 is written. First, since 256

pixels of luminance are composed of four blocks

of 64 pixels, four registers of bitplane_luma

represent them, and two registers of bitplane_Cb

and bitplane_Cr are represented for the color

March - April 2020

ISSN: 0193-4120 Page No. 4096 - 4101

4098 Published by: The Mattingley Publishing Co., Inc.

difference (Cb, Cr). In other words, if you have

six 32-bit registers for bit-plane values to store

zero positions for luminance and chrominance,

only valid data needs to be stored in external

memory. If the bit-plane is not applied, it should

be stored in the external memory using 192

transfers when using 32bit bus for 256 luminance

and 128 chroma pixels.

Table 1. Average number of inverse quantized

data transmissions per macroblock

Table 1 shows the average number of times that a

bit-plane value and valid inverse quantization data

should be transmitted by 32 bits when bit-plane is

applied to two video sequences for each codec.

Although the number of transmissions varies

depending on the codec and the type of video, the

number of data transmissions can be reduced by

about 90 to 50%.

2.2 Minimizing Internal Memory

Since the MF-VLD can decode the motion vector

for the time-directed prediction mode in the case

of a B picture, all motion vectors of the reference

picture must be stored in the memory. The size of

the memory used depends on the size of the image

to be supported, but the MF-VLD of this paper

requires a large memory size because it supports

up to FHD (1920x1088) image size.

Table 2. Memory size of motion vector of

reference picture

 H.264 MPEG-4 VC-1

Size of

Ram

27bit x

32640

24bit x

2640

24bit x

8160

There are 8160 (120 x 68) macroblocks in the

FHD image, H.264 and MPEG-4 store four

motion vector values per macroblock, and VC-1

stores one motion vector value per macroblock.

Saving. Even if you share the three-codec

memories shown in Table 2, you must have about

110K bytes of memory inside. Having such a large

memory inside can have a huge impact on chip

size. In order to reduce the usage of internal

memory, MF-VLD stores the decoded motion

vector in external memory in the case of I or P

pictures, and then reads them in macro block line

units from the external memory in internal

memory when decoding B pictures. In order to

reduce the reading time, two memory (27bit x 480)

can be stored to store one line of macro block, and

the motion vectors of the next decoding line are

read in advance to prevent the decrease of

decoding speed.

2.3 The Architecture for Processing Multi-

processors

Since MF-VLD performs only variable length

decoding and inverse quantization, it is designed

to function as a perfect decoder in combination

with a multiprocessor. Figure 3 shows how each

processor takes one macroblock line and decodes

it in parallel using eight processors per frame.

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1 1 1 1 1 1 1 1

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1 1 1 1

Process 1

Process 2

Process 3

Process 4

Process 5

Process 6

Process 7

Process 8

Process 1

Figure 3. Parallel Decoding of Multiprocessors

Figure 4 shows the operation flow between the

processor and MF-VLD. When the processor

starts MF-VLD, the MF-VLD checks the

CORExSTART register, which holds status

information about the memory area to store the

decoded data. It stops until the memory area

becomes empty and then operates again. After

decoding one macro block line, MF-VLD marks

the memory area where the decoded data is stored

March - April 2020

ISSN: 0193-4120 Page No. 4096 - 4101

4099 Published by: The Mattingley Publishing Co., Inc.

in the CORExDONE register so that the processor

can read it.

STRMSTART = 1

CORExSTART = 01 CORExSTART = 10 CORExSTART = 00

COREx buffer 1

Reading

COREx buffer 0

Reading

COREx buffer 0, 1

full
MFVLD buffer 0

Writing

MFVLD

CORExDONE = 01

MFVLD buffer 1

Writing

MFVLD

CORExDONE = 10

MFVLD STOP

Frame end

1 row end

CORExSTART = 01

CORExDONE = 00 or 10

No

Yes

Figure 4. Parallel Decoding of Multiprocessors

3. Results and Discussion

H264

VLD
MPEG- 2

VLD

MPEG- 4

VLD

AVS

VLD

AHB

EMC_CORE0 EMC_CORE1 EMC_CORE2 EMC_CORE7EMC_CORE6

MEM_Slave

Port REGPort DATA

Controller

Abiter

STRM

WRITE

Master

VC- 1

Port STRM

Figure 5. Simulation Environment of MF-VLD

The simulation environment of the proposed MF-

VLD is simulated by adding 8 virtual processor

modules(EMC_COREx) as shown in Figure 5.

The results were confirmed for 20 images of each

codec.

Table 3 shows the average cycles for decoding

one macroblock for each codec. The above

cycle is the time taken to store the decoded data

to external memory via the bus. It also includes

bandwidth to read external memory from eight

virtual processors, which is expected to be

similar to actual performance.

Table 3. The average decoding cycles per 1

MB for each codec

 I picture P picture B picture

H.264 CAVLD 436 cycle 381cycle 362cycle

H.264 CABAD 1243 cycle 966 cycle 577cycle

MPEG-2 540 cycle 547cycle 557cycle

MPEG-4 860 cycle 550cycle 580cycle

AVS 840 cycle 707cycle 820cycle

VC-1 680 cycle 620cycle 604cycle

The designed MF-VLD was FPGA verified

with an INEXT board using Vertex5

XC5VLX330 chip. The inext board is designed

for the purpose of the simulation accelerator.

The INEXT board connects the PC to the board

and outputs the results to the Modelsim

simulator for viewing as waveforms. Figure 6

shows the image of downloading the bit-file

generated after the synthesis and P & R process

for FPGA verification to the board through the

simulator. In the FPGA, all 20 images of each

codec were tested and the results were

confirmed.

Figure 6. Bit file download Image

Figure 7 shows the result of P & R of MF-VLD on

Vertex5 chip. The MF-VLD uses a 55,668 LUT,

which is about 60% of the chip, with an operating

speed of 50 MHz in an FPGA. This MF-VLD is

designed to operate at the speed of 200 MHz in

the 0.18 ㎛ process. The MF-VLD is designed to

operate at a speed of 200 MHz in a 0.18 μm

process, and Table 4 shows the gate sizes for each

codec. Except for the variable-length decoding

module, the control and common modules are

about 41 K gates and the overall size is about 707

March - April 2020

ISSN: 0193-4120 Page No. 4096 - 4101

4100 Published by: The Mattingley Publishing Co., Inc.

K gates. The internal memory used uses about 23

K bytes.

Figure 7.P & R of MF-VLD in XC5VLX330 FPGA

Table 4: Gate size for each codec

 H.264 MPEG-2 MPEG-4 AVS VC-1

gates 398 K 34 K 72 K 85 K 77 K

4. Conclusion

In this paper, we propose an efficient structure of

MF-VLD including variable length decoders of

H.264, MPEG-2, MPEG-4, AVS, and VC-1

codecs that can handle high performance and

higher quality. The proposed architecture

minimizes the performance reduction due to bus

bandwidth by proposing a bit-plane for inverse

quantization data. In addition, the use of the

internal memory is greatly reduced by storing the

motion vector of the reference picture in the

external memory. In order to reduce the chip size,

each variable-length decoding module is arranged

independently without combining, so that it is

easy to add and remove according to the market

situation later, and design and verification shorten

time. If the proposed MF-VLD is manufactured as

a multi-format video decoder in combination with

a multiprocessor capable of parallel processing, it

can be used for high-definition display devices

and various mobile devices as MPSOC capable of

decoding the most kinds of video compression

standards.

Acknowledgment

This research is based on the support of 2019

Woosong University Academic Research Funding.

References

[1] Yo-Han Lim, Jung-Sun Kang, An efficient

architecture of bitplane coding with high frame

rate for VC-1. Signal Processing: Image

Communication. 2008 Oct:62(1): 692~8. DOI :

10.1016/j.image.2008.08.001

[2] M. Hase, et al., Development of Low-power and

Real-time VC-1/H.264/MPEG-4 Video

Processing Hardware, Design Automation

conference, 2007

[3] Chih-Da Chien, et al., A 252kgates/71mW Multi-

Standard Multi-Channal Video Decoder for High

Definition Video Applications, ISSCC Dig. Tech.

Papers, 2007

[4] Chi-Cheng,Yung-Chang Chang, et al., A full-HD

60fps AVS/H.264/VC-1/MPEG-2 video decoder

for digital home applications, Proceedings of

2011 International Symposium on VLSI Design,

Automation and Test, April 2011

[5] Jo, H.-H., Ahn, Y.-J., Kang, D.-B., Ji, B., Sim, D.-

G.: Flexible multi-core platform for a multiple-

format video decoder. J. Signal Process. Syst.

Signal Image Video Technol. 80(2), 163–179

(2013)

[6] J.-Y. Lee, J.-J. Lee, S.M. Park, Multi-core

platform for an efficient H.264 and VC-1 video

decoding based on macroblock row-level

parallelism, Published in IET Circuits, Devices &

Systems, February 2009

[7] Yang A, Troup M, Ho JWK. Scalability and

validation of big data bioinformatics software.

Comput Struct Biotechnol J 2017:8. Article in

press.

[8] Hyunmi Kim, Seunghyun Cho, Kyungjin Byun

and Nak-Woong Eum, Multi-core based HEVC

hardware decoding system. 2014 IEEE

International Conference on Multimedia and

Expo Workshops (ICMEW), Chengdu, 2014, pp.

1-2. DOI: 10.1109/ICMEW.2014.6890626

March - April 2020

ISSN: 0193-4120 Page No. 4096 - 4101

4101 Published by: The Mattingley Publishing Co., Inc.

[9] Chi, Chi Ching & Mesa, Mauricio & Lucas, Jan

& Juurlink, Ben & Schierl, Thomas. (2012).

Parallel HEVC Decoding on Multi- and Many-

core Architectures. Journal of Signal Processing

Systems. 71. 1-14. DOI:10.1007/s11265-012-

0714-2.

[10] Ahn, Y., Yoo, J., Jo, H. et al. Software

pipelining with CGA and proposed intrinsics on a

reconfigurable processor for HEVC decoders. J

Real-Time Image Proc 16, 2173–2187 (2019).

DOI:10.1007/s11554-017-0729-9

