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Abstract 

Establishment and focus: In this paper, we propose an efficient architecture of MF-VLD 

(Multi-Format Variable Length Decoder), which is capable of variable length decoding and 

inverse quantization of various codec standards. The proposed MF-VLD is designed to be 

suitable for MPSOC (Multiprocessor System on Chip), and the bandwidth of AHB bus is 

reduced by applying bit-plane algorithm to inverse quantized data. It supports H.264, 

MPEG-2, MPEG-4, AVS, and VC-1 codec standards.  

System: Parallel Decoding method using multi-processor is verified using INEXT board, 

which is emulation board with Xilinx Vertex5 XC4VL330 FPGA. The designed MF-VLD 

operates at 200 MHz in a 0.18 μm process and is approximately 620 K gates in size. The 

memory used is about 27 K bytes. In order to reduce the chip size, each variable-length 

decoding modules are arranged independently without combining, so that it is easy to add 

and remove according to the market situation later, and the design and verification shorten 

the time. 
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1. Introduction 

As H.261 became the first international standard 

for video compression in 1990, video codecs have 

been constantly evolving. Currently, MPEG-2 is 

widely used for television broadcasting, and 

H.264 / AVC is also used for domestic terrestrial 

digital multimedia broadcasting (DMB), European 

satellite broadcasting, and digital video 

broadcasting-handheld (DVB-H). For UHD 

broadcasting, H.265 / HEVC is used. DivX and 

XviD, MPEG-4 series, are also widely used for 

web and mobile, and AVS is developed and used 

as a national standard in China, which has a huge 

multimedia market. In addition, the VC-1, 

developed by Microsoft, is standard on high-

definition DVD (HD DVD), Blu-ray, and Xbox 

360[1]. Therefore, there is a need for production 

of products that support high-definition video and 

process various video codecs.  

There has been much research on Multi-Format 

Video Decoder (MFD). Among the previously 

published studies, the high-definition multi-format 

video decoder [2] with separate structure supports 

the decoding of high-definition video and is 

designed with separate structure for MPEG-2, 

MPEG-4, H.264, and VC-1 codec. Although 

similar in this regard, this paper shows a big 

difference in that it is designed for support of AVS 

codec and multiprocessor. In addition, there are 

good studies on MFD such as Chien [3], Cheng 

[4], and Jo [5], but they show a big difference 

from this paper in terms of supporting codec and 

design architecture. Efficient video decoding of 

H.264 and VC-1 using parallel cores [6] can be 
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used as a multi-decoder combined with MF_VLD 

of this paper by suggesting a parallel processing 

method using multi-core macroblock lines. For 

the HEVC decoder, the HEVC video decoder 

Chip [7-10]can be combined with this proposed 

design.  

2. The architecture of MF-VLD 

The architecture of the proposed MF-VLD is 

shown in Figure 1. It is designed to be combined 

with multiprocessor using AHB 32bit bus. This 

module consists of AHB REG_slave, AHB 

READ_Master, Stream Buffr, B-Direct SRAM, 

AHB WRITE_Master, BitPlane processing unit 

and VLD of each image standard. 

AHB

REG_S lave

AHB

READ

Master AHB

WRITE

Mas ter

H264

VLD

MPEG- 2

VLD

MPEG- 4 

VLD

AVS

VLD

Port 

REG

Port 

DATA

B- Direct

S ram

BitPlane

VC- 1

VLD

Port 

STRM

Stream

Buffer

 Figure 1. The architecture of the proposed 

MF-VLD. 

AHB REG_Slave receives register data from 

external controller and transfers decryption status 

of MF-VLD to external controller. AHB 

READ_Master reads video stream and reads data 

from external memory (B-Direct Sram). 

WRITE_Master transmits the decoded data to 

Port DATA, Stream Buffer stores the video stream, 

and B-Direct Sram stores the motion vector of the 

reference picture to support the B-Direct 

prediction mode for B pictures. The remaining 

modules consist of a module that processes bit-

plane information on inverse quantized data and a 

variable length decoding module of H.264, 

MPEG-2, MPEG-4, AVS, and VC-1. The 

operation of MF-VLD is as follows. When the 

input signal is received from the external 

controller and the start signal is received, the MF-

VLD reads the external video stream through 

READ_Master and stores it in the internal 

memory. According to the type of the stored video 

stream, the variable length decoding module reads 

the video stream and starts decoding. After 

decoding the macroblock, it is stored in external 

memory through WRITE_Master. Inverse 

quantization is saved in external memory after bit-

plane processing. Finally, the decoded data is 

stored in an external memory area in units of 

macroblock lines. 

2.1 Bit-plane application of inverse quant-

ization data 

Int 16 Residual_Luma[256] 3 1 2 0 0 0 0 0

 64 pixel 

2 0 0 0 0 0

 64 pixel  

0 0 7 0 0 0

 64 pixel

0 0 0 0 0 0

 64 pixel  

Int 32 bitplane_Luma[0]

Int 32 bitplane_Luma[1]

Int 32 bitplane_Luma[2]

Int 32 bitplane_Luma[3]

[MSB]  1 1 0 0 0 0 ·  ·  ·   0 0 0 0 0 0  [LSB]

[MSB]  1 0 0 0 0 0 ·  ·  ·   0 0 0 0 0 0  [LSB]

[MSB]  0 1 0 0 0 0 ·  ·  ·   0 0 0 0 0 0  [LSB]

[MSB]  0 0 0 0 0 0 ·  ·  ·   0 0 0 0 0 0  [LSB]

Int 16 Residual_Cb[64] 7 3 6 0 0 4 0 0

 64 pixel    

0 0 0 1

Int 32 bitplane_Cb [MSB]  1 1 1 0 1 0 ·  ·  ·   0 0 0 0 0 0  [LSB]

Int 16 Residual_Cr[64] 0 0 1 0 2 4 0 0

 64 pixel

0 0 0 0

Int 32 bitplane_Cr [MSB]  0 1 1 0 0 0 ·  ·  ·   0 0 0 0 0 0  [LSB]

 Figure 2. Bit-plane configuration 

Most inverse quantization data has a value of zero. 

By using the characteristics of the inverse 

quantization data, zero-value data is not stored in 

the external memory, but only a valid value can be 

stored to reduce the bandwidth of the bus. Figure 

2 shows how the bit-plane is constructed for 

inverse quantization data. It collects two 

consecutive coefficients and determines whether 

all of them are 0 or not, and if they are all 0, the 

corresponding bit-plane value is written as 0, and 

if any pixel is not 0, 1 is written. First, since 256 

pixels of luminance are composed of four blocks 

of 64 pixels, four registers of bitplane_luma 

represent them, and two registers of bitplane_Cb 

and bitplane_Cr are represented for the color 
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difference (Cb, Cr). In other words, if you have 

six 32-bit registers for bit-plane values to store 

zero positions for luminance and chrominance, 

only valid data needs to be stored in external 

memory. If the bit-plane is not applied, it should 

be stored in the external memory using 192 

transfers when using 32bit bus for 256 luminance 

and 128 chroma pixels. 

Table 1. Average number of inverse quantized 

data transmissions per macroblock 

 

Table 1 shows the average number of times that a 

bit-plane value and valid inverse quantization data 

should be transmitted by 32 bits when bit-plane is 

applied to two video sequences for each codec. 

Although the number of transmissions varies 

depending on the codec and the type of video, the 

number of data transmissions can be reduced by 

about 90 to 50%. 

2.2  Minimizing Internal Memory 

Since the MF-VLD can decode the motion vector 

for the time-directed prediction mode in the case 

of a B picture, all motion vectors of the reference 

picture must be stored in the memory. The size of 

the memory used depends on the size of the image 

to be supported, but the MF-VLD of this paper 

requires a large memory size because it supports 

up to FHD (1920x1088) image size. 

Table 2. Memory size of motion vector of 

reference picture 

 H.264 MPEG-4 VC-1 

Size of 

Ram  

27bit x 

32640 

24bit x 

2640 

24bit x 

8160 

 

There are 8160 (120 x 68) macroblocks in the 

FHD image, H.264 and MPEG-4 store four 

motion vector values per macroblock, and VC-1 

stores one motion vector value per macroblock. 

Saving. Even if you share the three-codec 

memories shown in Table 2, you must have about 

110K bytes of memory inside. Having such a large 

memory inside can have a huge impact on chip 

size. In order to reduce the usage of internal 

memory, MF-VLD stores the decoded motion 

vector in external memory in the case of I or P 

pictures, and then reads them in macro block line 

units from the external memory in internal 

memory when decoding B pictures.  In order to 

reduce the reading time, two memory (27bit x 480) 

can be stored to store one line of macro block, and 

the motion vectors of the next decoding line are 

read in advance to prevent the decrease of 

decoding speed. 

2.3 The Architecture for Processing  Multi-

processors 

Since MF-VLD performs only variable length 

decoding and inverse quantization, it is designed 

to function as a perfect decoder in combination 

with a multiprocessor. Figure 3 shows how each 

processor takes one macroblock line and decodes 

it in parallel using eight processors per frame. 
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Figure 3. Parallel Decoding of Multiprocessors 

Figure 4 shows the operation flow between the 

processor and MF-VLD. When the processor 

starts MF-VLD, the MF-VLD checks the 

CORExSTART register, which holds status 

information about the memory area to store the 

decoded data. It stops until the memory area 

becomes empty and then operates again. After 

decoding one macro block line, MF-VLD marks 

the memory area where the decoded data is stored 
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in the CORExDONE register so that the processor 

can read it. 

STRMSTART = 1

CORExSTART = 01 CORExSTART = 10 CORExSTART = 00

COREx buffer 1

Reading

COREx buffer 0

Reading

COREx buffer 0, 1

full
MFVLD buffer 0

Writing

MFVLD

CORExDONE = 01

MFVLD buffer 1 

Writing

MFVLD

CORExDONE = 10

MFVLD STOP

Frame end

1 row end

CORExSTART = 01

CORExDONE = 00 or 10

No

Yes

 

Figure 4. Parallel Decoding of Multiprocessors 

3. Results and Discussion 
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Figure 5. Simulation Environment of MF-VLD 

The simulation environment of the proposed MF-

VLD is simulated by adding 8 virtual processor 

modules(EMC_COREx) as shown in Figure 5. 

The results were confirmed for 20 images of each 

codec. 

Table 3 shows the average cycles for decoding 

one macroblock for each codec. The above 

cycle is the time taken to store the decoded data 

to external memory via the bus. It also includes 

bandwidth to read external memory from eight 

virtual processors, which is expected to be 

similar to actual performance. 

Table 3. The average decoding cycles per 1 

MB for each codec 

 I picture P picture B picture 

H.264 CAVLD 436 cycle 381cycle 362cycle 

H.264 CABAD 1243 cycle 966 cycle 577cycle 

MPEG-2 540 cycle 547cycle 557cycle 

MPEG-4 860 cycle 550cycle 580cycle 

AVS 840 cycle 707cycle 820cycle 

VC-1 680 cycle 620cycle 604cycle 

The designed MF-VLD was FPGA verified 

with an INEXT board using Vertex5 

XC5VLX330 chip. The inext board is designed 

for the purpose of the simulation accelerator. 

The INEXT board connects the PC to the board 

and outputs the results to the Modelsim 

simulator for viewing as waveforms. Figure 6 

shows the image of downloading the bit-file 

generated after the synthesis and P & R process 

for FPGA verification to the board through the 

simulator. In the FPGA, all 20 images of each 

codec were tested and the results were 

confirmed. 

 

Figure 6. Bit file download Image 

Figure 7 shows the result of P & R of MF-VLD on 

Vertex5 chip.  The MF-VLD uses a 55,668 LUT, 

which is about 60% of the chip, with an operating 

speed of 50 MHz in an FPGA. This MF-VLD is 

designed to operate at the speed of 200 MHz in 

the 0.18 ㎛ process. The MF-VLD is designed to 

operate at a speed of 200 MHz in a 0.18 μm 

process, and Table 4 shows the gate sizes for each 

codec. Except for the variable-length decoding 

module, the control and common modules are 

about 41 K gates and the overall size is about 707 
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K gates. The internal memory used uses about 23 

K bytes. 

 

Figure 7.P & R of MF-VLD in XC5VLX330 FPGA 

Table 4: Gate size for each codec 

 H.264 MPEG-2 MPEG-4 AVS VC-1 

gates 398 K 34 K 72 K 85 K 77 K 

 

4. Conclusion 

In this paper, we propose an efficient structure of 

MF-VLD including variable length decoders of 

H.264, MPEG-2, MPEG-4, AVS, and VC-1 

codecs that can handle high performance and 

higher quality. The proposed architecture 

minimizes the performance reduction due to bus 

bandwidth by proposing a bit-plane for inverse 

quantization data. In addition, the use of the 

internal memory is greatly reduced by storing the 

motion vector of the reference picture in the 

external memory. In order to reduce the chip size, 

each variable-length decoding module is arranged 

independently without combining, so that it is 

easy to add and remove according to the market 

situation later, and design and verification shorten 

time. If the proposed MF-VLD is manufactured as 

a multi-format video decoder in combination with 

a multiprocessor capable of parallel processing, it 

can be used for high-definition display devices 

and various mobile devices as MPSOC capable of 

decoding the most kinds of video compression 

standards.  
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