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Abstract 

Random numbers are fundamental resources in the field of computing and engineering. 

They have a wide scope of application including cryptography and simulation. True 

Random Number Generators (TRNGs) are considered to be the most secure based on the 

quality of its entropy sources. With the availability of several sources of entropy, ring 

oscillator architecture can easily be used as a quality source of entropy for a TRNG due to 

the inherent jitters and the simplicity of its design. Since there is still a possibility of a 

generator to generate random numbers that do not meet the required security metrics, 

hence, it is imperative for a TRNG to be able to quickly regenerate another set of random 

bit sequence. For these reasons, this research, proposes a high-speed array-sampling and a 

post-processing unit ring oscillator-based TRNG with improved statistical measures and 

throughput for securing FPGA devices. The core architecture consists of digital primitive 

cells – the ring oscillator, Q-Flip Flop, and the CubeHash algorithm. These are used as the 

building blocks for constructing the proposed TRNG architecture.  This proposed hardware 

architecture reveals an improvement in throughput and the statistical measure of the quality 

of generated bits. The architecture was modeled and simulated using Verilog HDL, 

Modelsim SE, and Xilinx’s ISim simulation tools. This architecture was designed using 

both the Xilinx ISE and Vivado tools. The proposed design was implemented on the 

Spartan 6 and Cyclone IV FPGA devices and occupies an area of 3287 LUTs and 1714 

Slice registers and had a maximum throughput of 1422 Mbps. Sampled bitstreams’ 

statistical accuracies were ascertained using NIST’s statistical Test package program. 

Keywords: TRNG, Ring Oscillator, Cryptography, FPGA, CubeHash, Hardware Security. 

 

1. Introduction 

Internet-of-things (IoT), has gradually developed 

into what is arguably the largest technological 

platform having huge potential benefits. It has 

woven itself into the very fiber of our everyday 

life. This is the case owed to the varied 

computational capabilities and sizes they exhibit. 

They span a range of passively powered wearable 

health-care monitoring devices to powerful edge 

devices or nodes. These devices or sensors can be 

located in homes, cars, farms, factories, 

laboratories, and hospitals to increase productivity 

and results. These potential benefits they offer 

have shown that an estimated 50 billion connected 

devices are expected by the year 2020 [1] These 

devices such as the ones used in the hospital to 

monitor a patient’s vital organs, usually possess 

and process a large amount of data that is highly 

sensitive and confidential. These make the IoT 

platforms a 
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Figure 1. Taxonomy of Random Number Generator  

 

breeding ground for adversaries and attackers to 

ply their trade. The information-rich data they 

possessed by these IoT nodes and sensor have 

necessitated that the security and privacy of these 

platforms must be treated with a great deal of 

attention to mitigate majority, if not all, of the 

current and emerging security attacks such as the 

IoT based distributed denial-of-service (DDoS) 

attacks [2].   

A means by which the security and privacy of the 

IoT platform can be preserved is through 

cryptography. where messages or information is 

encoded (locked) with a key (ephemeral keys, 

session keys, signatures) and is only decoded 

(unlocked) by the intended recipient who has 

access to this key. These keys can be generated by 

running a Random Number Generator (RNG). 

From Fig. 1, there are at least two main types of 

the RNG: Pseudo-Random Number Generator 

(PRNG) and the True Random Number Generator 

(TRNG). PRNG, also known as Deterministic 

Random Number Generator (DRNG) rely on 

complex algorithms or mathematical procedures 

alongside a seed (an initial value) to generate 

random bit sequences. These bit sequences of the 

PRNG are completely deterministic and hence 

when one uses a “weak” seed for generation, then 

the amount of time taken for a bit sequence to be 

regenerated is shorter and undesirable. On the 

other hand, TRNG uses purely random and non-

deterministic electronic effects as the source of its 

randomness as compared to the algorithmic-based 

PRNG. The sources of randomness (entropy) for 

the Physical-TRNG (PTRNG) include thermal 

noise from semiconductors, metastability 

(Quantum mechanics), Timing Jitters, and Chaos 

circuits whereas that for the Non-Physical-TRNG 

(NPTRNG) can include system time, RAM 

contents, keyboard loggers, etc. This implies that 

the NPTRNGs are software-based whereas the 

PTRNGs are hardware-based. 

A ring oscillator (RO) is a chain connection of an 

odd number of inverter gates in series and having 

their final output fed back into the input of the 

first inverter gate [3]. This setup causes the output 

of the inverter ring to oscillate between the two 

voltage levels of high and low [4]. These ring 

oscillators are extensively used in hardware and 

electronics design because of the simplicity of 

their structure, ease of design and the low cost of 

implementation associated with it. They are 

desired because they present a simpler and 
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effective method of building TRNGs [5-8]. The 

entropy of any state or message as represented in 

Equation (1), measures the average amount of 

information needed to represent an even taken 

from a probability distribution for a random 

variable.[9]. From Equation (1),  represents the 

 state or message out of a total of  possible 

states or messages. The optional value  can be 

evaluated to the value . A random 

number generator that generates K-bits of binary 

sequences has the probability that, an output will 

equal   to be , As required by every RNG, the 

source of entropy in the case of a ring oscillator is 

the presence of jitters [10]. According to [11], Due 

to the many storage elements arising from the 

multiple stages of inverters in a ring oscillator 

coupled with the delay component of each stage, 

which depends on the capacitance (stray and 

junction) and carrier transit times, absolute 

frequency stability is therefore not guaranteed. 

 

(1) 

The applicability of random numbers ranges from 

the field of arts to cryptography and these random 

numbers generators (RNGs) are critical 

components of a cryptographic ecosystem. Great 

cryptography requires quality random numbers. 

The random number generator for any 

cryptographic application should seem to 

adversaries as close to perfect RNG. It is therefore 

crucial for a cryptographic application to generate 

PRBS which cannot be predicted even by the 

toughest adversaries. Generally, such quality true 

random number generators have a generic 

architecture as shown in Fig. 2. The component 

blocks of the generic architecture include the 

entropy source, the harvesting technique, the post-

processing block, the total failure test, and the 

online tests. The source of entropy is the critical 

component of the architecture because this is 

where the “the randomness” is generated. As 

mentioned earlier, several sources of entropy exist 

which determines the class of random number 

being generated. The time-continuous signals 

obtained from the entropy sources are harvested 

(digitized) for form what is termed digitized 

analog signals. Since some of these entropy 

sources have some form of bias, the post-

processing stage is implemented to reduce or 

eventually eliminate some of these weaknesses 

that may be present. 

This paper, therefore, presents an efficient TRNG 

architecture based on the generic TRNG 

architecture, by using a vector array-sampling 

approach to accumulate and harvest the jitters that 

are inherent in the ring oscillator and then finally 

using the CubeHash hashing algorithm for 

postprocessing. This approach promises results 

that pass the statistical test as well as having great 

throughput. The remaining portions of this article 

are organized as follows: From Section 2, a brief 

review of some related works. The TRNG 

hardware architecture is discussed in the 3rd 

Section. In Section 4, the proposed architecture's 

statistical quality matrices, as well as result 

analysis, are covered. Recommendations 

regarding the trade-off between hardware area and 

throughput are discussed briefly in Section 5. 

Finally, conclusion and future work are discussed 

in Section 6 of the paper. 

2. Related Work 

Numerous random number generators have been 

designed and proposed based on either pure digital 

electronics or a mixture of digital and analog 

electronics. A typical example is that proposed by 

[12]. This design relied on a blend of both the 

analog and digital electronics components to 

amplify and sample white noise. The main 

drawback of this design was related to the stage of 

amplification. This stage consumed more power to 

be able to raise the level of noise a few orders of  
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Figure 2. TRNG Generic Architecture 

magnitude in order to allow digitization. The Intel 

random number generator [13] shown in Fig. 3 

implemented a similar concept whereby the 

Johnson noise (thermal noise) from resistors is 

amplified in order to drive a voltage-controlled 

oscillator that is in turn sampled by a high-speed 

oscillator and then post-processed digitally with 

the von Neumann algorithm. A purely digital 

electronics-based architecture was proposed by 

[14]. In this architecture, the outputs of Linear 

feedback shift registers (LFSR) and cellular 

automata are randomly sampled to obtain and 

measure the randomness that is associated with 

the jitters in the ring oscillators. For this 

architecture, due to the complexity of the 

harvesting scheme implemented, the harvested 

samples were difficult to verify although this 

proposed architecture had no amplification stage 

or step and the source of entropy was obviously 

limited to the two ring oscillators implemented. 

Not all, a simple architecture was proposed by [15] 

which was based on metastability of circuits but 

had the disadvantage of combining a large number 

of such circuit in order to pass statistical tests. 

Also, two novel hardware random number 

generator architectures were presented by [16] 

that also relied on the metastability of latches. The 

first of these was the RNG with the capability of 

nullifying direct current (DC) for the operations 

that require extremely low power consumption. In 

addition to the DC-nulling RNG, a finite impulse 

response (FIR)-based RNG that implements the 

predictive whitening filter to be able to separate 

non-random components from the generated bits 

sequences was proposed. The RO-based TRNG 

was proposed by [6]. This architecture relied on a 

design that was similar in several ways to the 

Linear Feedback Shift Generator (LFSR) in which 

the registers are replaced with inverters. The 

positions of the feedbacks are labeled with switch 

values making them open if 0 or low and closed if 

1 or high. The authors also proposed the use of 

self-controlled LFSR as the post-processing unit. 

3. Proposed Architecture 

As depicted in Fig. 2, the proposed TRNG 

comprise of the three key components that are 

required for a TRNG. Because this is a purely 

digital TRNG, we do not use amplifiers to enable 

the harvesting or sampling of the randomness. The 

various components are presented in detail in the 

sub-sections that follow. Fig. 4 shows the block 

diagram of the proposed TRNG. The block 

diagram consists of 4 multi-mode ring oscillator 

architectures as the main source of entropy. These 

individual ring oscillators are XORed to form a 

single source of entropy signal which is sampled 

by an array of sampling units. The resulting 

bitstreams from the multisampling are then passed 

through a cryptographic hash algorithm for post-

processing to increase the rate as well as the 

quality of bits generated. 
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Figure 3. The Architecture of Intel’s Random Number Generator  
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Figure 4. Proposed TRNG Architecture 

 

3.1. Multi-Edge Ring Oscillator 

The source of entropy for the proposed 

architecture is the Ring Oscillator (RO). The ring 

oscillator is employed due to the inherent jitters 

that are present and accumulate as a result of their 

operation. Conventional ring oscillators have a 

single NAND gate and an even number of inverter 

gates that pulses a single edge signal to propagate 

through the ring oscillator. However, the 

architecture proposed by [17] showed a 3-input 

node ring oscillator that pulses three different 

edges for a single ring oscillator simultaneously 

with each edge propagating through the chain as 

in a conventional ring oscillator architecture. The 

three edges are 120 degrees phase-shifted and 

boost the resulting frequency by a factor of three 

(3). The accumulated jitters cause the pulse width 

between two neighboring edges to increase in 

variation with each completed cycle. With time 

the two neighboring edges will merge into a single 

edge, taking the multi-edge ring oscillator into a 

single edge ring oscillator. The time taken to 

collapse is the time taken to accumulate the jitters 

that are sampled to generate random numbers. The 

entropy source implemented includes 4 sets of 

ring oscillator chains in the multimode and having 

different stages for each ring oscillator chain. The 

NAND gate replaces an inverter to allow for easy 

control of the ring oscillator. When a value high is 

present at the enable input, 3 pulse edges are 
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propagated simultaneously through the ring 

oscillator chain. Visibly, the multi-mode ring 

oscillator can be regarded as shorter individual 

ring oscillators brought together to form a longer 

ring oscillator. For the ring oscillator shown in Fig. 

5 (b), the 9-stage ring oscillator is 3 separate ring 

oscillators of length 3-each- a NAND gate and 2 

inverter gates. The 4 sets of ring oscillators 

designed for this research begins with one with 9 

stages. The subsequent ring oscillators are 2 times 

the number of stages of the preceding ring 

oscillator less three stages. Therefore, the next 

ring oscillator is of length (2x9) – 3 = 15. The 

second ring oscillator is then broken into 3 stages 

consisting of 4-inverters and a NAND gate to 

generate one of the three edges. The remaining 

two ring oscillators are of length 27 and 51 based 

on the same computation. Because the architecture 

in Fig. 5. is not easily simulated, Fig. 6 shows the 

operation of the architecture on a Xilinx’s Spartan 

6 FPGA board using the ChipScope internal logic 

analyzer tool to show the output after the sampler 

array unit. 
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Figure 5. The Architecture of Intel’s Random Number Generator  

 

 

Figure 6. Proposed TRNG Architecture 

 

3.2. Array-Sampling Unit 

To increase the rate at which random bits are 

generated in the proposed architecture, a simple 

array-sampling unit is proposed. The array-

sampler, shown in Fig. 7, is a simple architecture 

consisting of three registers (Flip-Flops) and then 

a simple clock generator. Each sampling unit is 

controlled by three clocks from the K phase clock 

signals within the array-sampling unit. A total of 

3U registers (Flip-Flops) - where U is the number 

of sampling-unit in the array - sample the input 

data from the XOR concatenated signal of the 
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Figure 7. Array Sampling Architecture and Timing Diagram  

 

multi-mode ring oscillator at both edges of the K-

phase clock generator.  Due to the very short 

period between the clocks of the clock generator –  

,  – the probability of the data signal being 

sampled at the threshold voltage increases and this 

introduces a meta-stable state which in turn 

increases the entropy of the TRNG. The presence 

of this meta-stable condition implies that the 

number of ring oscillators used in the entropy 

source stage of the TRNG can be reduced [18]. 

3.3. Post-Processing Unit 

The postprocessing unit implemented for this 

TRNG architecture is the CubeHash function. To 

ensure that the bitstreams from the multi-mode 

ring oscillator have good statistical randomness 

and a high bit rate, the sampled outputs of the 

multi-mode ring oscillator can be fed to a 

cryptographically secured hash function. The 

CubeHash is a collection of hash functions 

proposed and designed by Daniel J. Bernstein [19]. 

This set of hash functions was one of NIST’s 

SHA-3 competition candidates eliminated in the 

second round but is yet to be broken [20]. A key 

advantage of this algorithm is its simplicity. This 

hash algorithm uses a uniform structure for 

processing message digests of lengths of up to 512 

bits, using tweakable number of rounds and 

message block sizes. Six parameters namely 

parameters i, f h, r, b, and m specify the exact 

tweak or setup of the CubeHash algorithm. The i-

parameter specifies the number of rounds of the 

compression function to be executed to obtain the 

initialization vector. This parameter spans the 

range of 1 up to ∞ but it is typically 16 whereas 

the parameter f denotes the number of rounds to 

be computed for the final block of message to be 

processed. This value is typically 32 but ranges 

from 1 to ∞. The h determines the width of the 

message digest in bits and ranges from 8-bits to 

512-bits in multiples of 8-bits and is typically 

512-bits. The r determines the number of rounds 

compressions to be performed per message block. 

The r ranges from 1 to ∞. Not all, the parameter b 

determines the number of bytes per block message. 

Finally, m is the parameter that denotes the length 

of the message that can be processed and it is a 

string of bits between 0 to   bits. 

Generally, the CubeHash notation is written as 

CubeHashi+r/b+f-h(m) to describe a specific 

variant of the algorithm. 
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Figure 8. CubeHash Compression Function 

 

 

Figure 9. Simulation of the Computation of the Initialization Vector 

 

 

Figure 10. Simulation of the Computation of a Hash of a Message  
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The variant of CubeHash implemented in this 

research is the CubeHash160+16/64+32-512.To 

initialize the internal state of the CubeHash, 10r 

rounds are performed. Afterward, the first block of 

data to be hashed, b-byte in size, is XORed into 

the first b-bytes of the internal state. In the end, r-

round(s) of the compression function is performed 

to obtain the message hash. The width of the 

internal state is 1024-bits and this forms the core 

of the algorithm’s implementation. The round 

compression function, shown in Fig. 8, operates 

on the 1024-bit internal state organized as 32 long 

words, each being 32-bits wide. The State is 

divided into two halves, each of size 512 bits and 

labeled as X and Y. This division is performed 

because the compression function only performs 

10 simple operations on half of the internal state 

which is (512-bits) during each of the 10 

compression rounds. At the end of each 

compression round the outputs X’ and Y’ are 

obtained from their respective X and Y halves. The 

X’ and Y’ outputs are fed back to X and Y if 

multiple rounds of the compression are required. 

The compression function consists of 2 addition 

modulo , 2 XOR operations, 2 rotation 

operations and 4 swapping operations as shown in 

Fig. 8. The precomputed initialization vector (IV) 

is 0xd6cfc79f1f19d0ae788ebcff0100c111ae16a87 

3eb31b9b80625a344d07f2fe269f7245d7aaa6f126f

d54233a7447386c59e65d1c33c6ecb09b82faea211

166f8fc1addc5343afe5ee724b803565179e24f7ff6

04687a9b653e0c307b06405f8623e77acf75b428f1

4c22fe6290a39c63e581e2dfd52b75937eb14d8522

588b3.  Fig. 9 is the simulation for the 

initialization vector and shows the setting or 

tweaking values used for the first three register x0, 

x1, x2. For test purposes, a randomly generated 

message of length 512-bit long; 

0x79530200785302007b5302007a5302007d5302

007c5302007f5302007e530200815302008053020

0835302008253020085530200845302008753020

086530200 is passed through the CubeHash, using 

the initialization vector as the one shown in Fig. 

10. The resulting hash that is generated for this 

message equals to 0x6982fd925343aecb53178826 

54a9173f169decafeab719691fdc1ea399bd28f982

3a00fd57922b126f3cf8fa40fa58f54126955750322

deee9fa2443336b31a0. Fig. 11, on the other hand, 

shows the internal logic capture of the 

postprocessing using in operation on the Spartan 6 

test board. The logic analyzer shows the 

postprocessing of the first 512-bit generated by 

the proposed entropy and sampler array units. The 

first 512-bits generated is shown in the red 

rectangle in Fig. 11 in little-endian format. 

4. Discussion of Results 

The proposed architecture was implemented using 

Verilog HDL with Xilinx’s ISE and Vivado Tools. 

The Modelsim SE 10.6d and Xilinx’s ISIM were 

also used for the functional and timing 

simulations of the proposed architecture. The 

design was again tested on Altera’s DE2-115 

Cyclone IV board. A total of 1GiB of True random 

number samples were generated continuously at 

50MHz and 25 MHz clock frequencies. A simple 

architecture comprising of a MicroBlaze 

microcontroller system fitted with a UART 

module is used to write the generated samples to 

the PC for analysis and examination of their 

statistical properties using the statistical test suite 

by NIST- NIST’s SP 800-22 [21]. Results from 

this test are tabulated in Table. 1 and shows the p-

value alongside the success rate of the generated 

samples. The results prove the right operation of 

the proposed architectures and its suitability for 

use in other systems that require the use of true 

random numbers. The hardware overhead for the 

proposed architecture’s implementation on 

Xilinx’s Spartan 6 and Altera’s Cyclone IV FPGA 

devices are recorded in Table 2 and Table 3 

respectively. From Equation (2), the maximum 

throughput of the design is determined to be 1422 

Mbps considering that the bits are sampled at 512 

bits   into the CubeHash core using a total of 18 

clock cycles and a minimum of 553 Mbps if the 

bits are sampled into the CubeHash core 32-bits at  

a time, which requires a total of 48 clock cycles. 
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Figure 11. Simulation of the Computation of a Hash of a Message  

 

Table 1: Results Comparison Between Designs 

NIST Test Package 
CubeHash @ 50 MHz 

P-Value Success Rate 
Frequency 0.9005 98/100 

Block Frequency 0.6961 99/100 
Cumulative Sums (Forward) 0.1216 99/100 
Cumulative Sums (Reverse) 0.2083 98/100 

Runs 0.0688 98/100 
Longest Run 0.1507 98/100 

Rank 0.6937 98/100 
FFT 0.2070 98/100 

Overlapping 0.6038 99/100 
Universal 0.0248 99/100 

Approximate Entropy 0.9992 99/100 
Serial (m = 16, n= 1024) 0.7599 99/100 

Linear Complexity 0.9022 98/100 

 

Table 2: Hardware Results from FPGA Implementation (Spartan 6) 

Architecture 
Slice Registers Slice LUTs 

Fully utilized LUT-FF 
pairs 

Max 
Operating 

Freq 
(MHz). 

# Used % Utilization #Used % Utilization #Used %Utilization 

Multi-Mode RO 107 0 233 0 0 0 - 
Multi Array 

Sampler 
10 0 15 0 10 66 812 

CubeHash 1035 1 2325 10 1050 33 155 
TRNG 1714 3 3287 17 1138 29 120 

 

Table 3: Hardware Results from FPGA Implementation (Cyclone IV) 

Architecture Total Logic Elements Combinational Functions Dedicated Logic Registers 

Multi-Mode 
RO 

6 6 0 

Multi-Array 
Sampler 

15 15 15 

CubeHash 3960 3444 1591 
TRNG 3029 2994 1156 

 

          (2)
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5. Recommendations 

Compared to other light-weight TRNG, the 

proposed TRNG has a high throughput. This is as 

a result of the postprocessing unit; CubeHash. The 

disadvantage of the CubeHash is the area of 

hardware it occupies. This is, therefore, a tradeoff 

between throughput and size (hardware area). 

Several options for the post-processing unit are 

available. Some of the recommended options for 

use in place of the CubeHash to reduce the area 

overhead while decreasing the throughput are the 

shrink-generator or the linear feedback shift 

register (LFSR) which are both cryptographic 

post-processing methods and the Parity filter or 

the debiasing Von Neumann algorithm [22] which 

are typical algorithmic post-processing methods 

6. Conclusion and Future Work 

In the paper, digital standard cells -based TRNG 

architecture that is able to accumulate jitters to use 

as a source of randomness has been proposed. 

This proposed architecture is completely digital as 

it employs the ring oscillator to exploit the 

embedded entropy to generate random numbers. 

The design uses a simple yet effective digital 

sampler to sample the bits that are generated from 

the ring oscillator arrays that were implemented. 

The final sample bits are then fed to the post-

processing unit of choice. For this architecture, the 

CubeHash cryptographic hash function was used 

to improve upon the raw sampled bits generated 

for the statistical tests. The design was 

implemented on the Spartan-6 FPGA device by 

Xilinx and also on the Cyclone IV DE2-115 Altera 

board with a maximum throughput of 1422 Mbps. 

The statistical test suit from NIST shows that the 

design architecture passes all the tests and of high 

quality. With the growing adoption of IoT systems 

in this era, it has become imperative that the 

security-related aspects of these systems be met 

by designers. There is an inherent challenge of 

obtaining a suitable solution to integrate these 

TRNG into low-end area constrained devices such 

as edge and sensor nodes. For future work, we 

will seek to explore various post-processing 

algorithms or architectures that will drastically 

reduce the hardware overhead while keeping the 

required throughput. Not all, the proposed 

architecture will be included in the design of an 

ECIES architecture being developed [23] to 

generate True Random Numbers (TRNG) for the 

generation of shared keys. 
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