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Abstract: 

 

The paper studied and prediction the natural frequency and mod shapes for 

deflection, slop, shear and moment for four assumed cases for swept wing transport 

airplane with tow engine and different amount of fuel using Myklestad method 

which deal with transfer matrix technique for solving the mathematic modeling for 

these four cases. The maximum effect of the first mode deflection and slop on the 

tip of the wing (case one) and maximum effect of the second mode shear and 

moment on the mean root chord of the wing (case four) which were the most critical 

case. 
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1.          Introduction 

 The integration of flutter mode shapes of 

wings plays an important role and dominant 

effects on the airframe strength carried a 

transient aerodynamic load has a different 

peak value with unsymmetrical load 

distribution along the axes of symmetry 

during flight [1], any control system design 

for an airplane the response should be 

accurate enough to deal with motion [2]. 

However, the modern life desire required 

high rage and speedy airplane for that swept 

wing, high aspect ratio and fuselage fitness 

required. 

All these parameters increase the aero 

elasticity of airplane and its effect becomes 

large issue to be considered for static and 

dynamic control system especially in 

dynamic case with rigid airplane [3]. The 

dynamic effects are especially important in 

the design of automatic control systems 

because structural modes may introduce 

instabilities that would not arise with a rigid 

airplane. Besides, the aerodynamic forces 

and moments under unsteady flow, the 

prediction of natural frequencies and modes 

should be considered as a function of time 

[4]. 

   Derivation of theoretical expression can 

be done by Rayleigh-Ritz method using 

vibration of small cantilever beam for 

determining natural vibration and frequency 

[5].Although the frequency of airplane wing 

(swept, un swept) can’t be found exactly in 

ideal case thus the approximation solution 

can be used such solution present torsional 

vibration and couple bending of no uniform 

mass distribution on swept wing on fuselage 

[6].Myklestad and Prohl developed a tabular 

method to find the modes and natural 

frequencies of structures, such as an 

airplane wing. It is generally known as the 

Myklestad method uses the transfer matrix 

technique for this method [7]. 

2. Mathematical Modeling 

2 .1 Beam Assumption 

      The following assumptions were made 
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in the derivation of the present work:  

•   Beam Theory- Elementary beam 

theory is applicable; axial loads, shear 

deformation, and damping are neglected. 

•   Airplane wing Structural 

Representation-The airplane wing 

structural characteristics is simulated by 

a lumped masses and spring stiffness's. 

2.2 Myklestad Method 

  Myklestad and Prohl developed a tabular 

method to find the natural frequencies 

and mode shapes of structures, such as an 

airplane wing (as a cantilevered beam) or 

flying bodies (as a free-free beam). It is 

generally known as the Myklestad 

method. We shall use the transfer matrix 

technique for this discussion. 

Following the finite element approach, 

a structure or a beam can be divided into 

segments. A typical segment of a beam, 

as illustrated in Fig. 1, consists of a mass 

less span and a point mass. The field 

transfer matrix of the span describes the 

flexural properties of the segment; the 

point transfer matrix of the mass 

describes the inertial effect of the 

segment. 

To describe the field transfer matrix, 

consider the free-body sketch of a 

uniform beam of length L in span n as 

shown in Fig. 1(a). For equilibrium, 

        1          and                   1     

Ln   1                                               

(1)  

Where M and V moment and the shear 

force respectively. Referring to Fig. 1(a), 

the change in the slope 

 of the span is due to moment Mn
L and 

the shear Vn
L 

   -    -1   =      +                                                                     

(2) 

Substituting Mn
L and Vn

L from Eq. (1) in 

(2) and 

Rearranging, we get 

  =   +     -                                                                    

(3) 

The change in the deflection Y of the 

span is 

 -  = Ln   +    + 

                                                         

(4)  

The first term on the right is the 

deflection due to the initial slope of the 

span, the second term due to the moment 

and the third term the shear force. The 

shear 

Deformation of the beam is assumed 

negligible. 

Substituting Mn
L and Vn

L from Eq. (1) in 

(4) and 

Rearranging, we obtain 

 =  + Ln  +    + 

                                                     

(5) 

The field transfer matrix is obtained by 

writing Equation. (1), 

 =                                                                                      

(6) 
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To derive the point transfer matrix, 

consider the free-body sketch of mn in 

Fig. 1(b). The D'Alembert's inertia loads 

are -  mn Yn
L and   Jn n

L   where Jn is 

the mass moment of inertia of mn about 

its axis normal to the (XY) plane. 

Neglecting the applied force P and the 

torque T, the equations for shear and 

moment are 

are -co2mn and 

 =   -      mn              and       

 =  -  mn                                     

(7) 

For rigid body motion of mn, we have 

 =           and          =                                                                                

(8) 

The point transfer matrix is obtained 

from Equation. (7) and (8). 

 =    

                                                                         

(9) 

The transfer matrix for the segment n is 

obtained by substituting the state vector  

from Eq. (6) in (9)  

 = 

                                        (10) 

 = 

                               (11) 

Hence the general theory from Eq. (11) is that 

the state vector  at the end of the ith 

segment is related to. 

 at the beginning of the ith segment by 

the transfer matrix Ti .  

 = Ti                                                                                                                        

(12) 

Applying Eq. (12) for n segments, 

therefore, the state vector  and  at 

station 0 are related as 

  = Tn                                                                              

(13) 

which is called the recurrence formula? 

The common boundary conditions for the 

beam problem are listed in Table 1. For 

example, the deflection Y and the 

moment M at a simple support must be 

zero while the slope  and the shear V 

are unknown and nonzero. At the 

beginning point or station 0 of a beam 

there are two nonzero boundary 

conditions, dictated by the type of 
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support. Similarly, there are two nonzero 

boundary conditions at the other end of 

the beam. 

The procedure for a natural frequency 

calculation is to assume a frequency  as 

in the Holzer method. The  that satisfies 

simultaneously the boundary conditions 

at both ends of the beam is a natural 

frequency. 

To demonstrate the procedure of 

calculation the natural frequency with 

applied boundary conditions, a 

cantilevered beam of two lamped masses 

(m1 and m2) 

with uniform flexural stiffness EI as shown in 

Figure (2). The recurrence formulas for the 

computations are.  

      T1           and              

T2        T2T1                                      

(14) 

where  

        {0       0     M0      

V0}  

and M0 and  V0 are the unknown moment and 

shear at the fixed end. Applying Eq. (11) for 

first and second segments Figure(3), we get  

   =  T        ;     T = T2 T1  

or,  

 =                                                                                

(15) 

 and    must be zero at the free end 

of the beam, that is  

 = 0 = T33M0 + T34V0  

 = 0 = T43M0 + T44 V0                                                                                      

(16)  

For a nontrivial solution of the 

simultaneous homogenous equations, the 

determinant of the coefficients of M0 and 

V0 must be vanish, that is, 

  =  = 0                                                                                            

(17) 

Therefore, the frequencies (  and  ) 

will be obtained from Eq. (17)  

3. Results Discussions 

Myklestad-Prohl methods with a transfer 

matrix technique are illustrated in this 

project to estimate the flutter mode and 

shape six unequal division of semis pan 

wing with middle station point and some 

station could be chosen for accuracy 

desired. The space between stations it 

gives the number of station, and the first 

station touch the wing root or fuselage 

wing intersection, so fuselage force act at 

station 0 .other five stations locate at mass 

location or point of average mass 

distribution. Station five always at point 

close to wing tip and total mass 

distribution assumed to be constructed at 

station points. In this case the wing 

assumed to be beam subjected to six lad 

points and assumed linear moment 

behavior between stations. The physical 

characteristics for the airplane wing 

platform with the material used are listed 

in Table 1 [8]. The moment of inertia of 

airfoil cross -section about chord plane 

can be computed. 

K1C
4

section       

Where 

t = airfoil  thickness  
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K1 = 0.0377 for NASA 65A0xx 

C section =CTipe + (S- y)  ) I  

The variation of structural 

characteristics across  the semi span 

of the wing i. e the variation of bending 

moment of inertia by using Eq. (18) 

with thickness ratio (t/ c) equal 12%, 

bending rigidity that can be obtained by 

multiplying the results of Eq. (18) by the 

modulus of elasticity of Dura Aluminum 

alloy (it is assumed that the variation of 

El is linear between each station) and the 

wing structural mass are presented in Figs. 

4 and 5 respectively. Table 3 shows the 

wing structural data such as the lengths 

between each station and the station 

concentrated masses. 

In the present work, four case studies are 

considered. The mass effects of engines 

airplane with the amount of fuel are 

shown in Table 4.  One engine with half 

fuel is used in case one while the same 

engines with full fuel are considered in 

case two. Cases three and four, we took 

two engines with half and full fuel 

respectively. 

The natural frequencies of the airplane 

wing for the four cases are presented in 

Table 5. It can be seen that case four have 

a smaller frequency for ail modes than 

other cases due to higher masses of 

engine and fuel. Figs. 6 and 7 show the 

first and second mode shapes in 

deflection (Y).  As it illustrates in fig.6 

that the deflection is zero at the root and   

increased gradually to maximum value 

at tip. Also, we observed that the case 

four have minimum value in deflection 

from other cases due to higher masses. 

For the second mode in deflection (see 

Fig. 7), all cases began from zero and 

reaches maximum positive values for 

case one and two due to lower masses 

than others. At the wing tip, cases two 

and four have maximum negative values. 

Figs. 8 and 9 shows the first and second 

mode shapes in slope (φ). Fig.8 shows 

that the zero is zero at the root and 

increased gradually to maximum value at 

tip. Case four have a minimum value in 

slope from other cases. For the second 

mode in slope (see Fig. 9), all cases 

began from zero and reaches maximum 

positive values for case one and two. At 

the wing tip, case two has maximum 

negative value. Figs. 10, 11, 12 and 13 

shows the first and second mode shapes 

in moment (M) and shear (V). Figs.10 

and 12 shows that the moment and shear 

for all cases began with maximum 

positive values at the wing root and then 

decreased gradually until wing tip, they 

reach to zero (behavior of cantilever 

beam). Similarly, for the second mode 

(see Figs.  11 and 13), it began from 

maximum positive values, then reaches 

to maximum negative values (case four) 

at the middle of the wing semi span, after 

that they goes to zero. 

4. Conclusions 

For preliminary design, this method can 

be considered successful and used 

estimate the free vibration characteristics 

of any model with any type of constraints 

in the aero elastic solution of the flying 

bodies. 

It can be that the maximum effect of first 

mode deflection and slope on  the tip of 

wing and maximum effect of  the  first 

mode shear and  moment on  the root of 

wing (cantilever behavior), case one 

most critical case.  
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The maximum effect of second mode 

shear and moment on mean root of the 

wing and case four is more critical case 

but for second mode deflection    and 

slope, case two is most critical case 

(weight distribution). 

Table 1. the common boundary condition of the beam 

Boundary 
Condition 

Deflection 
Y 

Slope 
𝜙 

Moment 
M 

Shear 
V 

SIMPLY SUPPORT 0 𝜙 0 V 

FREE Y 𝜙 0 V 

Table 2. Physical Characteristics for Example Airplane 
Wing Semi Span (m) 14.224 

Root Chord (m) 3.91160090 

Tip chord (m) 1.49031960 

Wing Aspect Ratio 10.53 

Wing Taper Ratio 0.381 

Leading Edge Angle (deg) 35.0 

Trailing Edge Angle (deg) 62.077 

Airfoil Section 65A012 

Thickness Ration (t/c) 12% 

Wing Material Aluminum Modulus of Elasticity 
E = 6.870 * 109 N/m2 

Table 3. Airplane Wing Model-Structural Date 

Stations L 
(m) 

EI (N.m2) m (kg) 

0 1.28016 83307005.13 4846.05 

1 2.56032 50416048.22 2727.0-1363.5 

2 2.41808 29371501.12 322.425-644.85 

3 2.27584 16359021.97 171.9 

4 2.27584 8239871.71 90.45 

5 2.27584 3599423.73 53.1 

Table 4. Cases Study 

Case Number Specifications 

Case 1 One Engine ( 1363.5 kg ) + Fuel (322.425 kg) 

Case 2 One Engine (1363.5 kg ) + Fuel (644.85 kg) 

Case 3 Two Engines (2727 kg) + Fuel (322.425 kg) 

Case 4 Two Engines (2727 kg ) + Fuel (644.85 kg ) 

Table 5. Airplane Wing Natural Frequencies 

Case 

Number 

Natural Frequency ( rad / sec ) 

𝝎1 𝝎2 𝝎3 𝝎4 𝝎5 𝝎6 

Case 1 17.81 52.01 111.7 208.3 271.7 410.2 

Case 2 16.86 47.65 111.0 187.7 264.7 379.6 

Case 3 17.23 44.50 101.7 208.2 258.3 405.2 

Case 4 16.34 42.48 98.19 187.3 250.3 376.1 
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Figure (1) Free Body Sketch of mn 

 

 

 

 

 

 

 

 

Figure (2) Cantilevered Beam of Two Lamped Mass 

 

 

 

 

 

 

 

 

Figure (3) Derivation of transfer Matrix of a Beam 

 

 

  

 

 

 

 

 

 

 

Figure (4) Lamped Mass Representation of a Beam 
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Figure (5) Division of Wing into Sections 
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Figure (6) first mode shape (deflection) 
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Figure (7) second mode shape (deflection) 
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Figure (8) first mode shape (Slope) 
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Figure (9) Second Mode Shape (Slope) 
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Figure (10) first mode shape (Moment) 
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Figure (11) second mode shape 
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Figure (12) first mode shape (Shear) 
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Figure (13) second mode shape (Shear) 

5. List of Symbols 

Symbol definition units 

Csection Chord Section M 

CRoot Wing Root Chord M 

CTip Wing Tip Chord M 

E Modulus of Elasticity N/m2 

I Bending Moment of Inertia M4 

J Rotary Moment of Inertia N.m.sec2 

L Length between Lamped Mass M 

LE Wing Leading Edge Angle Degree 

M Bending Moment N.m 

V Shear Moment N 

S Wing Semi Span M 

TE Wing Trailing Edge Angle Degree 

Y Deflection(1st Mode Shape) -------- 

EL Bending Rigidity N.m2 

Ø Slope(2nd Mode Shape) --------- 

ω Natural Frequency Rad/sec 

T Natural Matrix ----- 

{Z} State vector ---------- 
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