Means of Certain Arithmetic Functions

G Sudhaamsh Mohan Reddy ${ }^{1}$, S Srinivas Rau ${ }^{2}$, B Uma ${ }^{\mathbf{3}}$
${ }^{1 \& 2}$ Faculty of Science and Technology, Icfai Foundation for Higher Education, Hyderabad-501203, INDIA, dr.sudhamshreddy@ gmail.com, rauindia@yahoo.co.in ${ }^{3}$ CTW, Military College, SECUNDRERABAD-500015,INDIA, ubidarahalli699@ gmail.com

Article Info
 Volume 83

Page Number: 3382-3385
Publication Issue:

March - April 2020

Article History

Article Received: 24 July 2019
Revised: 12 September 2019
Accepted: 15 February 2020
Publication: 22 March 2020

Abstract

: Means of $\left\{\frac{\mu^{2}(n) \sigma(n)}{n}\right\},\left\{\frac{\sigma(p)}{p}\right\}$ and $\left\{\sum_{p \mid n} \frac{1}{p}\right\}$ are computed to be $\frac{\zeta(2)}{\zeta(4)}, 0$ and $\sum \frac{1}{p^{2}}$ respectively. An estimate for $\sum \frac{1}{p^{2}}$ is given.As a corollary we have the upper bound $\frac{25}{16}$ for the mean value of L-series values $\left\{\frac{L_{d}(1)}{L_{d}(2)}\right\}_{\text {d }}$ squarefree

Keywords: measuring, Arithmetic function.

I INTRODUCTION

Let $\sigma(n)=\sum_{k \mid n} k$.Then $\frac{\sigma(n)}{n}=\sum_{k \mid n} \frac{1}{k}$. The mean of an arithmetic function $f(n)$ is defined to be $\operatorname{Lim}_{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} f(n)$.
The mean of the arithmetic function $\frac{\sigma(n)}{n}$ is known to be $\zeta(2)=\sum \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$ ([1], Th 3.6). We adapt this method to compute the mean of $\left\{\frac{\mu^{2}(n) \sigma(n)}{n}\right\}_{n=1}^{\infty}$ the sequence of sums of reciprocals of divisors of squarefree integers : the value is $\frac{\zeta(2)}{\zeta(4)}=\sum \frac{\mu^{2}(n)}{n^{2}}$ (Prop 1 (a)). For the special choice of subsequence of primes, we find the mean to be 0 (Prop 1 (b)).The "formal guess" $\sum_{p} \frac{1}{p^{2}}$ turns out to be the mean of a different function $f(n)=\sum_{p \mid n} \frac{1}{p}$ (Remark 1). For this we use the Tauberian result in Hlawka et al ([3] p200). We discuss the value of $\sum_{p} \frac{1}{p^{2}}$ and an upper bound for it.

Proposition 1

1. $\operatorname{Lim}_{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} \frac{\mu^{2}(n) \sigma(n)}{n}=$

$$
\frac{\zeta(2)}{\zeta(4)}=\sum_{n=1}^{\infty} \frac{\mu^{2}(n)}{n^{2}}=\frac{15}{\pi^{2}}
$$

2. $\quad \operatorname{Lim}_{x \rightarrow \infty} \frac{1}{x} \sum_{p \leq x} \frac{\sigma(p)}{p}=0$

Proof. (a)

$$
\begin{aligned}
& \sum_{n \leq x} \frac{\mu^{2}(n) \sigma(n)}{n}=\sum_{s \leq x, s s q f r e e}\left(\sum_{d \mid s} \frac{1}{d}\right) \\
& =\sum_{d \leq x, d s q f r e e} \frac{1}{d}\left(\sum_{q \leq x / d, q s q f r e e} 1\right) \\
& =\sum_{d \leq x, d s q f r e e} \frac{1}{d}\left\{\frac{x}{d}+\bigcirc(1)\right\} \\
& =x \sum_{d \leq x, d s q f r e e} \frac{1}{d^{2}}+\bigcirc\left(\sum_{d \leq x, d s q f r e e} \frac{1}{d}\right) \\
& \quad=x \sum_{n \leq x} \frac{\mu^{2}(n)}{n^{2}}+\bigcirc(\log x) \\
& \text { (since } \sum_{d \leq x} \frac{1}{d} \leq \sum_{n \leq x} \frac{1}{n} \approx \log x([1], \text { Th3.2)) }
\end{aligned}
$$

Dividing by x and letting $x \rightarrow \infty$ we have the
mean to be $\sum_{n} \frac{\mu^{2}(n)}{n^{2}}=\frac{\zeta(2(}{\zeta(4)}$ as claimed. Since $\zeta(2)=\frac{\pi^{2}}{6}$ and $\zeta(4)=\frac{\pi^{4}}{90}$ the numerical value is $\frac{15}{\pi^{2}}([4], \mathrm{p} 232)$.
(b)Define

$$
f(n)= \begin{cases}0 & \text { ifnnotprime } \\ \frac{\sigma(p)}{p} & \text { ifn }=\text { p, prime }\end{cases}
$$

We compute the mean of $f(n)$:

$$
\begin{gathered}
\frac{1}{x} \sum_{n \leq x} f(n)=\frac{1}{x} \sum_{p \leq x} \frac{\sigma(p)}{p} \\
=\frac{1}{x} \sum_{p \leq x}\left(1+\frac{1}{p}\right) \\
=\frac{1}{x}\left\{\sum_{p \leq x} 1+\sum_{p \leq x} \frac{1}{p}\right\} \\
=\frac{\pi(x)}{x}+\frac{1}{x} \sum_{p \leq x} \frac{1}{p}
\end{gathered}
$$

But $\sum_{p \leq x} \frac{1}{p} \approx \log \log x$ ([1], Theorem 4.12). Also as $x \rightarrow \infty, \frac{\pi(x)}{x} \rightarrow 0$ ([4], Cor 2, p24). Hence

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow \infty} \frac{1}{x} \sum_{p \leq x} \frac{\sigma(p)}{p} \\
& =\operatorname{Lim}_{x \rightarrow \infty} \frac{\pi(x)}{x} \\
& +\operatorname{Lim}_{x \rightarrow \infty} \frac{1}{x}\left(\sum_{p \leq x} \frac{1}{p}\right)=0+0=0
\end{aligned}
$$

Remark 1 We point out another approach to proofs of Propl, by ([3], p200) Tauberian methods. Let $f(n)$ be a bounded arithmetic function of mean 0 . Then

$$
\begin{equation*}
\sum_{n \leq x} \frac{f(n)}{n}=\frac{1}{x} \sum_{n \leq x}\left(\sum_{m \mid n} f(m)\right)+\circ \tag{1}
\end{equation*}
$$

We choose $f(n)=\frac{1}{n}$ and apply the above; letting $x \rightarrow \infty \quad$ we have $\sum \frac{1}{n^{2}}=$ mean of $\left(\frac{\sigma(n)}{n}=\right.$ $\left.\sum_{m \mid n} f(m)\right)$.

For (a) we choose $f(n)=\frac{\mu^{2}(n)}{n}$ to derive $\sum \frac{\mu^{2}(n)}{n^{2}}=$ mean of $\frac{\mu^{2}(n) \sigma(n)}{n}$.

However the series $\sum_{p} \frac{1}{p^{2}}$ is thus the mean of $f(n)$ given by $f(n)=\sum_{p \mid n} \frac{1}{p}$.

Note that $f(n)$ is not the function in Prop1 (b).

Remark

$\Sigma_{p} \frac{1}{p^{2}}=$
0.45224742004106549850654336483224793417323134323989...
([2], p209).This is done by summation of a suitable Dirichlet series. We obtain an upper bound (not sharp) by the following elementary comparison:

The $n^{\text {th }}$ prime $p_{n}>2 n$ for $n>4$. Hence

$$
\begin{aligned}
& \sum_{n=5}^{\infty} \frac{1}{p_{n}^{2}}<\sum_{n=5}^{\infty} \frac{1}{(2 n)^{2}} \\
& =\frac{1}{4}\left\{\zeta(2)-\sum_{n=1}^{4} \frac{1}{p_{n}^{2}}\right\} \\
& =\frac{1}{4}\left\{\frac{\pi^{2}}{6}-\frac{205}{576}\right\}
\end{aligned}
$$

So

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{p_{n}^{2}} \leq \frac{1}{2^{2}} & +\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\frac{1}{4}\left\{\frac{\pi^{2}}{6}-\frac{205}{576}\right\} \\
& \leq 0.7437842559486
\end{aligned}
$$

Remark 3 We recall the estimate ([5]) for squarefree integers d :

$$
\frac{L_{d}(1)}{L_{d}(2)} \leq c \prod_{p \mid d}\left(1+\frac{1}{p}\right)=c \frac{\sigma(d)}{d}
$$

for L-series values ; $c=\frac{5 \pi^{2}}{48}$. In view of Proposition 1(a) we have

Corollary 1 The mean of $\left\{\frac{L_{d}(1)}{L_{d}(2)}\right\}$ is bounded above by $\frac{25}{16}$.

Proof. By the comparison above the mean of $\left\{\frac{L_{d}(1)}{L_{d}(2)}\right\}$ is bounded above by c (mean of $\frac{\sigma(d)}{d}$). But by Prop 1(a) this bound is $c \frac{\zeta(2)}{\zeta(4)}=\frac{5 \pi^{2}}{48} \cdot \frac{15}{\pi^{2}}=\frac{25}{16}$.

Corollary 2Let $h(n)=\left(1-\mu^{2}(n)\right) \sum_{k \mid n} \frac{\mu^{2}(k)}{k}=$ sum of reciprocals of squarefree divisors of non squarefree n. The $\{h(n)\}$ has mean 0 .

Proof. We apply Wintner's Theorem :If $f=1 * g$ and $\sum \frac{|g(n)|}{n}<\infty$ then

Mean $f=\sum \frac{g(n)}{n}$ (i.e the residue at 1 of $\zeta(s) \sum_{n} \frac{g(n)}{n^{s}}=$ Mean f if $\left.\sum \frac{|g(n)|}{n}<\infty\right)$

Let $g(n)=\frac{\mu^{2}(n)}{n}$ so that $\sum \frac{|g(n)|}{n}=\sum \frac{g(n)}{n}=\frac{\zeta(2)}{\zeta(4)}$

$$
\begin{aligned}
\therefore \sum \frac{f(n)}{n}= & \sum_{n} \frac{\left(\sum_{k \mid n} \frac{\mu^{2}(k)}{k}\right)}{n} \\
& =\sum_{n} \frac{\mu^{2}(n) \frac{\sigma(n)}{n}}{n}+\sum_{n} \frac{h(n)}{n}
\end{aligned}
$$

Now by Wintner, Mean $\left\{f_{n}\right\}=\frac{\zeta(2)}{\zeta(4)}=$ Mean $\left\{\mu^{2}(n) \frac{\sigma(n)}{n}\right\}$ by Prop 1(a) above.

Hence Mean $\{h(n)\}=$ difference of means of f and $\left\{\mu^{2}(n) \frac{\sigma(n)}{n}\right\}$ $=\frac{\zeta(2)}{\zeta(4)}-\frac{\zeta(2)}{\zeta(4)}=0$.

Remark 4Let $a(n)=\left(\sum_{k \mid n} \frac{1}{k}\right)\left(1-\mu^{2}(n)\right)=$ sum of reciprocals of divisors of non squarefree n.

Then Mean $\{a(n)\}=$ Mean $\left\{\frac{\sigma(n)}{n}\right\}$ - Mean Published by: The Mattingley Publishing Co., Inc.
$\left\{\mu^{2}(n) \frac{\sigma(n)}{n}\right\}=\zeta(2)-\frac{\zeta(2)}{\zeta(4)}$
$=\zeta(2)\left(1-\frac{1}{\zeta(4)}\right)>0($ by Prop 1(a) above).
Yet the resticted sum $\{h(n)\}$ in Corollary 2 has mean zero.

II Acknowledgements

This work is supported by Department of Science and Technology Research Project(India) SR/S4/MS: 834/13 and the support is gratefully acknowledged.

III REFERENCES

[1] Tom Apostol, Introduction to Analytic Number Theory, Springer 1976
[2] H.Cohen, Number Theory,Vol 2 Springer 2008
[3] E. Hlawka, J. Schoipengeir, R.Taschner, Geometric and Analytic Number Theory, Springer 1992
[4] K.Ireland, M.Rosen A Classical Introduction to Modern Number Theory, Springer 1982
[5] S Srinivas Rau and B Uma, Square-free ideals and an assertion of Ramanujan, Indian J Pure Appl Math 33(10) 1595-1600, October 2000
[6] G. Sudhaamsh Mohan Reddy, S. Srinivas Rau, B.Uma, A Direct proof of convergence of Euler product for $L_{d}(1)$, International Journal of Advanced Science and Technology, Vol. 28, No. 16, (2019), pp. 1308-1311.
[7] G.Sudhaamsh Mohan Reddy, S.Srinivas Rau, B.Uma, Kronecker's Lemma and a Converse with applications ,International Journal of Advanced Science and Technology
Vol. 28, No. 16, (2019), pp. 1312-1314
[8] G. Sudhaamsh Mohan Reddy, S. Srinivas Rau, B. Uma, Norms of square free Ideals in Quadratic Fields, International Journal of Control and Automation, Vol. 12, No. 6, (2019), pp.405-407.
[9] G Sudhaamsh Mohan Reddy, S Srinivas Rau and B Uma, Applications of Tauberian Theorems to Dirichlet Series, Lap Lambert Academic Publishing, Germany, ISBN:978-613-9-45507-2.
[10] G Sudhaamsh Mohan Reddy, SS Rau, B Uma A remark on Hardy-Ramanujan's approximation of
divisor functions, International Journal of Pure and Applied Mathematics 118 (4), 997-999, 2018
[11]G Sudhaamsh Mohan Reddy, SS Rau, B Uma, Some Dirichlet Series and Means of Their Coefficients, Southeast Asian Bulletin of Mathematics 40 (4), 585-591, 2016
[12] G Sudhaamsh Mohan Reddy, SS Rau, B Uma, Some arithmetic functions and their means, International Journal of Pure and Applied Mathematics 119 (2), 369-374, 2018
[13] G Sudhaamsh Mohan Reddy, SS Rau, B Uma, A Bertrand Postulate for a subclass of primes, Boletim da SociedadeParanaense de Matemtica 31 (2), 109-111, 2013
[14] G Sudhaamsh Mohan Reddy, SS Rau, B Uma, Converegence of a series leading to an analogue of Ramanujan's assertion on squarefree integers, Boletim da SociedadeParanaense de Matemtica 38 (2), 83-87, 2020
[15] G Sudhaamsh Mohan Reddy, S Srinivas Rau and B Uma, An equivalent form of the Prime Number Theorem, Sarajevo Journal of Mathematics,Vol. 15 (28), No.2, (2019), 239 - 243(DOI: 10.5644/SJM.15.02.08).
[16]G Sudhaamsh Mohan Reddy, S Srinivas Rau, A note on Dirichlet series connected to $\frac{L_{d}(1)}{L_{d}(2)}-1$ (Accepted in publication).
[17]Das, B. and KJ, M., 2017. Disability In Schizophrenia and Bipolar Affective Disorder. International Journal of Psychosocial Rehabilitation, 21(2).
[18] Elsass, P., Rønnestad, M.H., Jensen, C.G. and Orlinsky, D., 2017. Warmth and Challenge as Common Factors among Eastern and Western Counselors? Buddhist Lamas' Responses to Western Questionnaires. International Journal of Psychosocial Rehabilitation, 21(2).
[19] Weston, S.M., Martin, E.D., Shippen, M.E., Kraska, M.F. and Curtis, R.S., 2017. Parents with Serious Mental Illness Served by Peer Support Specialists. International Journal of Psychosocial Rehabilitation, 21(2).
[20] Griffiths, C.A., 2017. Determinates of mental illness severity. International Journal of Psychosocial Rehabilitation, 21(2).
[21]Lau, H.Y., 2017. Family Therapy and Cognitive Behavioral Therapy for a Case with Co-morbidity of Depression and General Anxiety Disorder in Hong Kong-A Single Case Study. International Journal of Psychosocial Rehabilitation. Vol 21 (2) 21, 30.

