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Abstract: 

Means of {
𝜇2(𝑛)𝜎(𝑛)

𝑛
},{

𝜎(𝑝)

𝑝
} and {∑𝑝|𝑛

1

𝑝
} are computed to be 

𝜁(2)

𝜁(4)
, 0  and ∑

1

𝑝2 

respectively. An estimate for ∑
1

𝑝2 is given.As a corollary we have the upper bound 

25

16
 for the mean value of 𝐿-series values {

𝐿𝑑(1)

𝐿𝑑(2)
}𝑑 𝑠𝑞𝑢𝑎𝑟𝑒𝑓𝑟𝑒𝑒  

Keywords: measuring, Arithmetic function. 

 
 

I INTRODUCTION 

Let 𝜎(𝑛) = ∑𝑘|𝑛 𝑘 .Then 
𝜎(𝑛)

𝑛
= ∑𝑘|𝑛

1

𝑘
. The 

mean of an arithmetic function 𝑓(𝑛) is defined to 

be 𝐿𝑖𝑚𝑥→∞
1

𝑥
∑𝑛≤𝑥 𝑓(𝑛). 

The mean of the arithmetic function 
𝜎(𝑛)

𝑛
 is known 

to be 𝜁(2) = ∑
1

𝑛2 =
𝜋2

6
 ([1], Th 3.6). We adapt 

this method to compute the mean of {
𝜇2(𝑛)𝜎(𝑛)

𝑛
}𝑛=1

∞  

the sequence of sums of reciprocals of divisors of 

squarefree integers : the value is 
𝜁(2)

𝜁(4)
= ∑

𝜇2(𝑛)

𝑛2
 

(Prop 1 (a)). For the special choice of subsequence 

of primes, we find the mean to be 0 (Prop 1 

(b)).The "formal guess" ∑𝑝
1

𝑝2 turns out to be the 

mean of a different function 𝑓(𝑛) = ∑𝑝|𝑛
1

𝑝
 

(Remark 1). For this we use the Tauberian result in 

Hlawka et al ([3] p200). We discuss the value of 

∑𝑝
1

𝑝2 and an upper bound for it. 

Proposition 1  

1.               𝐿𝑖𝑚𝑥→∞
1

𝑥
∑𝑛≤𝑥

𝜇2(𝑛)𝜎(𝑛)

𝑛
=

𝜁(2)

𝜁(4)
= ∑∞

𝑛=1
𝜇2(𝑛)

𝑛2 =
15

𝜋2 

2.              𝐿𝑖𝑚𝑥→∞
1

𝑥
∑𝑝≤𝑥

𝜎(𝑝)

𝑝
= 0 

Proof. (a)  

∑

𝑛≤𝑥

𝜇2(𝑛)𝜎(𝑛)

𝑛
= ∑

𝑠≤𝑥,𝑠𝑠𝑞𝑓𝑟𝑒𝑒

(∑

𝑑|𝑠

1

𝑑
) 

= ∑

𝑑≤𝑥,𝑑𝑠𝑞𝑓𝑟𝑒𝑒

1

𝑑
( ∑

𝑞≤𝑥/𝑑,𝑞𝑠𝑞𝑓𝑟𝑒𝑒

1) 

= ∑

𝑑≤𝑥,𝑑𝑠𝑞𝑓𝑟𝑒𝑒

1

𝑑
{
𝑥

𝑑
+◯(1)} 

= 𝑥 ∑

𝑑≤𝑥,𝑑𝑠𝑞𝑓𝑟𝑒𝑒

1

𝑑2
+◯( ∑

𝑑≤𝑥,𝑑𝑠𝑞𝑓𝑟𝑒𝑒

1

𝑑
) 

= 𝑥 ∑

𝑛≤𝑥

𝜇2(𝑛)

𝑛2
+◯(𝑙𝑜𝑔𝑥) 

(𝑠𝑖𝑛𝑐𝑒 ∑

𝑑≤𝑥

1

𝑑
≤ ∑

𝑛≤𝑥

1

𝑛
≈ 𝑙𝑜𝑔𝑥([1], 𝑇ℎ3.2)) 

 Dividing by 𝑥  and letting 𝑥 → ∞ we have the 

mailto:dr.sudhamshreddy@gmail.com
mailto:ubidarahalli699@gmail.com
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mean to be ∑𝑛
𝜇2(𝑛)

𝑛2 =
𝜁(2(

𝜁(4)
 as claimed. Since 

𝜁(2) =
𝜋2

6
 and 𝜁(4) =

𝜋4

90
 the numerical value is 

15

𝜋2 ([4],p 232). 

(b)Define  

𝑓(𝑛) = {

0 ifnnotprime
𝜎(𝑝)

𝑝
ifn = p, prime

 

We compute the mean of 𝑓(𝑛):  

1

𝑥
∑

𝑛≤𝑥

𝑓(𝑛) =
1

𝑥
∑

𝑝≤𝑥

𝜎(𝑝)

𝑝
 

=
1

𝑥
∑

𝑝≤𝑥

(1 +
1

𝑝
) 

=
1

𝑥
{∑

𝑝≤𝑥

1 + ∑

𝑝≤𝑥

1

𝑝
} 

=
𝜋(𝑥)

𝑥
+

1

𝑥
∑

𝑝≤𝑥

1

𝑝
 

 But ∑𝑝≤𝑥
1

𝑝
≈ 𝑙𝑜𝑔𝑙𝑜𝑔𝑥  ([1], Theorem 4.12). 

Also as 𝑥 → ∞, 
𝜋(𝑥)

𝑥
→ 0 ([4], Cor 2, p24). Hence 

𝐿𝑖𝑚𝑥→∞

1

𝑥
∑

𝑝≤𝑥

𝜎(𝑝)

𝑝

= 𝐿𝑖𝑚𝑥→∞

𝜋(𝑥)

𝑥

+ 𝐿𝑖𝑚𝑥→∞

1

𝑥
(∑

𝑝≤𝑥

1

𝑝
) = 0 + 0 = 0 

Remark 1 We point out another approach to proofs 

of Prop1, by ([3], p200) Tauberian methods. Let 

𝑓(𝑛) be a bounded arithmetic function of mean 0. 

Then  

∑

𝑛≤𝑥

𝑓(𝑛)

𝑛
=

1

𝑥
∑

𝑛≤𝑥

(∑

𝑚|𝑛

𝑓(𝑚)) +∘ (1) 

We choose 𝑓(𝑛) =
1

𝑛
 and apply the above; letting 

𝑥 → ∞  we have ∑
1

𝑛2
= 𝑚𝑒𝑎𝑛 𝑜𝑓 (

𝜎(𝑛)

𝑛
=

∑𝑚|𝑛 𝑓(𝑚)). 

For (a) we choose 𝑓(𝑛) =
𝜇2(𝑛)

𝑛
 to derive 

∑
𝜇2(𝑛)

𝑛2
= 𝑚𝑒𝑎𝑛 𝑜𝑓 

𝜇2(𝑛)𝜎(𝑛)

𝑛
. 

However the series ∑𝑝
1

𝑝2
 is thus the mean of 

𝑓(𝑛) given by 𝑓(𝑛) = ∑𝑝|𝑛
1

𝑝
.  

Note that 𝑓(𝑛) is not the function in Prop1 

(b).  

Remark 

∑𝑝
1

𝑝2
=

0.45224742004106549850654336483224793417323134323989. ..  

([2], p209).This is done by summation of a 

suitable Dirichlet series. We obtain an upper 

bound (not sharp) by the following elementary 

comparison: 

The 𝑛𝑡ℎ prime 𝑝𝑛 > 2𝑛 for 𝑛 > 4. Hence 

 ∑∞
𝑛=5

1

𝑝𝑛
2 < ∑∞

𝑛=5
1

(2𝑛)2 

 =
1

4
{𝜁(2) − ∑4

𝑛=1
1

𝑝𝑛
2} 

 =
1

4
{

𝜋2

6
−

205

576
} 

So  

∑

∞

𝑛=1

1

𝑝𝑛
2

≤
1

22
+

1

32
+

1

52
+

1

72
+

1

4
{
𝜋2

6
−

205

576
} 

 ≤ 0.7437842559486 

Remark 3We recall the estimate ([5]) for 

squarefree integers 𝑑:  

 
𝐿𝑑(1)

𝐿𝑑(2)
≤ 𝑐 ∏𝑝|𝑑 (1 +

1

𝑝
) = 𝑐

𝜎(𝑑)

𝑑
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for 𝐿 -series values ; 𝑐 =
5𝜋2

48
. In view of 

Proposition 1(a) we have  

Corollary 1The mean of {
𝐿𝑑(1)

𝐿𝑑(2)
} is bounded above 

by 
25

16
.  

Proof. By the comparison above the mean of 

{
𝐿𝑑(1)

𝐿𝑑(2)
} is bounded above by 𝑐 (mean of

𝜎(𝑑)

𝑑
). But 

by Prop 1(a) this bound is 𝑐
𝜁(2)

𝜁(4)
=

5𝜋2

48
.

15

𝜋2 =
25

16
.  

Corollary 2Let ℎ(𝑛) = (1 − 𝜇2(𝑛)) ∑𝑘|𝑛
𝜇2(𝑘)

𝑘
= 

sum of reciprocals of squarefree divisors of non 

squarefree 𝑛. The {ℎ(𝑛)} has mean 0.  

Proof. We apply Wintner’s Theorem :If 𝑓 = 1 ∗ 𝑔 

and ∑
|𝑔(𝑛)|

𝑛
< ∞ then 

Mean 𝑓 = ∑
𝑔(𝑛)

𝑛
 (i.e the residue at 1 of 

𝜁(𝑠) ∑𝑛
𝑔(𝑛)

𝑛𝑠 =Mean 𝑓 if ∑
|𝑔(𝑛)|

𝑛
< ∞) 

Let 𝑔(𝑛) =
𝜇2(𝑛)

𝑛
 so that ∑

|𝑔(𝑛)|

𝑛
= ∑

𝑔(𝑛)

𝑛
=

𝜁(2)

𝜁(4)
 

∴ ∑
𝑓(𝑛)

𝑛
= ∑

𝑛

(∑𝑘|𝑛
𝜇2(𝑘)

𝑘
)

𝑛

= ∑
𝑛

𝜇2(𝑛)
𝜎(𝑛)

𝑛

𝑛
+ ∑

𝑛

ℎ(𝑛)

𝑛
 

Now by Wintner, Mean {𝑓𝑛} =
𝜁(2)

𝜁(4)
=Mean 

{𝜇2(𝑛)
𝜎(𝑛)

𝑛
} by Prop 1(a) above. 

Hence Mean {ℎ(𝑛)}= difference of means of 𝑓 

and {𝜇2(𝑛)
𝜎(𝑛)

𝑛
} 

=
𝜁(2)

𝜁(4)
−

𝜁(2)

𝜁(4)
= 0.  

Remark 4Let 𝑎(𝑛) = (∑𝑘|𝑛
1

𝑘
)(1 − 𝜇2(𝑛)) =sum 

of reciprocals of divisors of non squarefree 𝑛. 

Then Mean {𝑎(𝑛)} =Mean {
𝜎(𝑛)

𝑛
}  - Mean 

{𝜇2(𝑛)
𝜎(𝑛)

𝑛
} = 𝜁(2) −

𝜁(2)

𝜁(4)
 

=𝜁(2)(1 −
1

𝜁(4)
) > 0 (by Prop 1(a) above). 

Yet the resticted sum {ℎ(𝑛)} in Corollary 2 has 

mean zero.  
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