
 

November-December 2019 

ISSN: 0193-4120 Page No. 3061- 3066 

 

 

3061 
 Published by: The Mattingley Publishing Co., Inc. 

A Tool for Detecting Ambiguity in Software 

Requirements Specification 

Abdirashid Ali Isse, 
*
Sa’adah Hassan 

Faculty of Computer Science and Information Technology,  

Universiti Putra Malaysia 
Serdang, Selangor, Malaysia 

apdyrashid10@gmail.com, 
*
saadah@upm.edu.my 

 
Article Info 

Volume 81 

Page Number: 3061- 3066 

Publication Issue: 

November-December 2019 

 

 

 

 

 

 

 

 

 

 

 

 

Article History 

Article Received: 5 March 2019 

Revised: 18 May 2019 

Accepted: 24 September 2019 

Publication: 14 December 2019 

Abstract: 

The main goal of requirements engineering is to establish software 

requirements specification (SRS). The requirements in SRS are 

mostly specified in natural languages (NL), therefore, one of the 

common problems of SRS is requirements ambiguity. The 

requirement is said as ambiguous when it has more than one 

interpretation, subsequently, can lead to requirements inconsistency 

and conflict. Besides, to detect ambiguous requirements manually is 

time-consuming and tedious process. Thus, this paper presents a tool 

called SRS Ambiguity Detector, that able to detect automatically the 

major types of ambiguity; lexical, syntactic and syntax ambiguity. 

This tool uses ambiguity words from the ambiguity handbook to 

detect lexical ambiguity, while, parts of speech (POS) tagging 

technique has been applied to detect syntactic and syntax ambiguities. 

Evaluation was conducted to assess the effectiveness, and the result 

has shown that the proposed tool able to identify more ambiguous 

requirements as compared to manual detection.  

 

Keywords: requirements engineering, ambiguity detection, SRS 
 

1. INTRODUCTION 

Requirements engineering (RE) is a 

systematic process to elicit, analyse, model, and 

document requirements for the software to be 

developed. Software Requirements Specification 

(SRS)is the final output of RE and typically, the 

requirements in SRS are written in natural 

languages (NLs) format, such as English 

language (Fockel and Holtmann, 2015). 

However, major issue of NLs documents is 

ambiguous. Ambiguity can be defined as the 

possibility to understand a phrase or word in 

several different meanings (Gill et al., 2014).  

Therefore, it is crucial in RE because ambiguous 

requirements will be interpreted in different 

meanings for the same requirements, thus, it can 

cause requirements inconsistency and conflict. 

Moreover, performing ambiguity review against 

SRS is a time-consuming and tedious job. 

Especially when dealing with a large number of 

requirements.  There are limited tools to support 

ambiguity detection, and the tools focuses on 

certain types of ambiguity only (e.g., Gleich et 

al., 2010; Umber et al., 2011; Sabriye and Zainon, 

2017). 

The purpose of this paper is to present a tool 

to help detecting ambiguity of natural language 

requirements in SRS document. The proposed 

tool focuses on three main types of ambiguities, 



 

November-December 2019 

ISSN: 0193-4120 Page No. 2732 - 2742 

 

 

3062 
Published by: The Mattingley Publishing Co., Inc. 

which are lexical, syntax, and syntactic.  The 

following sections discuss on related work, 

continue with descriptions of the proposed tool, 

evaluation, and finally the conclusions. 

2. RELATED WORK 

Ambiguity in NLs SRS documents is 

unavoidable. The ambiguity in NLs can be 

categorized into: lexical, syntactic, syntax, 

semantic, and pragmatic ambiguities (Berry, et 

al., 2003).  Lexical ambiguity is in which one 

word or phrase has several interpretations (Bano, 

2015). For example, the users of the system are 

administrators and customers. They need to log 

in to the system. The term “they” is an ambiguous 

word because of unclear of reference: it can be 

either the customers or the administrators, or it 

can be both that need to log in to the system. 

While, syntactic ambiguity occur when the 

sentence contains vague words, such as, quickly, 

and accurate (Gleich et al., 2010). As for 

examples, “the system must accept accurate 

information only”, is an ambiguous requirement 

because the term “accurate” are vague word that 

can cause syntactic ambiguity. Moreover, 

syntactic ambiguity also happens when a sentence 

contains more than one logical condition such as 

and andor.  As for semantic or scope ambiguity, 

it appears when sentence has several 

understandings based on its scenario without 

containing lexical, syntax, and syntactic 

ambiguities and mostly occurs when the scope of 

all things include the scope of one thing (Sabriye 

and Zainon, 2017). For example: “all citizens 

have myKad”. This example can be:  “Every 

citizen has an individual myKad”or“All citizens 

have the same myKad”. Pragmatic ambiguity is 

type of ambiguity focuses on the relationship 

between the meaning of the sentences and its 

environment or context. It depends on the context 

of the requirements, including the background of 

the reader. For example, two different readers 

with different background education can interpret 

the requirements into two different ways (Gleich 

et al., 2010). In addition, syntax 

ambiguity(Nigam, 2012), this ambiguity is a 

specific type of error, which occurs, if the 

sentence does not end with a full stop (.), or if the 

sentence is a passive voice: for example, “the 

records of the customers must be documented.” is 

a syntax ambiguity because the doer of the action 

is missed. 

Many researchers addressed ambiguity 

problems in NLs SRS documents using different 

natural language processing (NLP) based 

techniques and tools. For example, work done by 

Beg et al., (2008) proposed NLP based tool and 

technique for detecting lexical ambiguity in NLs 

SRS documents. The weakness of this tool is that 

it detects ambiguity efficiently if the requirements 

in NLs SRS document contain no more than 6 

words.  RESI(Korner and Brumm, 2009)isa tool 

developed to help software analyst to work on 

software requirements documents. The tool able 

to present tothe user the ambiguous requirements 

in the document and provides the possible 

meaning of each word. This feature will help 

analyst to make changes to the document easily. 

This tool used POS tagger technique in order to 

detect ambiguities.  However, the main drawback 

of this tool is that it only focuses on nouns and 

verbs.  While, Gleichet al. (2010) proposed an 

automated ambiguity detection tool to detect 

lexical and syntactic ambiguities, as well as 

provides an explanation about the source of the 

ambiguity. The tool refers to a list of ambiguity 

words in the ambiguity handbook in order to 

detect ambiguous words. Whereas, Gulia and 

Choudhury (2016) have proposed a tool that 

analysed requirements specification using 

standard POS tagger and parser tool to create 

sequence and activity diagrams. This tool helps 

users to generate different diagrams (i.e., activity 

and sequence diagrams) from the same 

requirements specification in order to reduce the 

ambiguity. Recent work is by Sabriye and 

Zainon(2017), in which they have developed a 

tool to detect two types of ambiguities: syntactic 

and syntax ambiguity using a part of speech 

(POS) tagging technique. A summary of related 

work on tools to detect ambiguity in NLs SRS 

documents is as shown in Table 1.   



 

November-December 2019 

ISSN: 0193-4120 Page No. 3061- 3066 

 

 

3063 
 Published by: The Mattingley Publishing Co., Inc. 

Table 1. A Summary of tools that support ambiguity detection in NL’s requirements 

Tool/Work Type of Ambiguity Technique Features/Limitations 

A method to deal with lexical ambiguity in SRS 

(Beg et al., 2008). 

Lexical single algorithm 
created in their 
research.   

Limited to 6 words only 

RESI Tool (Korner and Brumm, 2009).  noun and verb POS tagging -    It presents the users a dialog 
system as soon as the document is 
ambiguity.  

-    It provides the meaning of each 
noun and verb, so it easy analyst to 
change. 

Automatic ambiguity detection tool in SRS 

(Gleichet al., 2010). 

Lexical and Syntactic POS tagging -    Only cover 2 types of ambiguity. 

-    It also provides an explanation 
about the source of the ambiguity 

SR-Elicitor (Umber, et al., 2011) Lexical, Syntactic and 
Semantic 

POS tagging to record and automatically transform 
the natural language software 
requirements to a controlled 
representation using SBVR. 

Ambiguity Detector Tool (Nigam et. al, 2012) Lexical, Syntax and 
Syntactic 

POS tagging and 
referring corpus of 
ambiguous words. 

POS tagger is used for those words that 
matched only. 

Automatic Ambiguity detector 

(SabriyeandZainon, 2017) 

Syntax and Syntactic POS tagging Only cover 2 types of ambiguity. 

 

Based on the study, we propose SRS 

Ambiguity Detector Tool to detect three main 

types of ambiguities, namely: lexical, syntax and 

syntactic. The common technique used for the 

detection, which is POS tagging technique, is also 

adopted in the proposed tool. The proposed tool 

aims to tackle the limitations of the previous 

work. 

3. SRS AMBIGUITY DETECTOR TOOL 

The scope of this research is limited to 

detect ambiguities in English language SRS. The 

proposed tool detects lexical, syntactic and syntax 

ambiguities by using a POS tagging technique 

and by referring ambiguity handbook (Berry, et 

al., 2003). SRS ambiguity detector tool was 

developed using Visual basic studio and C# 

Programming language. This section discusses in 

detail on how the proposed tool detect 

ambiguities in NLs SRS.  Figure 1 presents the 

flowchart of the proposed tool and the 

explanation of each step as follows: 

Phase 1 – User can upload document (i.e., SRS) 

into the system.  The document can be a 

collection of sentences or paragraphs in English 

language and in .txt format. User will be able to 

browse the uploaded document for confirmation.  

The system will read the document until reach 

end of document. 

 

Phase 2 – Each word of the uploaded document 

is compared with words in Ambiguity Handbook 

(AHB) dictionary(Berry, et al., 2003).Dictionary 

is a repository that stores a large number of words 

from AHB is referred to detect lexical ambiguity. 

Word in the sentence that is match with the words 

inside dictionary will be counted and recognized 

as lexical ambiguity.  At the same time, each 

sentence of the document are also marked to the 

part of speech (POS) tagger technique which 

assigns each word of the document the matching 

tag of POS tagger. POS tagging is a technique 

which assigns every word in a given sentences 

into a predefined corresponding parts of speech in 

English.  This technique used to detect syntactic 

and syntax ambiguity.  For syntactic ambiguity, 

it checks if the sentence marked with the POS 

tagger contains adjective or adverb. While, for 

syntax ambiguity, it check if the document 

tagged with POS tagger contains passive voice 

and if the sentence does not end with afull stop 

(.). The system will then compute the total 

number of lexical, syntactic and syntax 



 

November-December 2019 

ISSN: 0193-4120 Page No. 2732 - 2742 

 

 

3064 
Published by: The Mattingley Publishing Co., Inc. 

ambiguities.  This system checks every word and 

sentences in the SRS document and marks each 

type of ambiguity with specific colour.  In which, 

lexical ambiguities are marked as red, syntactic as 

blue, and syntax as green colour. 

 

 

Figure 1.Theflowchart for SRS Ambiguity Detector 

Phase 3 – The tool will read the next sentence 

and repeat the detection process until reach end of 

document. If end of document is reached, then it 

will calculate the total number and percentage of 

ambiguity detected for each type of ambiguity. 

The results (the detected ambiguous 

requirements) will be displayed in different 

colours accordingly, in which, red for lexical 

ambiguity, blue for syntactic ambiguity, and 

green for syntax ambiguity. The results are also 

displayed as graph. Figure 2 shows the screenshot 

of the proposed tool and an example of the output 

displayed.   



 

November-December 2019 

ISSN: 0193-4120 Page No. 3061- 3066 

 

 

3065 
 Published by: The Mattingley Publishing Co., Inc. 

Figure 2. SRS Ambiguity Detector Tool 

4. EVALUATION 

Evaluation was carried out to assess the 

effectiveness of the proposed tool, in which, 

comparison was made between manual detection 

with automated detection using the proposed tool. 

The material used for this evaluation was based 

on Gleich et al., (2010). A dataset which contains 

20 software requirements written in English that 

consists of 4 lexical, 4 syntactic, 4 syntax, 4 

mixed of lexical, syntactic as well as syntax, and 

4 unambiguous software requirements, has been 

used for the evaluation. 

For manual detection, 33 participants, 

mostly software developer and software analyst, 

were involved.  Explanation and examples of 

each type of ambiguity were given to the 

participants prior the evaluation. The dataset was 

given to all the participants and each participant 

need to determine whether each requirement in 

the dataset is lexical, syntactic, syntax, mixed of 

lexical, syntactic and syntax, or unambiguous. 

While, for automated detection, the same dataset 

have been uploaded into the tool. The tool 

automatically analysed the input and presents the 

output. 

The results from manual detection showed 

an average 34% were detected correctly by the 

participants, while the tool managed to detect 

100% all type of ambiguous requirements in the 

dataset.  In addition, participants also mentioned 

that detecting ambiguity manually was very 

difficult, especially, when the requirement 

contains mixed types of ambiguities.   

 

5. CONCLUSION 

Requirements engineering is one of the 

crucial phase in software development life cycle. 

Wherein, the rest of software development phases 

depend on the requirements, and if the 

requirements are not correctly stated in the SRS, 

then it will give tremendous impact to the success 

of the software. One of the common issues is 

ambiguity in SRS that can causes different 

interpretations, which has ultimately; affects the 

quality of the software to be developed. This 

issue can be solved by detecting ambiguities at 

the early phase of software development. 

Therefore, a tool to detect ambiguities in SRS is 

presented to improve the quality of SRS. The 

SRS ambiguity detector tool was developed to 

detect the main types of ambiguities namely: 

lexical, syntax and syntactic. Besides, the tool 

will reduce the amount of effort required for 

ambiguity reviewing process. The results from 

the evaluation highlight the effectiveness of the 

proposed tool. For the next stage, we aim to add 



 

November-December 2019 

ISSN: 0193-4120 Page No. 2732 - 2742 

 

 

3066 
Published by: The Mattingley Publishing Co., Inc. 

more features to the tool that will facilitate the 

reviewing process.  

6. ACKNOWLEDGEMENT 

We wish to acknowledge financial support 

from Universiti Putra Malaysia. 

 

7. REFERENCES 
1. Bano, M. 2015. Addressing the challenges of 

requirements ambiguity: A review of empirical 
literature.In Fifth International Workshop on 

Empirical Requirements Engineering (EmpiRE), 

2015 IEEE (pp. 21-24).IEEE. 
2. Berry, D. M., E. Kamsties, and M. M. 

Krieger.2003. From contract drafting to software 

specification: Linguistic sources of ambiguity. A 

Handbook. 

3. Beg, R., Abbas, Q., and Joshi, A. 2008. A method 

to deal with the type of lexical ambiguity in a 
software requirement specification document. In 

First International Conference on Emerging 

Trends in Engineering and Technology, 2008. 
ICETET'08. (pp. 1212-1215). IEEE. 

4. Fockel, M., andHoltmann, J. 2015.ReqPat: 

Efficient documentation of high-quality 

requirements using controlled natural language. In 
23rd International Requirements Engineering 

Conference (RE), 2015 IEEE (pp. 280-281). 

IEEE. 
5. Gill, K. D., Raza, A., Zaidi, A. M., andKiani, M. 

M. 2014.Semi-automation for ambiguity 

resolution in Open Source Software requirements. 

In 27th Canadian Conference on Electrical and 
Computer Engineering (CCECE), 2014 IEEE (pp. 

1-6). IEEE. 

6. Gleich, B., Creighton, O., andKof, L. 2010. 
Ambiguity detection: Towards a tool explaining 

ambiguity sources. In International Working 

Conference on Requirements Engineering: 
Foundation for Software Quality (pp. 218-232). 

Springer: Berlin, Heidelberg. 

7. Gulia, S. and Choudhury, T. 2016.An Efficient 

Automated Design to Generate UML Diagram 
from Natural Language Specifications.6th 

International Conference on Cloud System and 

Big Data Engineering (Confluence), IEEE, 
pp.641-648. 

8. Korner, S. J., andBrumm, T. 2009. Resi-a natural 

language specification improver.In International 

Conference on Semantic Computing, 

2009.ICSC'09. IEEE (pp. 1-8). IEEE. 

9. Nigam A, Arya N, Nigam B, Jain D, Tool for 

Automatic Discovery of Ambiguity in 
Requirements, IJCSI International Journal of 

Computer Science, vol. 9, no. 5, pp. 350-356, 

2012. 
10. Sabriye, A. O. J. A., andZainon, W. M. N. W. 

2017.A framework for detecting ambiguity in 

software requirement specification.In the 
Proceeding of 8th International Conference on 

Information Technology (ICIT), pp. 209-213. 

IEEE.  

11. Umber, A., Bajwa, I. S., andNaeem, M. A. 
2011.NL-based automated software requirements 

elicitation and specification. In International 

Conference on Advances in Computing and 
Communications (pp. 30-39). Springer: Berlin, 

Heidelberg. 


