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Abstract 

Identification of pulsars in radio astronomy is a tough task because the radio telescopes 

detecting most of the radiations are noise. Selecting proper radiations emitted by pulsars is a 

cognitively demanding process. In this paper, the Support Vector Machine-based classifier 

is implemented to identify pulsar stars from noise by classifying pulsar candidates from non-

pulsar candidates. The support vector machine concept is explained with the classification of 

data. The algorithm is implemented using four statistics values of the two input features. The 

statistics are mean, standard deviation, excess kurtosis, and skewness. The input features are 

integrated profile and DM-SNR curve. The two class Support Vector Machine algorithm is 

trained using 17,897 observations. Average predicting accuracy obtained is 97.54%. 
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I. INTRODUCTION  

Pulsars are some kind of neutron stars that are 

formed after the disintegration of massive stars. 

These pulsars emit radiations that can be detected 

on earth. Their study is very imperative in 

astronomy as it provides means for understanding 

the different characteristics of gravitation, 

cosmological evolution and the composition of 

interplanetary medium etc. Hence their 

identification is very important and mostly 

difficult because there are a large number of 

pulsars like signals detected by radio telescopes. 

Compared to these false signals, the genuine 

signals that are actually emitted by pulsars are very 

few. Conventional approach for their identification 

was manual by a human observer which is time 

consuming and cognitive demanding [1]-[4]. 

 Pulsar candidate identification with Machine 

Learning [ML] algorithms is proposed in [5].  ML 

is a discipline of Artificial Intelligence (AI) that 

specializes in algorithms that learn through data 

which is fed to them. Unlike conventional 

methods, ML algorithms use computational 

methods to learn information from data. The more 

the data, more trained the algorithm is and better is 

the performance. In ML, there are two main types 

namely supervised learning and unsupervised 

learning. Supervised learning deals mainly with 

two types of problems which are Classification 

and Regression. Classification in particular 

contains algorithms such as Support Vector 

Machine (SVM), Discriminant Analysis, Naïve 

Bayes and K-Nearest Neighbor. The classification 

algorithm classifies data points into either two 

classes or more than two classes. SVM is used 

efficiently when there is binary classification [6]. 

SVM is mainly an extension of the Support 

Vector Classifier (SVC), which is itself an 
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extension of the Maximal Margin Classifier 

(MMC). The drawback of the MVC for which data 

points need to be split separately was crossed by 

the SVC. And further, the SVC constraint that 

cannot construct a nonlinear boundary for linear 

segmented data was eliminated by the SVM [7].

 In the SVM, the hyperplane is a flat decision 

boundary that can or may not pass through the 

origin and is the dimension of (P-1) for P 

dimensional space. For example, a hyperplane is a 

line in two dimensional spaces. And suppose if a 

point is not on the hyperplane, it will be on the 

positive or negative side of the hyperplane. So, for 

a dataset with N observations and P features, our 

goal is to train the classifier using training data to 

properly classify test data based on the hyperplane 

using its feature measurements [8]. 

Although the hyperplane accurately categorizes 

the data points into two parts, there exist numerous 

numbers of hyperplanes. All possible hyperplanes 

can be achieved either by moving at a small 

distance or by rotating at a small angle without 

touching any data points. So in all these 

possibilities a hyperplane must be chosen. The 

selected hyperplane is known as the maximal 

margin hyperplane with the shortest distance from 

all the data points. At least that means that the data 

point with the least vertical distance from the 

hyperplane is also known as the margin, and 

furthermore, you mean the largest margin or the 

maximum margin. Then the test data is classified 

according to whose maximum margin is based on 

which side of the hyperplane. Therefore, 

classification is known as maximum margin 

classifier (MMC). The data points that lie on the 

margin are known as Support Vectors. They are 

called support vectors in the sense that slight 

change in their position causes the hyperplane to 

change and also the classifier. Change in position 

of data points other than support vectors do not 

affect the hyperplane and a very small number of 

data points decide the position of the hyperplane 

[9]. 

When the data points are not linearly separable, 

the hyperplane does not perfectly separate the data 

points into two halves. In such cases, addition of a 

single data point leads to large change in the 

hyperplane and the classifier would become overfit 

to the data. Such classifier might not be desirable 

for classification. The solution is obtained by using 

SVC. In SVC, some specific data points are 

allowed to violate the margin and sometimes the 

hyperplane too. The margin is known as soft 

margin and is based on the fact that it is 

worthwhile to misclassify a few training data 

points in order to correctly classify remaining 

other data points. The numbers of data points that 

can violate the margin are bounded by a tuning 

factor C and it is often chosen by cross validation. 

For SVC, support vectors are the data points that 

either lie on the margin or the points that violate 

the margin. The fact that a very few data points 

affect the classification makes SVC a very robust 

classifier. For classification of data points with 

nonlinear decision boundaries, the feature space is 

enlarged using functions of the input variables 

such as quadratic and cubic terms. That is, the 

SVC can be fitted using 2P features. The solution 

to SVC is obtained by taking inner products of 

data points instead of taking the data points 

themselves. The inner products are further taken 

over by generalization of the inner products using 

function known as Kernel function. The kernel 

function is used to quantify the similarity between 

the two data points. A polynomial kernel with 

degree d is used for linear boundary. When the 

nonlinear boundary is needed, d should be greater 

than 1. The SVM is obtained when a nonlinear 

kernel is used with SVC [10]. 

In this paper a classifier based on SVM 

algorithm is used which identifies the given star as 

a pulsar. The algorithm is implemented using 

mean values of two features of candidates. The 

two features being integrated profile and DM-SNR 

curve. 
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II. SUPPORT VECTOR MACHINE FOR PULSAR 

IDENTIFICATION 

 The algorithm is implemented using mean 

values of two features of candidates. The two 

features being integrated profile and DM-SNR 

curve. The equation of the hyperplane is given by 

Eq. 1. 

 β0 + β1X1 + β2X2 +….+ βnXn = 0 

       (1) 

Where, β0 is known as bias, 

             β1…. βn are the weights, 

             X1….Xn are the coordinates of the 

point on the hyperplane. Eq. 1 can also be written 

as, 

D(x) = β0 + βiXi = 0   

       (2) 

Where, i = 1….n. 

This is known as the Linear Discriminate 

Function D(x). 

If the point X does not lie on the hyperplane, 

then it lies either on the positive or on the negative 

side of the hyperplane. Then Eq. 2 becomes 

D(x) = β0 + βiXi > 0 If X lies on positive side

       (3) 

D(x) = β0 + βiXi < 0 If X lies on negative side

       (4) 

Then the classification can be done by the 

following rules, 

D(x) = β0 + βiXi > 0,  Xi ∈ class C1 i.e. a 

pulsar candidate     (5) 

 D(x) = β0 + βiXi < 0,  Xi ∈ class C2 i.e. 

not a pulsar       (6) 

Now, to classify the given data point as a pulsar 

or not a pulsar, the values of β0 and βi must be 

found. But, before that it should be ensured that for 

point Xi taken from class C1, the D(x) should be 

positive or greater than zero. If it is not, then the 

values of β0 and βi are modified such that it comes 

to the positive side of the hyperplane. I.e. the 

hyperplane is adjusted accordingly. Similarly, for 

point Xi taken from class C2, the D(x) should be 

negative or less than zero. And for this also the 

values of β0 and βi are modified such that it comes 

to the negative side of the hyperplane. 

If the hyperplane lies closer to one data point of 

class C1 and farther from a data point of class C2, 

then the hyperplane is putting large bias against 

class C2 and a penalty towards class C1. In that 

case, a small noise can misclassify the given data 

point. Hence, the hyperplane should be equally 

and maximum distanced from the classes. 

Now, for every input data point Xi with „p‟ 

features, the output Yi is a class of value ±1. It is 

given by,  

Xi ∈ class C1    Yi = +1   

        (7) 

Xi ∈ class C2    Yi = -1      

        (8) 

The generalized equation is written as, 

Yi(β0 + βiXi) ≥ 0    

      (9) 

To keep the margin maximum, Eq. 9 becomes 

Yi(β0 + βiXi) ≥ M    

      (10) 

Where, M is the margin. 

 

The distance of a data point X from the hyperplane 

is calculated by, 

  
β0 + βiXi

||βi||
 ≥ M    

       (11) 

The parameter „M‟ is set to unity by proper 

scaling. Then Eq. 10 becomes,  
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Yi (β0 + βiXi) = 1  If Xi is support 

vector      

 (12) 

Yi (β0 + βiXi) > 1  If Xi is not a support 

vector      (13) 

The SVM is a linear machine and the 

classification of data points depends only on the 

Support Vectors. The data points other than 

Support Vectors do not affect the classifier. Thus 

only a few points decide the classification process.  

For Eq. 11, to maximize the margin „M‟, the 

weights „βi‟ should be minimized and the bias „β0‟ 

should be maximized. To minimize the weights, 

the function is given by, 

G(x) = βt β =   β.β    

       (14) 

Here, 
1

2
 β.β is to be minimized. This is 

constraint optimization problem and is converted 

to unconstraint optimization by using Lagrangian 

Multiplier. It is given as, 

L(β, β0) = 
1

2
 β.β - ⅀αi [Yi (β0 + βiXi) – 1] 

       (15) 

Where, αi is Lagrangian Multiplier. 

Optimization of Eq. 15 can be obtained by taking 

derivatives with respect to β0 and β and equating it 

to zero. 

 
∂L

∂β0
=

∂L

∂β0
[

1

2
β. β −  ⅀αiYi(βi.Xi) 

− ⅀αiYi(β0) − ⅀αi ]    

   (16) 

∂L

∂β0
=

∂L

∂β0
[ − ⅀αiYi(β0) ]   

       (17) 

Where, remaining terms are constant. Equating 

Eq. 17 to zero can be written as Eq. 18.   

 p
i=0 αiYi = 0    

       (18) 

 

Where, p is the number of features. Eq. 18 

gives one of the constraints to design the SVM. 

Now, taking derivative of Eq. 15 w.r.t. β can be 

written as Eq. 19.   

, 
∂L

∂β
=

∂L

∂β
[

1

2
β. β −  ⅀αiYi(βi.Xi) 

− ⅀αiYi(β0) − ⅀αi ]    

   (19) 

 

∂L

∂β
=

∂L

∂β
[

1

2
β. β −  ⅀αiYi(βi.Xi) ]  

       (20) 

 

Where, remaining terms are constant. Equating 

Eq. 20 to zero can be written as Eq. 21.   

β = ⅀αi Yi Xi    

       (21) 

Putting Eq. 18 and Eq. 21 in Eq. 15 can be 

written as Eq. 22.   

L(β, β0) = ⅀αi −  
1

2
⅀ αi .αj .Yi .Yj .(Xi .Xj) 

       (22) 

Where, β. β is dot product written as αi .αj. 

Here, the target is to find the Lagrangian 

Multiplier „αi‟ that will maximize Eq. 22. If the 

Lagrangian Multiplier is zero, then corresponding 

Xi is not support vector. If it is very high, then 

corresponding Xi has high influence on 

hyperplane. If it is extra ordinary high, then 

corresponding Xi is an outlier. For unknown data 

point „i‟, the classification decision will be given 

by Eq. 23 and Eq. 24, 

Di = βi . Xi + β0    

       (23) 

Di =Sign ⅀αi Yi Xi Xi + β0   

       (24) 

In Eq. 24, the sign decides the class of the data 

point. If the sign is positive, then it belongs to 

class C1. If the sign is negative, then it belongs to 

class C2. The value of β0 is calculated by Eq. 25. 
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Β0 = 
1

2
[min (⅀αi Yi (Xj Xi) max (⅀αi Yi (Xj Xi))]               

       (25) 

Hence, in this way finding the values of βi and 

β0, SVM is designed. 

 

III. ALGORITHM 

 The algorithm is shown below and flowchart is 

given in Fig. 1.   

1. Start. 

2. Load the data. 

3. Store attributes values of class 1 as „data1‟. 

4. Store Attributes values of class 2 as 

„data2‟. 

5. Plot these values on scatter plot. 

6. Store values of both classes in „data3‟. 

7. Label the „data1‟ values as -1 and „data2‟ 

values as +1. 

8. Train the SVM classifier using „data3‟. 

9. Predict scores over the grid. 

10. If score -1, classify into group 1 else group 

2. 

11. Plot decision boundary around the data 

classified. 

12. End 

 

 

IV. RESULT AND DISCUSSIONS 

 The dataset used in this experiment has mainly 

two attributes. First one is Integrated Profile and 

the other one is DM-SNR curve. The values of 

four statistics of the two features are considered. 



 

 

 

March-April 2020 

ISSN: 0193-4120 Page No. 2095 - 2101 

 

 

2100 Published by: The Mattingley Publishing Co., Inc. 

The statistics considered are Mean, Standard 

Deviation, Excess Kurtosis and Skewness. Hence 

there are total eight input values and one output 

value for each sample. The output 0 stands for 

class 1 which consists of non-pulsar candidates 

and output 1 stands for class 2 which consists of 

pulsar candidates. Total 17,897 samples are 

considered for training the data. Table below 

shows obtained results of the experiment. 

 The predicting accuracy of the dataset for 

Linear SVM for different number of samples is 

calculated by cross validation with five folds. 

Training Time with different samples is also noted 

down. 

  The Predicting Accuracy for the original 

dataset is 97.9% and the Training Time is 9.993 

seconds. When the number of samples taken is  66 

% of the original, Predicting Accuracy is 97.5% 

and Training Time is 6.41 seconds. Further when 

the number of samples taken is 50% of the 

original, the Predicting Accuracy is 97.3% and 

Training Time is 1.07 seconds. Hence as the 

number of samples are reduced both Predicting 

Accuracy and Training Time decrease.  

 The scatter plot of the original data and 

predicted data after trained by SVM algorithm is 

shown in Fig. 2. Blue dots indicate non-pulsar 

candidate and red dots indicate pulsar candidates. 

Support vectors are shown by dots and decision 

boundary by black line. 

TABLE I. Predicting accuracy and 

Training Time 

Samples 
Predicting 

Accuracy 

Training 

Time (sec) 

17897 97.9% 9.9930 

14433 97.6% 8.3629 

12123 97.5% 6.4153 

06350 97.4% 2.3307 

03579 97.3% 1.0723 

 

 

Fig. 2. Scatterplot of original data set 

V. CONCLUSIONS 

ML algorithms have been founded as an 

effective approach in the field of radio astronomy 

for identification of celestial objects such as 

pulsars. In particular supervised learning 

algorithms used for classification are used. The 

SVM algorithm is studied by experimenting it with 

a dataset which consists of observations of pulsar 

candidates. The dataset was collected during the 

High Time Resolution Universe Survey. The 

algorithm identifies a given candidate as a pulsar 

or no pulsar by performing binary classification on 

data points. The classification is done by 

demonstrating decision boundary in the feature 

space. The decision boundary or the hyperplane is 

explained with equations. The mathematical 

construction of the algorithm is given. The 

predicting accuracy of the algorithm is estimated 

by 5-fold cross validation after performing linear 

SVM. The average accuracy of the experiment was 

found to be 97.54%. It is observed that as the 

number of observations increase the corresponding 

accuracy also increases. The training time is also 

directly proportional to the number of 

observations. The original dataset and the dataset 

with predicted values are plotted. 
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