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Abstract 

Big Data is one the emerging concept which gives new opportunities for research, 

development, innovation and business. It's characterized by four Vs: volume, velocity, 

veracity and variety and should bring significant value through the processing of massive 

data. The transformation of massive Data's 4 Vs into the 5th (value) may be a grand 

challenge for processing capacity. Cloud Computing has emerged as a replacement 

paradigm to supply computing as a utility service for addressing different processing needs 

with a) on demand services, b) pooled resources, c) elasticity, d) broad band access and e) 

measured services. The utility of delivering computing capability fosters a possible solution 

for the transformation of massive Data's 4 Vs into the 5th (value). This paper investigates 

how Cloud Computing can be utilized to deal with Big Data challenges to enable such 

transformation. We introduce and review geospatial scientific examples, including climate 

studies, geospatial knowledge mining, and dust storm modeling. The tactic is presented 

during a tabular framework as a guidance to leverage Cloud Computing for Big Data 

solutions. It was exhibited with some examples that the framework method supports the life 

cycle of massive processing, including management, access, mining analytics, simulation 

and forecasting. This tabular framework also can be referred as a guidance to develop 

potential solutions for other big geospatial data challenges and initiatives, like smart cities.  
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1. Introduction: 

Model simulation and earth observation produce 

tera- to peta- bytes of data daily [14]. Geospatial 

data acquisition methods, like phone 

conversations, unmanned aerial vehicles and 

social media produce geospatial data at even faster 

speeds. [15]With an addition to the massive 

Volume, geospatial data exist in Variety of forms 

for various applications, their accuracy and 

uncertainty span across a good range as defined 

by Veracity, and data are produced during a fast 

Velocity through real time sensors [16]. With 

unprecedented information and knowledge 

embedded, these big geospatial data are often 

processed for adding Value to raised research 

project, engineering development and business 

decisions. They envisioned supplying innovation 

and advancements to improve our lives and 

understanding of the world systems when 

transformed from the primary four Vs to the last V 

(value) through advancements during a sort of 

geospatial domains. 

Such transformations pose challenges to data 

management and access, analytics, mining, system 

architecture and simulations. For instance, the 

primary challenge is how to affect the variability 

and veracity of massive data to supply a fused 

dataset which will be utilized during a single 

decision network [6]. Another issue is how to deal 

with the speed of Big Data to possess scalable and 

extensible processing power based on the 

fluctuation of the info feed. [20] Supporting on-

demand or timely data analytical functionalities 

also pose significant challenges for creating the 

worth. 
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Cloud Computing has emerged as a new concept 

to generate computing as a utility service with five 

advantageous characteristics: a) rapid and elastic 

provisioning computing power; b) pooled 

computing power to raised utilize and share 

resources; c) broadband access for fast 

communication; d) on demand access for 

computing as utility services; and e) pay-as-you-

go for the parts used without a big upfront cost 

like that of traditional computing resources [15]. 

Service-oriented architecture is integrated in 

Cloud Computing and enables ―everything as a 

service‖, including Infrastructure as a Service 

(IaaS), Platform as a Service (PaaS) and Software 

as a Service (SaaS). For big geospatial data 

problems in various geosciences and relevant 

domains, Cloud computing engages Big data 

enlightens potential solutions while redefining 

about geospatial science and digital earth [5].  

 

Utilizing Cloud Computing to deal with Big Data 

issues remains in its infancy, and it's a frightening 

task on how the five advantageous characteristics 

can address the primary four Vs of massive Data 

to succeed in the 5th V. [8] This paper illustrates 

how Cloud Computing supports the 

transformation with scientific examples including 

climate studies, knowledge mining and dust storm 

simulation. These examples are highly 

representative and can be easily adapted to other 

environmental and concrete research fields, such 

as smart cities. The life cycle of big geospatial 

data (data management and access, 

analyses/mining, phenomena/scenario simulation) 

are examined through these examples. 

 

2. Climate analytics 

 

In order to know climate change and its impacts to 

environmental and concrete issues, the climate 

data observed within the past and simulated for 

the longer term should be well managed and 

analyzed [17]. However, both observation and 

simulation produce Big Data. For instance, 

subsequent IPCC report is going to be 

supported100+petabytes of knowledge and NASA 

will produce 300+petabytes of climate data by 

2030. This data is entirely different in format, 

study objective and in spatiotemporal resolution 

[23]. Big data can help advance the understanding 

of climate phenomena and can help to identify 

how impacts of global climate changes on society 

and ecosystems can be remedied. Detecting global 

temperature anomalies and investigating 

spatiotemporal distribution of utmost weather 

events, especially over highly populated regions 

[5]. 

 

The many petabytes of climate data can only be 

managed during a distributed and scalable 

environment. Cloud Computing could help the 

management as follows: a) provisioning on-

demand flexible virtual machines (VM) consistent 

with the quantity of climate data; and b) 

automatically deploying HDFS, Hadoop 

Distributed filing system, on the VMs to create a 

distributed file system. Data are often maintained 

in native format rather than sequenced text for 

saving [12] space for storing. Logical data 

architecture is additionally built to facilitate fast 

identification, access, and analyses. 

The core architecture is a spatiotemporal index for 

the multi-dimensional climate data stored on 

HDFS. The index maps data content onto the file, 

node and byte levels within the HDFS. Total nine 

components are used for the index that includes: 

shape, space and time information describe about 

grid's logical information which correlates to data 

query, byte offset, node list, byte length, 

compression code and file path identify specific 

location on the HDFS. Users can directly access 

and locate the data with content description and 

exact spatiotemporal from the index. 
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3. Knowledge mining from big geospatial data 

 

From different spatiotemporal stamps and 

resolutions, we have gathered big geospatial data 

for environment and concrete studies using 

various methods, e.g., Global Positioning System 

(GPS), remote sensing, and Internet-based 

volunteer. The increment in volume, velocity, and 

sort of the spatiotemporal data poses a grand 

challenge for researchers to get and access the 

right data for research and decision support. One 

method of addressing this Big Data discovery 

challenge is to mine knowledge from the [24] 

large geospatial data and their usages for query 

expansion, recommendation and ranking. The 

mined knowledge includes but isn't limited to 

domain hot topics, research trends, metadata 

linkage and geospatial vocabularies similarity. 

Volume, velocity and variety of big data have 

been challenged by this process (Table 1). Such a 

mining process poses two challenges: a) the way 

to divide Big Data into parallelizable chunks for 

processing with scalable computing resources; and 

b) the way to utilize computing resources for 

processing the divided Big Data with an adaptable 

number. 

 

On-demand resources within a virtual cluster 

Cloud Computing facilitates automatic virtual 

cluster with a dynamic number of VMs .More 

computing resources can be transferred to process 

the big historic data, [29] while the dynamic 

number of VMs are often provisioned to handle 

real-time data streams. On-demand computing 

resources are necessary to satisfy the need of 

dynamical log data volumes. For instance, within 

the January 2014 PO. DAAC log mining [27] task 

with more VMs within the cluster, less time 

interval was spent on finishing the task. The two 

time-based partition and IP-based partition are 

accelerated dramatically for mining processes 

(Fig.1). Log processor changed the sessions which 

are generated from time-based partitions. 

 

 
 

 

4. Dust storm forecasting 

Dust storms are serious hazards to health, 

property, and therefore the environment 

worldwide, especially urban areas.  [28] Visibility 

has been decreased rapidly due to the increase of 

accidents during and after a duster; air quality and 

human health are compromised when dust 

particles remain suspended within the atmosphere; 

when dust interferes with the energy captures 

mechanics are applied then the efficiency of 

renewable energy sources are reduced. Therefore, 

it's crucial to predict an upcoming dust event with 

high spatiotemporal resolution to mitigate the 

environmental, health, and other asset impacts of 

dust storms [29]. A typical requirement for such 

prediction requirement is to simulate at some 

point phenomena within a two-hour computational 

time. 

 

Variety of dust model input investigation 

With the rise of spatiotemporal resolution of a 

dust forecast model, the biggest problem is to 

access dynamic data with different formats, 

content and uncertainties [26]. The potentiality of 

broad network access of Cloud Computing can 

serve the preprocessing of the model input file 

with advanced network bandwidth and scalability. 

Huang, Yang, Benedict, Chen et al.(2013) [17] 

and Huang, Yang, Benedict, Rezgui et al. (2013) 

[18] showed that Amazon cloud instances can 

complete most of the forecasting tasks in less time 

than HPC clusters (Fig. 2), indicating that Cloud 

Computing has potential to resolve the concurrent 

intensity of the computing demanding 

applications. 
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Data veracity of dust forecast improvement 

 

One of the foremost significant factors affecting 

the veracity of model output is that the uncertainty 

of model initial condition. These uncertainties are 

often investigated and characterized through 

sensitivity tests using various model variables. To 

revert the uncertainty of the initial conditions, data 

assimilation techniques are applied to correct 

initial conditions of the model from the 

observations. In order to improve model accuracy 

and also to reduce model uncertainty, regularly 

conduct sensitivity tests and data assimilation to 

keep the efforts of preprocessing and integration 

into the model. 

 

 

Conclusion 

 

In this paper we proposed geospatial data 

challenges in big data by introducing scientific 

examples like climate studies, geospatial 

knowledge mining and dust storm modeling. In 

order to exhibit the challenges, we presented a 

framework method that supports big data 

processing, management, access, simulation and 

mining analytics. Some of our other contributions 

can be summarized as follows: 

 Spatiotemporal Big data processing 

requires real-time data processing, 

information extraction and automation to 

extract information and knowledge. More 

scalable spatiotemporal mining methods 

should be developed to require advantage 

of the elastic storage and computing 

resources. 

 High number of tools are require to 

measure the usage of resources, including 

computing resources, data for pricing 

purposes and also to guide the usage of 

Cloud Computing services. 

 To spot and stop attacks for tracking and 

to maintain trust information, we have to 

do more research that we will be 

addressed. 
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