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Abstract 

Diabetes is one of the chronic diseases which occur when the pancreas is 

not able to secret insulin. Insulin is an important factor that transforms 

glucose in to energy. Analysing the multiple DNA sequence of diabetes 

is helpful in deriving more information about the disease. Profile Hidden 

Markov Model has a wide application in molecular biology. Thus we 

emphasized the use of PHMM for this Multiple Sequence Alignment 

(MSA). The main objective of this paper is to find the sequence pattern 

which the disease follows, estimating the parameters using Baum-Welch 

algorithm and finding the best optimal path using Viterbi algorithm. All 

valuable information from the sequences is obtained using PHMM. 
 

Keywords: MSA, PHMM, Baum-Welch, Viterbi, Diabetes and DNA 

Sequence. 

 

 

1. Introduction 

Genetic information‟s are stored as the sequences of 

nucleotides in DNA which are represented by symbols. 

DNA is made up of molecule called nucleotides. The 

information in DNA is stored as a code made up of four 

nucleotides: Adenine (A), Cytosine (C), Guanine (G) and 

Thymine (T). Sequence alignment is used to match the 

homologous nucleotides of two sequences. One of the 

major tasks in MSA is to compare three or more DNA 

sequences and find similarities, or differences, and infer 

structural, functional and evolutionary relationship.  

Markov chain is a linear collection of symbols, chosen 

from a finite set, each symbol occurs at every position with 

a specified probability. The Markov chain may exist in one 

of a set of hidden states at any given time, with the 

probability of making a transition to another one of these 

hidden states. It then requires a hidden Markov model. A 

variability model of nucleotides in particular position of 

family is called profile. Profile HMM is architecture that is 

suitable for modelling sequence profile. This model consist 

of match, insert, delete as three hidden states and it is used 

for position-specific symbol frequencies, symbol insertion 

and symbol deletions respectively (Yoon 2009). 

 

 

India is the capital of diabetes of the world, it consists 

of over 60 million adults with diabetes and 30 million 

remains undiagnosed. Thus it increased the risk of 

complications in patients and premature death. It is a 

challenge for researchers to detect it earlier. Multiple 

Sequence Analysis is helpful in the prevention of the 

disease. The knowledge from DNA sequence analysis is 

more important in the field of biological research. It has 

vast applications in the field of medical diagnosis, forensic 

biology, biotechnology and biological systematic. Rabiner 

(1989) initially developed a HMM in speech recognition for 

classification, clustering and segmentation. Krogh (1998) 

has developed HMM models for sequence alignments in 

biological sequence analysis and also presented some 

statistical approaches to find the similarity between two 

sequences. A biological sequence is modelled by stochastic 

process which is moved from first state to the next state and 

each state emits the element of sequence based on emission 

probability distribution Przytycka and Zheng (2006). The 

homologies of a sequence alignment or protein structures 

are detected by profiles and it has many parameters. The 

HMM is composed of a number of states with 
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corresponding positions in columns of a multiple alignment. 

Each state emits the symbols according to the emission 

probabilities and the states are interrelated by state 

transition probabilities. The major problem in this model is 

to setting the position specific residue scores, score gaps 

insertions and combining structural and multiple sequence 

information. Starting from initial state, a sequence of states 

generated and moving from state to state according to the 

state transition probabilities until an end state is reached 

Eddy (1996). Kalpana and sasikumar (2016) studied about 

the application of profile and pair Hidden Markov Model 

explained with some numerical illustrations. Ramanathan 

(2006) has discussed the generative sequences characterized 

by a set of observable sequences through HMM. The HMM 

can be used to model stochastic processes where the non-

observable state of the system is governed by a Markov 

process. The observable sequences of system have an 

underlying probabilistic dependence.  

HMM are applied in various fields like sequence 

comparison, structure prediction, detecting gene 

recombination and gene finding. A HMM consists of 

different hidden states and each state emits a residue when 

it is visited. Every state contains a transition and emission 

probability. Like transition probability emission probability 

also depends on the past Benjamin and Bateman (2007). 

Auer and Doerge (2010) proposed the new technology to 

analyse the RNA sequences and it was used in 

characterizing and quantifying entire genomes. The data 

generated using this technique is more informative, but 

some essential concepts like randomization, replication and 

blocking should be paid attention for any properly analyzed 

design. Kalpana and Sasikumar (2015) have discussed the 

HMM model for cancer sequence alignment. They used 

multiple sequence alignment for sequence architecture and 

used all basic algorithms in HMM to find the optimal 

sequence path and sequence probability fit.  Sonnhammer et 

al., (1998) have predicted the protein sequences using 

HMM with seven states which was estimated by the 

maximum likelihood and a discriminative method. This 

method was also applied for large protein family and 

achieved the high accuracy. Nath and Jain (2011) discussed 

about the parameter estimation of HMM. The most 

important problem in HMM is to optimize the model 

parameter to describe how the observation sequence comes 

about. The traditional method that is applied to estimate the 

parameter in the HMM model is Baum-Welch algorithm.  

Mulia, et al. (2012) discussed about the profile HMM based 

MSA for DNA sequences. They tested the applicability of 

PHMM for MSA with a task and showed that it works well. 

Blasiak and Rangwala (2011) have discussed the HMM 

in classifying the sequence of amino acids in to structural 

classes. They have used Baum-Welch algorithm, Gibbs 

algorithm and a variational algorithm to infer the model 

parameters. Bartolomeo, et al., (2011) have applied HMM 

in the progression of liver cirrhosis to HCC. They have 

estimated the transition probability of different stages in 

liver cirrhosis patients. The database used in this study was 

affected by misclassification. HMM is used in finding the 

transition probability between two states inspite of 

misclassification. Petersen, et al. (2017) modelled HMM in 

sepsis progression. HMM is considered as one of the 

important tool in disease progression. Early research 

modelled HMM in the sepsis progression with homogenous 

group of patients. This study is modelled significantly on 

heterogeneous groups. Birney (2001) investigated the 

biomolecular sequence using HMM which deals with gene-

prediction. This paper briefly described about the 

techniques used in the sequence analysis. Sakakibara (2003) 

proposed the pair HMM on tree structures for structural 

alignment of RNA and identified the non-coding RNA 

regions on the genome. The effectiveness and the 

complexity issue of PHMMTSs on structural alignment are 

demonstrated. Stanke and Waack (2003) have introduced 

new program called AUGUSTUS for predicting protein 

genes in eukaryotic DNA sequences. The program was 

based on HMM, which predicts better than the existing 

program that does not perform well on longer sequences. 

Fonzo, et al. (2007) have explained HMM in bioinformatics 

and also the problems faced while undergoing HMM is 

reviewed in detail. Eddy (1995) has discussed the 

algorithms of HMM for multiple sequence alignment and it 

was compared with simulated method and other existing 

procedures. This experiment was done on ten different 

protein families based on the comparison this simulated 

method was good in multiple sequence alignment.  

Benyacoub, et al. (2014) have developed a new model 

for classification under the assumption of both the states 

and observations are discrete. HMM has a vast application 

but has some restriction in learning supervised problems. 

Bonneville and Jin (2013) have identified the epigenetic 

regulation patterns for estrogen receptor 𝛼  target genes 

computational approach. They have illustrated the 

application of HMM in genome-wide high-throughput 

genomic data to study epigenetic influences on E2/ER  𝛼 

regulation in breast cancer. Based on the report of Sean R. 

Eddy and Boer (2016) described about HMM for sequence 

alignment than other sequence alignment method. The basic 

algorithms like the forward, backward and the veterbi were 

used in HMM was explained. Nimmy et al., (2018) have 

investigated about DNA discontinuity, which may lead to 

cause of harmful diseases. Tuberculosis is one of the critical 

diseases which are caused due to some breakage in DNA 

sequence. Hidden Markov chain, linear transformation and 

Box-Cox transformation were used to predict the break in a 

long DNA. Among these predictive model HMM provided 

faster result with more accuracy and reliability. Tamposis et 

al., (2018) applied the semi supervised HMMs for sequence 

analysis. This algorithm is used for all labeled, unlabeled 
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and partially labeled data. HMM works under the concept 

of EM algorithm, where the missing labels are considered 

as missing data. The result showed a significant prediction 

than other classifiers. Bottolo and Richardson (2019) 

discussed about gene hunting using hidden Markov model 

knockoffs. They reviewed and motivated to make knockoff 

for genetic applications. The hidden Markov model is used 

to generate knockoffs which are helpful in capturing the 

DNA pattern variations. 

 

2. Methodology  

Let 𝑦𝑡  represents a collection of random variables 

depending on t. We say that 𝑦𝑡  is parameterized by t and a 

parameterized collection of random variables is known as a 

stochastic process. A stochastic process has the Markov 

property if the future is conditionally independent of the 

past given the present. A stochastic process that has the 

Markov property is called a Markov process. A Markov 

chain is a Markov process for which the random variables 

take only countably many values. The sample space of the 

individual random variables of a stochastic process is 

referred to as the state space, so a Markov chain has a 

countable state space. To specify a finite state space, one 

needs to specify a distribution for where the chain starts, 

and a set of conditional probabilities that specify how the 

chain moves from one state to another (Cavan Reilly 2009). 

 

2.1 Hidden Markov Model 

The fundamental idea behind a hidden Markov model is 

that there is a Markov process we cannot observe that 

determines the probability distribution for what we do 

observe. Thus a hidden Markov model is specified by the 

transition density of the Markov chain and the probability 

laws that govern what we observe given the state of the 

Markov chain. Given such a model, we want to estimate 

any parameters that occur in the model. We would also like 

to determine what is the most likely sequence for the hidden 

process. Finally we may want the probability distribution 

for the hidden states at every location.  

Let 𝑦𝑡  represent the observed value of the process at 

location 𝑡  for 𝑡 = 1, . . . . ,𝑇 ,  𝜃𝑡  the value of the hidden 

process at location 𝑡  and let ϕ represent parameters 

necessary to determine the probability distribution for 𝑦𝑡  
given  𝜃𝑡  and  𝜃𝑡  given  𝜃𝑡−1 . In our applications, 𝑦𝑡  will 

either be an amino acid or nucleotide and the hidden 

process will determine the probability distribution of 

observing different letters. Our model is then described by 

the sets of probability distributions 𝑝(𝑦𝑡 | 𝜃𝑡 ,ϕ )  and 

𝑝( 𝜃𝑡 | 𝜃𝑡−1 ,ϕ ). A crucial component of this model is that 

the 𝑦𝑡  are independent given the set of  𝜃𝑡  and 𝜃  only 

depends directly on its neighbours  𝜃𝑡−1 and  𝜃𝑡+1. 

The various distribution in which we are interested are 

𝑝(ϕ |𝑦1 ,… . , 𝑦𝑇) , 𝑝( 𝜃𝑡 |𝑦1 ,… . , 𝑦𝑇)  for all 𝑡  and 

𝑝(𝜃1,… . . ,𝜃𝑇|𝑦1 ,… . . , 𝑦𝑡) . We will adopt a Bayesian 

perspective, so that we treat  𝜃𝑡  as a random variable. 

(Cavan Reilly 2009). 

A profile HMM is a certain type of HMM with a 

structure that is suitable for representing the profiles of a 

MSA. It can be obtained from a multiple alignment of 

protein or DNA sequences and effectively represents the 

common pattern and other statistical properties.  

 

2.2 Multiple Sequence Alignment 

MSA may be formally defined as a two-dimensional table 

in which each row represents a nucleic acid sequence, and 

the columns are the individual residue positions. Alignment 

of several sequences has lead to many important results 

regarding common sequence patterns or motifs in nucleic 

acids. One of the common goals of building MSA is to 

characterize gene families and identify the shared region of 

homology. MSA also helps to classify sequences in to 

families. All the sequences in such a family may have been 

derived from some common ancestral sequence, indicating 

an evolutionary relationship. MSA helps to predict the 

secondary and tertiary structures for new sequences, and 

identify templates for threading and homology modelling, 

which are methods for 3-D structure prediction.  

Consensus sequences are a useful way of representing 

patterns, but they are even more deterministic than regular 

expressions. They are a succinct way of representing the 

information present in a MSA, but they abstract only the 

most prominent of such information and discard all the rest 

of it. Sequence logos, though requiring specialized software 

and hardware, are a way of writing consensus sequences 

using probabilistic information. To build a logo, we start 

with an aligned set of sequences. The residues that occur 

most frequently at each position are identified, and they 

form the consensus sequence, which is displayed most 

prominently in the logo. (Gautham 2006). 

 

2.3. Parameter Estimation 

For parameter estimation if there is prior information about 

the parameters, we could incorporate such information in 

the usual fashion. A popular approach to parameter 

estimation is to use the EM algorithm to estimate the 

parameters in the model, and then use these estimates as if 

they were known. The most popular implementation of the 

EM algorithm for hidden Markov models is called the 

Baum Welch algorithm. (Cavan Reilly 2009). 

 

2.3.1. The Baum-Welch Algorithm 

The Baum-Welch algorithm starts from an initial set of 

model parameters  𝜃0 . In each iteration, it changes the 

parameters as follows: 
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1. Calculate the estimated number of times in each 

transition and emission is used to generate the training set 𝑇 

in an HMM whose parameters are 𝜃𝑘 . 

2. Use the frequencies obtained in step 1 to reestimate the 

parameters of the model, resulting in a new set of 

parameters 𝜃𝑘+1. 

The first step of the algorithm can be viewed as 

creating a new annotated training set 𝑇(𝑘), where for each 

unannotated sequence 𝑋 ∈ 𝑇 , we add every possible pair 

(𝑋,𝐻) of the sequence 𝑋 and any state path, weighted by 

the conditional probability 𝑃𝑟(𝐻|𝑋,𝜃𝑘) of the path 𝐻 in the 

model with parameters  𝜃𝑘 , given the sequence 𝑋 . The 

second step then estimates new parameters 𝜃𝑘+1, as in the 

supervised scenario, based on the new training set 𝑇(𝑘). The 

Baum-Welch algorithm achieves the same result in 𝑂(𝑛𝑚2) 

time per iteration using the forward and backward 

algorithm to avoid explicitly creating this exponentially 

large training set. Baum has shown that the likelihood of 

the training set improves in each iteration of this algorithm. 

However, this does not guarantee that the Baum-Welch 

algorithm reaches optimal model parameters: it may instead 

reach a local maximum or a saddle point in the parameter 

space. A modification of the Baum-Welch algorithm, called 

Viterbi training, is also often used in practice. In the first 

step of the algorithm, instead of considering all possible 

paths through the model, we only consider the most 

probable path. However, this algorithm is not guaranteed to 

increase the likelihood of the observed data in each step. 

The Baum-Welch algorithm can also be used in the semi 

supervised scenario. (Mandoiu and Zelikovsky (2008)). 

 

2.3.2. The Viterbi Algorithm 

Once the HMM topology is set and its parameters trained, 

we can use it to find genes in a newly unlabeled DNA 

sequence  𝑋 . In other word, we seek an appropriate state 

path 𝐻∗  that best explains how the model could have 

produced  𝑋 ; this process is called HMM decoding. The 

simplest measure of “best” is to find the path that has the 

maximum probability in the HMM, given the sequence 𝑋. 

Recall that the model gives the joint probabilities 𝑃𝑟(𝐻,𝑋) 

for all sequence, and as such, it also gives the posterior 

probability 𝑃𝑟(𝐻,𝑋) = 𝑃𝑟(𝐻,𝑋)/𝑃𝑟(𝑋, for every possible 

state path H through the model, conditioned on the 

sequence 𝑋. We will seek the path with maximum posterior 

probability. Given that the denominator 𝑃𝑟(𝑋) is constant 

in the conditional probability formula for a given 

sequence  𝑋 , maximizing the posterior probability is 

equivalent to finding the state path H* that maximizes the 

joint probability 𝑃𝑟(𝐻∗,𝑋). 
The most probable state path can be found in time 

linear in the sequence length by the Viterbi algorithm. This 

simple dynamic programming algorithm computes the 

optimal paths for all prefixes of 𝑋; when we move from the 

𝑖 −length prefix to the (𝑖 + 1) −length prefix, we need only 

add one edge to one of the precomputed optimal paths for 

the 𝑖 −length prefix. 

For every position 𝑖 in the sequence and every state 𝑘, 

the algorithm finds the most probable state path ℎ1,… , ℎ𝑖  to 

generate the first 𝑖 symbols of 𝑋, provided that ℎ𝑖 = 𝑘. The 

value 𝑉[𝑖, 𝑘]  stores the joint probability 

𝑃𝑟(ℎ1,… , ℎ𝑖 , 𝑥1 ,… , 𝑥𝑖) of this optimal state path. Again, if 

ℎ1 ,… , ℎ𝑖  is the most probable state path generating 𝑥1 ,… , 𝑥𝑖  
that ends in state  ℎ𝑖 , then ℎ1 ,… , ℎ𝑖−1  must be the most 

probable state path generating 𝑥1 ,… , 𝑥𝑖−1 and ending in 

state ℎ𝑖−1 . To compute 𝑉 𝑖, 𝑘 , we consider all possible 

states as candidates for the second-to-last state, ℎ𝑖−1  and 

select the one that leads to the most probable state path, as 

expressed in the following recurrence: 

𝑉 𝑖, 𝑘 =  
𝑠𝑘 . 𝑒𝑘 ,𝑥1

,                                     𝑖𝑓 𝑖 = 1  

𝑚𝑎𝑥𝑙𝑉 𝑖 − 1, 𝑙 . 𝑎𝑙 ,𝑘 . 𝑒𝑘 ,𝑥𝑖 ,
     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1) 

The probability 𝑃𝑟(𝐻∗,𝑋)  is then the maximum over all 

states 𝑘 of 𝑉[𝑛, 𝑘], and the most probable state path 𝐻∗ can 

be traced back through the dynamic programming table by 

standard techniques. The running time of the algorithm 

is 𝑂(𝑛𝑚2), here n, m denoted by length of the sequence and 

the number of state in the HMM. (Mandoiu and Zelikovsky 

(2008)). 

 

3. Results and Discussion 

For performing the multiple sequence alignment we used 

the six different DNA sequences of diabetic patients. These 

DNA sequence are collected from GenBank which are 

openly accessible. To generate the alignment between these 

sequences we used Clustal Omega which is a multiple 

sequence alignment program. The alignment generated for 

this dataset is given in figure 1. 

 

 
Figure 1: Multiple sequence alignment of six diabetic DNA sequences 
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Schneider and Stephens invented the sequence logos which graphically represents the consensus sequences using 

probabilistic information. It is helpful in studying the order of predominance of each residue at each position, the 

probability of each residue at that position, the amount of information present at each position. The residues that occur most 

frequently at each position are identified, and they form the consensus sequence. Sequence logos given in figure 2 provides 

rich information in a single figure, these are generated using WebLogo.  

 

 
Figure 2: The sequence logos for an arbitrary set of aligned DNA sequences 

 

Table 1: Percent Identity Matrix for the DNA Sequence 

Sl.No Sequence Name Probability 

1   AH002844 100.00   89.28   88.11   81.34   70.38   69.78 

2   HUMINSTHIG 89.28   100.00   99.02   81.34   70.38   69.78 

3   NG_007114 88.11    99.02  100.00   81.65   70.58   70.00 

4   NM_001185098 81.34   81.34   81.65  100.00   93.14   95.48 

5   NM_001291897 70.38   70.38   70.58   93.14  100.00   93.76 

6   NM_000207 69.78   69.78   70.00   95.48   93.76  100.00 

 

Table 1 shows that the sequence similarity of all the six 

DNA sequence can be studied using the percent identity 

matrix. And also shows that the diabetic DNA sequence in 

human has the higher probability to follows the same 

pattern. This percent identity matrix was created by Clustal 

2.1. Percent identity is used to estimate the similarity 

between two different sequences. The DNA sequence from 

the same family is expected to have higher percent identity.  

 

Table 2: Transition Probability matrix for estimating the 

parameter 

Hidden 

states 

M I D 

M 0.5010294 0.2853530 0.2136176 

I 0.2428036 0.3384280 0.4187684 

D 0.1694115 0.3237429 0.5068456 

In the set of DNA sequence, each residues belongs to any 

one of the three specified hidden states; Match state (M), 

Insert state (I) and Delete state (D). The next important step 

in HMM construction after sequence alignment is 

parameter estimation, which are obtained from the 

transition and emission probabilities produced by the 

implementation of Baum-Welch algorithm. The values 

obtained in table 2 are the maximum likelihood function 

which shows the probability of transition from one state to 

another state or remains the same over a period of time. The 

change in the position of each residue may lead to sequence 

evolution. And the effect of a particular residue in particular 

position strongly depends on its neighbor residue which is 

the concept of a Markov model.  

 

 

Table 3: Emission Probability Matrix using Baum-Welch algorithm 

Hidden states Observable states 

A C G T 

M 0.04155045 0.5919802 0.1663403 0.2001290 

I 0.20600955 0.2657379 0.3136564 0.2145962 

D 0.33287647 0.1552212 0.3555312 0.1563711 
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The emission probability represents the relationship 

between the hidden state and the observable state. And the 

values in Table 3 refer to the probability of an observation 

representing the hidden state of the model for that specific 

state transition. This shows that each hidden state M, I and 

D has different emission probabilities for each nucleotide 

A, C, G and T in DNA sequences. 

 

Table 4: Viterbi Path of Hidden States 

Sl.No  Sequence of hidden states 

2 "M" "I" "D" "D" "I" "I" "D" "D" "D" "I" "I" "I" "D" "D" "M" "M" "D" "D" "D" "D" 

"D" "M" "M" 

24 "M" "M" "M" "D" "D" "M" "M" "M" "M" "I" "I" "M" "M" "M" "M" "I" "D" "D" "D" 

"D" "D" "D" "D" 

47 "D" "I" "D" "I" "M" "M" "M" "D" "D" "D" "D" "D" "D" "I" "D" "D" "D" "D" "D" 

"D" "D" "D" "I" 

70 "M" "D" "I" "I" "D" "D" "D" "D" "D" "M" "M" "D" "D" "D" "M" "M" "M" "M" "D" 

"D" "D" "D" "M" 

93 "M" "M" "M" "M" "M" "M" "I" "D" "D" "D" "D" "M" "M" "M" "M" "M" "I" "I" "D" 

"D" "D" "D" "D" 

116 "M" "M" "D" "D" "D" "D" "I" "D" "I" "I" "D" "D" "D" "M" "M" "D" "D" "D" "D" 

"D" "I" "M" "M" 

139 "M" "M" "M" "D" "D" "D" "I" "I" "I" "D" "D" "D" "D" "D" "I" "M" "M" "M" "M" 

"M" "D" "D" "D" 

162 "D" "D" "D" "M" "M" "M" "M" "D" "I" "I" "I" "M" "M" "M" "M" "M" "M" "M" "M" 

"D" "D" "M" "I" 

185 "D" "M" "M" "D" "D" "D" "M" "M" "M" "I" "I" "I" "I" "M" "M" "M" "M" "M" "M" 

"M" "M" "I" "M" 

208 "M" "I" "I" "I" "D" "D" "D" "D" "D" "M" "M" "M" "M" "D" "D" "D" "D" "D" "D" 

"M" "M" "M" "M" 

231 "I" "D" "D" "D" "M" "M" "M" "M" "M" "M" 

 

Table 5: Sequence probability fit in the PHMM 

Diabetes Hypertension Cardiac Disease Renal Disease Obesity 

0.933 0.39 0.498 0.441 0.492 

0.852 0.56 0.42 0.498 0.327 

0.893 0.467 0.421 0.478 0.431 

0.99 0.47 0.46 0.395 0.43 

0.86 0.433 0.41 0.466 0.417 

 

Table 4 reveals that most likely sequence of hidden 

states computed from Viterbi algorithm. The derived 

PHMM is applied to 25 different types of DNA sequence 

from 5 family of human disease sequence. The probability 

score shows how the sequence fit with the PHMM. The 

maximum score denotes that these families of sequence 

perfectly fit with the derived PHMM. From table 5 only the 

diabetes family of sequence has the highest score and the 

rest disease sequence has the least score which means that 

only the diabetes diseases fit with the derived PHMM. It is 

also clear that the diabetic patient does not have any higher 

chance of being affected from the above mentioned 

diseases. Because their sequence patterns are different and 

does not have any higher probability to be same.  

 

4. Conclusion 

Multiple sequence alignment is one of the most important 

techniques used in discovering new patterns in the 

sequence. Aligning several sequences together gives more 

biological information which is useful in characterizing the 

gene families. Here we used the PHMMs in identifying the 

probabilistic pattern of a diabetic family of sequence; based 

on the sequence comparison by Baum-Welch algorithm the 

transition probability and the emission probability are 

estimated. From the results, the chance of each residue in 

each state and the relationship between the hidden state and 

observable states are elucidated. The best path of the hidden 

states is discovered using Viterbi algorithm. Using the 

sequence probability fit a new sequence is evaluated 

whether it has any membership with the aligned family of 
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sequence. Thus PHMMs is one of the most appropriate 

tools in extracting all the statistical information from a 

multiple diabetic sequence.  
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