

March- April 2020

ISSN: 0193-4120 Page No. 911 - 919

911 Published by: The Mattingley Publishing Co., Inc.

SDN-CIFE: SDN-Controller with Instant Flow

Entries to Improve First Packet Processing Period

Ramesh Chand Meena

Research Scholar, SET,Poornima University,Jaipur–303905, INDIA

rameshrmz@yahoo.com

0000-0002-2649-1384

Mahesh Bundele

Principal &Director,Poornima College of Engineering,Jaipur-302022, INDIA

maheshbundele@poornima.org

Meenakshi Nawal

Associate Professor, SET,Poornima University,

Jaipur–303905, INDIA meenakshi.nawal@poornima.edu.in

Article Info

Volume 83

Page Number: 911 - 919

Publication Issue:

March - April 2020

Article History

Article Received: 24 July 2019

Revised: 12 September 2019

Accepted: 15 February 2020

Publication: 13 March 2020

Abstract

 Control and data planes have been separated in SDN technology and OpenFlow protocol

supported routers/switches works as packet forwarding equipment in such network. Security

monitoring, controlling and flow of data in network are the responsibilities of SDN controller.

Initially, OpenFlow router/switch does not have any control & security polices and

knowledge to deal with data packet generated by host for forwarding to its destination. In this

condition, the first data packet of host is sent to SDN Controller by OpenFlow router/switch

for checking, decision, generation of control packets for data packet and making flow entries

in OpenFlow/SDN switch flow table for subsequent action on such type of data packets

received from a host. These processes at SDN controller and SDN switch level are time

intense and first data packet of a host always takes longer time to reach its destination. Here,

we have proposed an SDN Controller with Instant Flow Entries (SDN-CIFE) to reduce the

forwarding time period of first data packet of the host. This approach makes necessary flow

entries in flow table of SDN switch before generation of actual traffic by the host. The

approach is designed in python and experimented using mininet network emulator and RYU

controller. SDN-CIFE test results have shown that first data packet processing time of a host

is reduced more than 83%.

Keywords- Controller, Instant, Flow, Entry, SDN-CIFE, First Packet, Processing, Period

1. INTRODUCTION

SDN network handles incoming host packets using flow

entries in SDN switch flow table and many fields of packet

header are used to form flow entries. SDN switches also keep

track of network traffic statistics. SDN technology features

like programmability, simplicity &elasticity to network

managersare growing its usages in the various enterprise

networks and data centers solutions to take its ad advantages.

Based on target IP address, conventional systems were

forwarding incoming host traffic [15].

Initially, OpenFlow router/switch does not have any

control & security polices and knowledge to deal with data

packet generated by host for forwarding to its destination. In

this condition, SDN router/switch forwards the first packet of

a host to controller for checking, generation of control

packets for data packet and setting up flow entries intoSDN

switchflow table for subsequent action on such type of data

packets received from a host. These processes at SDN

controller and SDN switch level are time intense and first

data packet of a host always takes longer time to reach its

destination

March- April 2020

ISSN: 0193-4120 Page No. 911 - 919

912 Published by: The Mattingley Publishing Co., Inc.

Other issue is occupancy of all resources of network in

case network has heavy traffic and all such packets need

generation and transmission of control packets between SDN

controller and switch. This situation may create more delays

in generation control packets and in reaching data packet to

its destination. SDN switch needs flow rules/entries into its

flow table for forwarding data packet to its destination

otherwise they will require help of SDN controller to

generate control packets. The controller may generate control

packets to setup match entries with action into flow table of

SDN switch or to forward data packet to outport or for

above both works. Some research suggested approaches to

reduce the overload of forwarding data packets to controller

and generation of control packets.

In [33] authors described that number of control packets

create overhead for controller and reduction in control

message will reduce the work load for controller. Authors In

[35] also suggested a scheme to classify data packets as

important or unimportant and it suggested dropping the

unimportant data packet for minimizing load in OpenFlow

switch and controller. It may need higher processing

resources and drop more packets if network has heavy packet

traffic. SwitchReduce [36] approach claimed that number of

match entries in first SDN switch should be less than dealing

packet actions for in packet load and installs flow entries

only in first hop SDN switch but this approach requires

setting up of wild card flow entries in all in-between hop

SDN switches including the last hop SDN switch.

During study of related studies we found that no one

approach provides an effective solution for setting up flow

entries before transmission of actual data packets of host this

could not be accomplished without detection of host and its

details such as MAC, IP address & port of connected switch.

Most of approaches do not know these details before host

starts transmitting packets. In this research, we have

proposed an SDN Controller with Instant Flow Entries

(SDN-CIFE) to detect host instantly, to setup required flow

entries into SDN switch flow table and to reduce forwarding

time period of first data packet of a host. The approach is

designed in python and experimented using mininet network

emulator and RYU controller.

Remaining paper is ordered as follows. Section IIin brief

explained SDN background. Section III highlights on

topology detection in SDN. Section IV discussed related

works. Section V describes proposed SDN-CIFE. Section VI

describes implementation of SDN-CIFE. Section VII

investigates the performance of SDN-CIFE. Finally, Section

VIII concludes work.

II. SDN Background

SDN technology is cost-effective, dynamic, adaptable

and manageable making it suitable for active applications &

high bandwidth requirements. SDN decouplesnetwork

forwarding and control actions and it makes network

control& applications directly configurable through

programs &underlying infrastructure abstracts network

services. The main & essential element of SDN network is

OpenFlow protocol and it is promoted by Open Network

Foundation to provide southbound interface between

controller &SDN switches.

Handshake messages are forwarded to startan OpenFlow

connection between controller and switches. An encrypted

TCP connection is established between switches and

controller to exchange configuration information.

OFPT_FEATURE_REQUEST is sent by controller to

OpenFlow protocol enabled switch and an

OFPT_FEATURE_REPLY message is generated by switch

to establish OpenFlow connection. The switch forwards its

unique identifiers details like MAC addresses of active

switch ports & datapath_id of switch. Presence of switch is

discovered during handshaking but interconnections in

forwarding devices are not revealed in this process. Network

environment details are needed to process various network

management & control ling tasks. Detection and setting up of

right paths are most significant jobs to allow switch for

forwarding of network traffic.

OpenFlow protocol enabled switches have group tables

and flow entry tables.Controller makes required changes

such as addition, deletion and alteration in flow tables

through OFPT_FLOW_MOD messages. Packet header fields

structure, set of counters and actions are part of flow entry.

On arrival of a packet, its header fields are matched with

field values of flow entries and on packet matching with any

flow entry, relevant counter sets are increased and related

actions are preformed. When no flow entry matches with

packet header fields, a table miss messages is generated with

instruction to switch for packet to forward to controller or

forward to other table or drop it. In occasion of packet

forwarding to controller, an OFPT_PACKET_IN event to

controller is raised by switch and controller inspects to

arriving packet and generates required control packets and

returns original packet to switch with required actions to be

performed. The controller setups required flow entries into

OpenFlow switch flow table by posting

OFPT_FLOW_MOD messages to deal with such potential

packets.

March- April 2020

ISSN: 0193-4120 Page No. 911 - 919

913 Published by: The Mattingley Publishing Co., Inc.

III. Topology detection in SDN

Forwarding devices use a single-hop Link Layer

Discovery Protocol(LLDP) to publicize their occurrence,

neighbors and properties in wired LAN. Devices frame

LLDP messages with ether type field value as hex 88cc value

for multicast MAC address such as 01:80:c2:00:00:0E of

bridge and sends at a predefined time period [27]from their

active ports. Since, forwarding devices do not generate

LLDP packets itself in SDN network.

Network topology was detected using procedure

mentioned in [6]. This discovery procedure detects only

connected switches and their interconnections. It does not

reveal any connected host details. Open Flow controllers

have fundamental host recognition process through table

miss flow entry of SDN forwarding devices and process

instructs SDN device to forward packet to controller.

Address Resolution Protocol(ARP) or Internet Protocol (IP)

traffic is started generating by host & forwarded to SDN

forwarding device, it does not have flow rules for the traffic

and in this situation, connected host’s first packetis sent to

controller. Host detail from the first packet is extracted by

controller and completed host discovery process.

We can use LLDP for discovery of connected host and

for this; the protocol has to be implemented at host level.

Since host are monitored and managed by different entities

therefore implementation of LLDP at host level is very

tough.

V. Related Works

Dependency of host discovery activity is on ARP and

DHCP packets details as described in [21] using Packet. In

event at L2 protocol. Study described that OpenFlow

Discovery Protocol is limited to learning of controller using

LLDP frame format about the presence of forwarding

devices in the network. Authors have not suggested any host

discovery technique prior to connected host traffic

generation.

NMAP utility inspired researchers in [16] to propose a

host discovery approach by creating ARP-Request messages

from controller side for ascertaining host details as soon as

connection established between OpenFlow switch and

controller. OFPT_PACKET_OUT control messages were

used by authors to generate ARP-request messages using

random destination IP and broadcast MAC to a switch port.

ARP-request messages were broadcasted by OpenFlow

switch. In this process, the connected live host which is

having IP address will respond with ARP reply message to

switch. The OpenFlow switch will forward ARP-reply

messages to controller to extract required host details from

messages. Using this host discovery module and LLDP, now

the controller will have whole network environment details

such as host IP & MAC, presence of switches & switch

ports, interconnectivity between them. This approach worked

properly when an OpenFlow switch was connected with

operational controller. Approach did not performed well in to

conditions such as first, while switch started prior to

controller and second, switch detached from controller, some

changes carried out in status of switch port and switch again

connected to controller. OFPT_PORT_STATUS message

was used in implementation by the approach and it works on

changes such as deletion, addition, &status change in switch

port status.

In [34] researchers have suggested that delivery of first

packet through sub-domain cluster model by selecting the

high priority controller checking the load performance index.

Approach selects a reasonably less busy controller for

forwarding of data packets. The implementation of this

approach requires more than one controller and controllers

load record has to be maintained. This may take longer time

to process the data packets in case all controllers have same

processing load and approach has to find low load controller.

Numbers of controller also required more processing power,

it increases the cost of network and makes network more

complex.

V. Proposed SDN-CIFE

 Objectives of SDN-CIFE

- Detection of connected host information such as MAC

address and OpenFlow switch ID &switch port ID at

handshaking between OpenFlow switch and controller

and at any modification occurs on switch port/host.

- Managing HostLink table at Controller level to store

Host MAC, SDN switch ID & Port ID.

- Loading essential flow entries into OpenFlow switch

flow table before actual data packet generation by host.

 SDN-CIFE Architecture

Our SDN-CIFE structure has different type of network

elements such as OpenFlow switches, connected hosts,

controller. Hosts are connected with OpenFlow switch using

a switch port. OpenFlow switches are linked to controller and

have interconnections among them. SDN-CIFE architectural

outline is shown in figure 1. Open Southbound API is used to

establish connection between RYU Controller and OpenFlow

switches. In proposed approach, SDN-CIFE function works

on top of RYU Controller. Details of different modules of

SDN-CIFE with specific functions are described in

subsequent sub-section.

March- April 2020

ISSN: 0193-4120 Page No. 911 - 919

914 Published by: The Mattingley Publishing Co., Inc.

SDN Switch

Host

Host

Host

Legacy Switch

Legacy Switch

SDN Switch

H1

H7

S3

S1
S2

S4

Network

Open Southbound API

SDN Controller

Open Northbound API

SDN-CIFE

IDeA Host Sensor

IFE Loader

HostLink Manager
HostLink

Table

Fig.1: Architecture of SDN-CIFE

Modules of SDN-CIFE

IDeA Host Sensor:

Controller needs host information to create filtering rules,

generate control packets and apply security policies [30].

OpnFlow protocol has partial network topology detection

ability and it is restricted to detection of forwarding devices,

their interconnectivity and presence of controller. Revealing

existence of hosts before generation of traffic in network is

not in scope of topology detection. Initially, filtering &

forwarding rules are not available in packet forwarding

devices for the host data packet generated first time. The host

packet is sent by forwarding device to controller due to flow

miss event. Incoming packet is inspected at controller level,

host details are extracted from packet, define policies & rules

for packet and setup necessary flow rules into forwarding

device flow table to enable device to work with upcoming

such traffic from host. Above processes are time consuming,

have to be completed at controller level and the forwarding

device has to wait till above processes are completed. The

first packet of host requires longer reach time to its

destination due to above waiting period.

Instant Detection of Host [6] in Software Defined

Networks technologywas proposed to identify connected

hosts at handshaking between SDN switch and

controller.IDH-SDN [6] produced ARP-Request packets and

forwarded in network and ARP-Reply packet generated by

connected host was checked by SDN controller and

connected host details were taken from ARP reply packet&

savedinto a table.

This section proposed an Instant Detection Approach

(IDeA) for Host in RYU SDN Controller and as and when a

switch/switch port/host is introduced into network, it

identifies connected hosts. IDeA algorithm and flow data are

shown in figure 2.

S
D

N

C
o

n
tr

o
lle

r

SDN

Switc
h

(6) Controller sends ARP Reply Packet through

respective SDN switch port. HostLink

Manager

(5) Controller extracts Host information

and forwards to HostLink Manager

(1) Controller Generates ARP

Request with SourceIP as 0.0.0.0,

MAC as SwitchPortMAC &

Destination IP as x.x.x.x(random),

MAC as broadcast address

(2) OpenFlow switch broadcasts ARP

Request.

1 1
66

6
6

4

2
2

22

3
3

4

5

(3) Host responds with ARP

Reply Packet with MAC address

if any host belongs to

ARP request IP

SDN Switch

(4) SDN switch sends all ARP Reply Packet

to Controller through PacketIn event.

Fig.2: Algorithm and Flow Diagram for IDeA

HostLink Manager:

IDeA forwards host details after extracting from ARP

Reply packet to HostLink Manager to setup needed entry

into HostLink Table. HostLink Manager verifies host identity

from HostLink Table and acts as per verification result.

Incase host information is not available in table than it adds

host information into table. Similar to HostLink Table, a

table in [29] has been proposed to record details of connected

host MAC &IP. Format of HostLink Table is mentioned in

figure 3. It stores host identity details in fields like Host

MAC, SDN Switch Port ID and SDN Switch ID.

Host

MAC

SDN Switch Port ID SDNSwitch ID

Fig.3: HostLink format

After recording required host information into HostLink

Table, the module passes HostLink Table to IFE Loader for

further action.

IFE Loader:

Instant Flow Entry (IFE) Loader is proposed to define

and supervise flow entries into Openflow switch flow table

whenever a new host identified by IDeA Host Sensor and

host details added into HostTable by HostLink Manager. The

HostLink Manager handovers hostlink table to Instant Flow

Entry (IFE) Loader after host detection completed. IFE

Loader setups flow entries into device flow table based on

host information available in HostLink Table for direct

sending of packets to their target address. These required

flow entries are created at time of handshaking between

OpenFlow switch and controller or any change noticed at

switch Port.

Host starts transmission of data packets after completion

of SDN/OpenFlow switch handshake with controller or

change on switch port. Our module loads all required flow

entries into SDN switch flow table at handshaking or change

noticed for SDN switch Port. Therefore, now host’s packets

will be forwarded to its target address through matching with

flow entries of respective SDN switch. There will not be any

flow miss event and no packet will be forwarded to

controller. We can say that there will not be any flow miss

event because all required flow matches are already present

March- April 2020

ISSN: 0193-4120 Page No. 911 - 919

915 Published by: The Mattingley Publishing Co., Inc.

into flow table of SDN switch and all actual traffic of

connected hosts will be forwarded directly to the destination.

In this situation, controller will not receive the first

packet of host for inspection of packet, taking decision,

creating control packets for data packet and installing flow

entries & actions into SDN switch flow table for succeeding

such kind of data packets received from a host. With this

approach, we have reduced generation of control packets and

decreased forwarding time period of host’s first data packet

by instant detecting connected hosts, storing host link details

into HostLink Table and making necessary flow entries

proactively at the time of SDN switch handshaking.

I. SDN-CIFE IMPLEMENTATION

To reduce first packet processing time and generation of

control packets between controller and SDN switch, we setup

flow entries well before host starts generating traffic. This

process has to be completed at the time of handshaking

between forwarding device &controller and at notification of

switch ports status change. Our proposed IDeA generates

ARP-Request packet at controller level with source

IP=0.0.0.0, SrcMAC=SwitchPortMAC, DstMAC=broadcast

&DstIP=random IP address. It is implemented in controller

at SDN switch handshaking and at notification switch ports

status change. HostLink Table Manager and IFE Loader are

mentioned as Algorithm 1 & 2 respectively.

Algorithm 1: HostLink Manager

Level: PacketIn event // implementation level

Input: env PacketIn massage // input value for event

Output: HostDetails for HostLink Table //

1. Extract DstMAC, SDNSwitchID

&SDNSwitchPortID, PacketType from evn //

extraction of host information from ARP-request

2. If SrcIP is “0.0.0.0” and DstMAC is broadcast

than goto 9 // incase ARP-Request messages

3. If DstIP is “0.0.0.0” than // ARP-reply

4. If SrcMAC not exists in HostTable and DstIP

is “0.0.0.0” than

5. Forward evn and HostLink Table to IFE

Loader

6. Add SrcMAC, SDNSwichID,

SDNSwitchPortID into HostLink Table // save host

details into HostLink Table

7. End if

8. End if

9. Forward packet to outport

10. Return

Algorithm 2: IFE Loader

Implementation as: IFE Loader

Input: env PacketIn and HostLink Table from HostLink

Manager

Output: Flow Entries for SDN Switch

1. Extract DstMAC, SwitchID & SourcePortID,

PacketType from evn

2. For x in HostLink Table (Switch ID) do

// load flow entries for forward traffic

3. FlowEntry = SourceMAC=SrcMAC,

 In_port = SwitchPortID

 DstMAC = (HostLink

Table(x).DstMAC)

 Outport = (HostLink

Table(x).SDNSwitchPortID)

4. Set FlowEntry// install flow entry

 // load flow entries for reverse traffic

5. FlowEnrty = SourceMAC=(HostLink

Table(x).DstMAC),

 In_port = (HostLink

Table(x).SDNSwitchPortID)

 DstMAC = SrcMAC

 Outport = SwitchPortID

6. Set FlowEntry// install flow entry

// load ARP flooding packets

7. FlowEnrty = SourceMAC= SrcMAC, //load

ARP flooding packets

 In_port = SwitchPortID

 DstMAC = “ff:ff:ff:ff:ff:ff”

//broadcast address

 Outport = Flood

8. Set FlowEntry// install flow entry

9. End for

10. Return

SDN-CIFE PERFORMANCE:

This section of paper has examined the performance of

our technique based on bandwidth test with &without SDN-

CIFE, No of flow entries generatedand First Packet

Processing Time comparisons. The aims of this research

paper are detection of connected hosts, taking details like

SwitchID, SwitchPortID& hostMAC,managing HostLink

Table at controller and load needed flow entries into

forwarding device at the time of handshaking SDN switch

with controller or any change reported on switch port before

actual transmission of host packet. These objectives are also

reducing process time for generation of control packets and

setup flow entries into SDN switch on transmission of first

packet of host. Proposed approach loads needed flow entries

into OpenFlow forwarding device well before transmission

of host first packet and first & subsequent packets are

forwarded directly by forwarding device to their targeted

address through matching with flow entries in device flow

March- April 2020

ISSN: 0193-4120 Page No. 911 - 919

916 Published by: The Mattingley Publishing Co., Inc.

table. It also removes the overhead from controller by

reducing generation of control packet requirements and

increase packet transmission efficiency of network.

Simulation Environment:

SDN-CIFE proposed system was tested, implemented

and outcomesgained for achievement of its objectives. The

experimental environment was created by including Intel

processori5-6200U@2.30Ghz2.40Ghz with RAM 4GB and

SSD 500GB, OS Ubuntu 18.04 LTS. RYU-4.28 SDN

controller &python version 2.7.12 programming language

were installed and configured for different SDN network

scenarios. Python programs required during experiment were

generated using Gedit text editor.We also used Wireshark-

2.2.6 for capturing & inspection of network packets

forwarded amonghosts and switches.

Network Scenarios:

System was implemented and tested using different SDN

network scenarios during simulation of system. The first

network topology as Single SDN Switch Scenario (4S) with

one SDN Controller, one SDN Switch and four hosts was

used. The second scenario named as Multiple SDN Switch

Scenario (M3S) with one SDN Controller, threeSDN

switches and seven hosts was used. The third scenario was

known as Hybrid SDN Switch Scenario (H3S) with one SDN

Controller, two SDN Switches, twoNon-SDN (legacy)

switches and eleven hosts was used.Figure 4, 5 & 6 show the

diagrams of aforesaid network scenarios:

Hosts

RYU C
ontro

lle
r

OpenFlowSwitch

H1

S1

Fig.4: Single SDN Switch Scenario (4S)

Controlle
r

OpenFlowSwitch

OpenFlowSwitch

OpenFlowSwitch

Hosts Hosts Hosts

H1

S2S1 S3

Fig.5: Multiple SDN Switches Scenario (M3S)

Controlle
r

OpenFlowSwitch

Hosts

Hosts

Hosts

Non SDN-Switch

Non SDN Switch

OpenFlowSwitch

H1

H7

S3

S1 S2

S4

Fig.6: Hybrid SDN Switches Scenario (H3S)

Scenario-wise HostLink Table Data:

Proposed system used 4S, M3S&H3Snetworksfor

implementation and experimentation. It revealed linked host

in network topology at handshakingbetween SDN switch &

controller and saved extracted host information in the

HostLink Table. Details of connected hosts were verified

using Wireshark network traffic analyzer. The results given

table 1 shows that system performedas indented and

discovered the networkedhosts effectively.

TABLE 1: HOSTLINK TABLE STATUS

Host MAC SDN Switch Port ID SDN Switch ID

Network Scenario: H3S

00:00:00:00:00:03 1

1

00:00:00:00:00:07

2 00:00:00:00:00:09

00:00:00:00:00:08

00:00:00:00:00:06

3

00:00:00:00:00:05

00:00:00:00:00:04

00:00:00:00:00:10

00:00:00:00:00:11

00:00:00:00:00:01 4

00:00:00:00:00:02 5

00:00:00:00:00:04 1

2

00:00:00:00:00:05 2

00:00:00:00:00:06 3

00:00:00:00:00:10
4

00:00:00:00:00:11

00:00:00:00:00:03

5

00:00:00:00:00:02

00:00:00:00:00:01

00:00:00:00:00:09

00:00:00:00:00:08

00:00:00:00:00:07

Network Scenario: M3S

00:00:00:00:00:03

1

1

00:00:00:00:00:06

00:00:00:00:00:05

00:00:00:00:00:04

00:00:00:00:00:02 2

00:00:00:00:00:01 3

00:00:00:00:00:02
1

2

00:00:00:00:00:01

00:00:00:00:00:03 2

00:00:00:00:00:04 3

00:00:00:00:00:06
4

00:00:00:00:00:05

00:00:00:00:00:05 1

3

00:00:00:00:00:06 2

00:00:00:00:00:03

3
00:00:00:00:00:02

00:00:00:00:00:01

00:00:00:00:00:04

Network Scenario: 4S

00:00:00:00:00:02 1

1 00:00:00:00:00:01 2

00:00:00:00:00:03 3

March- April 2020

ISSN: 0193-4120 Page No. 911 - 919

917 Published by: The Mattingley Publishing Co., Inc.

00:00:00:00:00:04 4

No of Flow Entries:

4S, M3S&H3S network scenarios used various

arrangements like number of SDN switches, hosts, controller

and other for implementation and instant detection of

networked hosts, host details mining and installing flow

entries into SDN Switch flow table. No of flow entries

installed in forwarding devices are given in table 2. Flow

entries installed during testingmay be retrieved withovs-ofclt

dump-flowsinstruction. We found that system has defined

and setup flow entries into SDN switchesas per approach

requirement.

TABLE 2: FLOW ENTRIES GENERATED FOR NETWORK

SCENARIOS

Network

Scenario

Flow Entries Number

SDN Switch
Sum

S1 S2 S3

4S 16 - - 16

M3S 21 30 21 72

H3S 89 83 - 172

Flow Entry with Varying Host numbers:

We carried outtests with 4Snetwork scenario using

different number of hosts to verifyflow entries of SDN

switch flow tables. The numbers of flow entry in S1 SDN

switch flow table during testing using different host

numbersare given in table 3. System result depicts that SDN-

CIFE performed correctlywith different host numbers in

network, defined &setup flow entries in SDN Switch as per

system requirement.

TABLE 3: FLOW ENTRIESUSING DIFFERENT HOST NUMBERS

Test No Flow Entries Host Numbers

1 225 15

2 900 30

3 2025 45

4 3600 60

5 5625 75

6 8100 90

7 11025 105

8 14400 120

9 18225 135

10 22500 150

Bandwidth Test at Different Hops:

Systems bandwidth delivery analysis was carried out

using H3Snetwork scenario with single, dual & multiple

connections and different number of hops. The test was

conducted without& with SDN-CIFE system and results

depicts that after implementation of proposed system

bandwidth delivery improved with three or more hops. The

results given in figure 7 & table 4 are collected during test.

TABLE 4: BANDWIDTH DELIVERY TEST

Connection Scenario
Hops (B/w in Gbps)

1 2 3 4

With

SDN-CIFE

Single 47.7

0

45.5

0

37.8

0

33.5

0

Dual 25.0

0

24.1

0

17.9

0

17.7

0

Multipl

e

9.00 8.90 7.20 7.20

Without

SDN-CIFE

Single 50.0

0

41.0

0

42.3

0

35.3

0

Dual 18.6

0

22.3

0

17.7

0

17.6

0

Multipl

e

9.70 7.20 8.00 7.80

First Packet Processing Performance:

First packet processing time is tested issuing ICMP echo

request and echo reply messages. The total time was

calculated from issue of echo request to till receipt of echo

reply message from the destination host. We used

“pingallfull” command at mininet simulator command line

for testing of RTT (round trip time) time.

Fig.7: Bandwidth Delivery Test for H3S

TABLE 5: FIRST PACKET PROCESSING PERFORMANCE

Network Scenario

RTT (in ms)
Time

Saved
without

SDN-CIFE

With

SDN-CIFE

SH3 505.623 43.432 91.41%

M3S 214.572 15.999 92.54%

4S 51.809 7.157 86.19%

4S with 150 hosts 130608.116 20911.016 83.99%

Table 5 data depicts that M3S network scenario has saved

the highest 92.54% time in forwarding and receiving the

packets of connected hosts and H3S has saved 91.41%. Our

approach has achieved more than 83% times saving with 150

0

10

20

30

40

50

1 2 3 4

B
/w

 i
n

 G
b

p
s

Hops

With SDN-CIFE Single
Without SDN-CIFE Single
With SDN-CIFE Dual
Without SDN-CIFE Dual

Connection Scenarios

March- April 2020

ISSN: 0193-4120 Page No. 911 - 919

918 Published by: The Mattingley Publishing Co., Inc.

hosts in 4S network scenario. Experiment result shows that

we have saved more than 83% time for forwarding and

processing of first packet in every network scenario.

II. CONCLUSION

We have proposed an SDN-CIFE system for

improvement of first packet processing and forwarding time

period. During experiment, system installed all required flow

rules in SDN switch and it processed and forwarded the

packet as per flow rules. The flow rules guided to the SDN

switch for proper forwarding route for destination and first

packet of connected hosts were not forwarded to controller.

The system identified connected hosts at time of handshaking

between SDN switch and controller, prepared the HostLink

Table and loaded required flow entries. The system was

tested with various parameters such as flow entry generation,

bandwidth performance and first packet processing and

forwarding time duration. After implementation of SDN-

CIFE,first packet processing time duration reduced to more

than 83% and it took overall less than 17% time. This

performance may vary due to experiment environment setup,

network topologies & number of connected hosts. SDN-

CIFE approach may be used for development of security

systems, policies and applications in future.

REFERENCES

[1] A. Akhunzada, E. Ahmed, A. Gani, M. K. Khan, M.

Imran and S. Guizani, "Securing Software Defined

Networks: Taxonomy, Requirements and Open Issues," in

IEEE Communications Magazine, vol. 53, no. 4, pp. 36-

44, April 2015.

[2] A. Prakash and R. Priyadarshini, "An Intelligent Software

Defined Network Controller for Preventing Distributed

Denial of Service Attack," 2018 Second International

Conference on Inventive Communication and

Computational Technologies (ICICCT), Coimbatore,

2018, pp. 585-589.

[3] B. H. Lawal and A. T. Nuray, "Real-time Detection and

Mitigation of Distributed Denial of Dervice (DDoS)

Attacks in Software Defined Networking (SDN)," 2018

26th Signal Processing and Communications Applications

Conference (SIU), Izmir, 2018, pp. 1-4.

[4] C. Zhang, G. Hu, G. Chen, A. K. Sangaiah, P. Zhang, X.

Yan and W. Jiang, "Towards a SDN-Based Integrated

Architecture for Mitigating IP Spoofing Attack," in IEEE

Access, vol. 6, pp. 22764-22777, 2018

[5] D. Satasiya and Raviya Rupal D., "Analysis of Software

Defined Network firewall (SDF)," 2016 International

Conference on Wireless Communications, Signal

Processing and Networking (WiSPNET), Chennai, 2016,

pp. 228-231

[6] Ramesh Chand Meena, Meenakshi Nawal, Mahesh

Bundele, “Instant Detection of Host in SDN (IDH-SDN)”,

International Journal of Recent Technology and

Engineering, Vol-8:Issue-3, Sep-2019, pp.5603-5608

[7] Gian M. di Marzo and Francesco Benedetto, “Software

Defined Networks for Data Center Optimization”, Recent

Patents on Computer Science (2014) 7: 24.

[8] Guolong Chen, Guangwu Hu, Yong Jiang and Chaoqin

Zhang, "SAVSH: IP source address validation for SDN

hybrid networks," 2016 IEEE Symposium on Computers

and Communication (ISCC), Messina, 2016, pp. 409-414

[9] H. T. Nguyen Tri and K. Kim, "Assessing the Impact of

Resource Attack in Software Defined Network," 2015

International Conference on Information Networking

(ICOIN), Cambodia, 2015, pp. 420-425

[10] K. Guerra Pérez, X. Yang, S. Scott-Hayward and S. Sezer,

"A Configurable Packet Classification Architecture for

Software-Defined Networking," 2014 27th IEEE

International System-on-Chip Conference (SOCC), Las

Vegas, NV, 2014, pp. 353-358.

[11] K. K. Karmakar, V. Varadharajan and U. Tupakula,

"Mitigating Attacks in Software Defined Network

(SDN)," 2017 Fourth International Conference on

Software Defined Systems (SDS), Valencia, 2017, pp. 112-

117

[12] Kwon, Jonghoon, Dongwon Seo, Minjin Kwon, Heejo

Lee, Adrian Perrig and Hyogon Kim. “An Incrementally

Deployable Anti-spoofing Mechanism for Software-

Defined Networks.” 2015 Computer Communications 64:

pp.1-20.

[13] L. M. van Adrichem, Niels & Doerr, Christian & A.

Kuipers, Fernando. (2014). “OpenNetMon: Network

Monitoring in OpenFlow Software-Defined Networks.”

IEEE/IFIP Network Operations and Management

Symposium: Management in a Software Defined World

10.1109/NOMS.2014.6838228: pp. 1-8.

[14] M. Dabbagh, B. Hamdaoui, M. Guizani and A. Rayes,

"Software-Defined Networking Security: Pros and

Cons," in IEEE Communications Magazine, vol. 53, no.

6, pp. 73-79, June 2015.

[15] M. Z. Masoud, Y. Jaradat and I. Jannoud, "On

preventing ARP poisoning attack utilizing Software

Defined Network (SDN) paradigm," 2015 IEEE Jordan

Conference on Applied Electrical Engineering and

Computing Technologies (AEECT), Amman, 2015, pp.

1-5.

[16] Manzanares-Lopez, Pilar & Muñoz-Gea, Juan & Manuel

Delicado-Martinez, Francisco & Malgosa, Josemaria &

Flores de la Cruz, Adrian. (2016). Host Discovery

Solution: An Enhancement of Topology Discovery in

OpenFlow based SDN Networks. 80-88.

[17] Michele Amoretti, Gianluigi Ferrari, Jean-Luc Richier

and Andrzej Duda, “Patents on IPv6-Related

Technologies”, Recent Patents on Computer Science

(2013) 6: 170.

[18] O. Chippalkatti and S. U. Nimbhorkar, "An approach for

detection of attacks in software defined networks," 2017

International Conference on Innovations in Information,

Embedded and Communication Systems (ICIIECS),

Coimbatore, 2017, pp. 1-3.

[19] O. Strugaru, A. D. Potorac and A. Graur, "The impact of

using Source Address Validation filtering on processing

resources," 2014 10th International Conference on

Communications (COMM), Bucharest, 2014, pp. 1-4

[20] P. B. Pawar and K. Kataoka, "Segmented proactive flow

rule injection for service chaining using SDN," 2016

IEEE NetSoft Conference and Workshops (NetSoft),

Seoul, 2016, pp. 38-42

[21] P. Zanna, S. Hosseini, P. Radcliffe and B. O'Neill, "The

challenges of deploying a software defined network,"

2014 Australasian Telecommunication Networks and

Applications Conference (ATNAC), Southbank, VIC,

2014, pp. 111-116.

March- April 2020

ISSN: 0193-4120 Page No. 911 - 919

919 Published by: The Mattingley Publishing Co., Inc.

[22] Ramesh Chand Meena, Meenakshi Naval and Mahesh

Bundele, "SIPAV-SDN: Source Internet Protocol

Address Validation for Software Defined Network”, in

International Journal of Innovative Technology and

Exploring Engineering (2019), Vol.8, Issue 12, pp.3386-

3393

[23] S. Murtuza and K. Asawa, "Mitigation and Detection of

DDoS Attacks in Software Defined Networks," 2018

Eleventh International Conference on Contemporary

Computing (IC3), Noida, 2018, pp. 1-3.

[24] S. Nadar and S. Chaudhari, "Proactive-routing path

update in Software Defined Networks(SDN)," 2017

International Conference on Intelligent Computing and

Control (I2C2), Coimbatore, 2017, pp. 1-3.

[25] S. T. Ali, V. Sivaraman, A. Radford and S. Jha, "A

Survey of Securing Networks Using Software Defined

Networking," in IEEE Transactions on Reliability, vol.

64, no. 3, pp. 1086-1097, Sept. 2015.

[26] S.K. Agrawal and Kapil Sharma*, “Millimeter Wave

Channel Capacity for 5th Generation Software Defined

Radio Communication System in Vegetation Area”,

International Journal of Sensors, Wireless

Communications and Control (2018) 8: 172.

[27] T. Alharbi, M. Portmann and F. Pakzad, "The

(in)security of Topology Discovery in Software Defined

Networks," 2015 IEEE 40th Conference on Local

Computer Networks (LCN), Clearwater Beach, FL,

2015, pp. 502-505.

[28] T. Chin, X. Mountrouidou, X. Li and K. Xiong, "Selective

Packet Inspection to Detect DoS Flooding Using Software

Defined Networking (SDN)," 2015 IEEE 35th International

Conference on Distributed Computing Systems Workshops,

Columbus, OH, 2015, pp. 95-99

[29] T. Javid, T. Riaz and A. Rasheed, "A layer2 firewall for

software defined network," 2014 Conference on

Information Assurance and Cyber Security (CIACS),

Rawalpindi, 2014, pp. 39-42.

[30] T. Xu, D. Gao, P. Dong, C. H. Foh and H. Zhang,

"Mitigating the Table-Overflow Attack in Software-

Defined Networking," in IEEE Transactions on Network

and Service Management, vol. 14, no. 4, pp. 1086-1097,

Dec. 2017.

[31] Y. Jia, Y. Liu, G. Ren and L. He, "Revisiting inter-AS IP

spoofing let the protection drive source address validation,"

2017 IEEE 36th International Performance Computing and

Communications Conference (IPCCC), San Diego, CA,

2017, pp. 1-10.

[32] Bingyang Liu, Jun Bi and Yu Zhou, “Source Address

Validation in Software Defined Networks,'' in

SIGCOMM’16 August 22-26 2016, p. 595.

[33] Alif Akbar Pranata, Tae Soo Jun, Dong Seong Kim,

“Overhead reduction scheme for SDN-based Data Center

Networks,” Computer Standards & Interfaces, Volume 63,

2019, Pages 1-15, ISSN 0920-5489,

[34] Mingyong Chen, Weimin Wu, "A first packet processing

subdomain cluster model based on SDN", AIP Conference

Proceedings-1864, 020042 (2017)

[35] D. Kotani and Y. Okabe, "Packet-In Message Control for

Reducing CPU Load and Control Traffic in OpenFlow

Switches," 2012 European Workshop on Software Defined

Networking, Darmstadt, 2012, pp. 42-47. doi:

10.1109/EWSDN.2012.23

[36] A. S. Iyer, V. Mann and N. R. Samineni, "SwitchReduce:

Reducing switch state and controller involvement in

OpenFlow networks," 2013 IFIP Networking Conference,

Brooklyn, NY, 2013, pp. 1-9.

