
 

March - April 2020 

ISSN: 0193-4120 Page No. 293 - 298 

 

 

293 Published by: The Mattingley Publishing Co., Inc. 

Software Architecture Evaluation Methods for 

Measuring Modifiability 

[1] Fatemeh Meskaran, [2] Maryam Shahpasand,  [3] Maryam Var Naseri, [4] Chandra Reka 

Ramachandiran 

[1] Asia Pacific University ,[2] Asia Pacific University,[3] Asia Pacific University 

[1]fatemeh.meskaran@staffemail.apu.edu.my ,[2]  maryam.shahpasand@staffemail.apu.edu.my, 

[3] maryam.var@staffemail.apu.edu.my, [4] chandra.reka@staffemail.apu.edu.my 

Article Info 

Volume 83 

Page Number: 293 - 298 

Publication Issue: 

March - April 2020 

 

 

 

 

 

Article History 

Article Received: 24 July 2019 

Revised: 12 September 2019 

Accepted: 15 February 2020 

Publication: 12 March 2020 

Abstract 

Software systems constantly change, and it causes the architecture of the system to 

degenerate during the system life cycle. Definitely, any degeneration needs extra effort and 

delays the releases of the system. The ability to accept changes quickly and cost-effectively is 

considered as modifiability. In order to assess system modifiability, we need evaluation 

methods and tools. There are different evaluation methods for software architecture quality 

evaluation. In this paper, we compare two well-known software architecture evaluation 

methods which mostly are applying for testing the modifiability, including Scenario-Based 

Architecture Analysis (SAAM) and Architecture Level Modifiability Analysis (ALMA). 

The comparison shows that these two methods are structurally similar however, there are 

some differences among their activities and processes. Therefore, the common activities that 

are used for evaluating software architecture in these two methods can form a generic 

process model for evaluating modifiability. 

Keywords: Software architecture, Software architecture evaluation, Modifiability, SAAM, 

ALMA. 

 

I. INTRODUCTION 

Software architecture shows the total structure of a 

system. It is the blueprint of the software system. 

Creating a suitable software architecture has 

different challenges because of increasing size, 

complexity and demand for high-quality software 

systems.   It is identified that system quality (such as 

modifiability, maintainability, performance, 

security, etc.) are mostly constrained by software 

architecture [1]. Therefore, software architecture 

should address the related quality attributes, their 

features, and possible risks. Evaluation of software 

architecture in the early stages is considered a 

crucial task during the software development 

process. The main reason for software architecture 

evaluation is to assess whether the system 

requirements and quality attributes are met by 

software architecture. In addition, it is the 

architecture capable to identify risks and manage 

them [2]. 

 It is shown that 50% to 70% of the total cost for a 

software system development belongs to the 

evolution of the system [3]. If during the 

architecture design, modifiability capability is 

considered, the evolution cost will be reduced. 

Modifiability capability should be considered during 

architecture design. therefore 

 The architecture design has an important effect on 

the acceptance of modifiability. There are different 

methods have been proposed to evaluate software 

architecture. These methods can be scenario-based, 

experienced-based and mathematical-based [3]. 

Most of these methods are complementary 

techniques from other methods, so sometimes 

distinctive among these methods is difficult. There 

are some researches regarding compare different 

software architecture evaluation methods, 

especially scenario-based methods [1], [3]-[5]. 

These researches mostly focus on general review 

regarding improving the understanding of 

evaluation methods, and not focusing on the 



 

March - April 2020 

ISSN: 0193-4120 Page No. 293 - 298 

 

 

294 Published by: The Mattingley Publishing Co., Inc. 

specific quality attribute. This study attempts to 

identify the most common software architecture 

evaluation methods which are using for evaluating 

modifiability. Two commonly used software 

architecture evaluation methods including 

Scenario-Based Architecture Analysis (SAAM) [6], 

and Architecture Level Modifiability Analysis 

ALMA [7] are selected for more elaboration. The 

purpose of this research is to compare these two 

evaluation methods as mostly use in modifiability 

examination at an architecture level. This work can 

help practitioners and researchers to understand and 

contrast alternative approaches that are available to 

them to evaluate software architecture, especially 

those they want to test the modifiability.  

The rest of the paper is structured as follows: 

Section II discusses the background work, 

including a review of all possible evaluation 

methods. Section III presents different software 

architected evaluation methods. The next two 

sections present and discuss two common methods 

of modifiability evaluation along with the rationale 

for selecting its components finally a comparison of 

the two software architecture evaluation methods 

are presented in the last section.  

II.  BACKGROUND WORK 

There are some overview researches regarding 

software architecture evaluation methods [1], [4], 

[5]. overview reported in [8] provides complete 

guidance on software architecture evaluation 

methods. In addition, there are few other research 

[9],[10]  to provide a complete explanation of 

comparing the scenario-based evaluation 

techniques. None of the other published surveys or 

comparison of software architecture testing 

methods provides an explicit framework for 

comparing the methods regarding modifiability. 

Rather, these surveys have been published to 

support the need for developing a new evaluation 

method.   

Clements et al. [10] have a chapter on evaluation 

technique comparison in software architecture 

evaluation. However, only three evaluation 

methods including (SAAM, ATAM, and ARID are 

compared.  In addition, scenario-based software 

architecture evaluation techniques are compared in 

another study by Babar [4]. However, both are 

limited in categorization based on quality attributes. 

Software architecture evaluation is examining an 

architecture against the quality goals. The main 

purpose of architecture evaluation is to test and 

validate the software architecture and ensure that 

the architecture is able to satisfy quality attributes 

goals [11]. There are different software architecture 

evaluation techniques that each of them may be 

useful for evaluating a specific quality attribute. In 

this paper, we focus on Modifiability as one of the 

most important quality attributes, which most 

consider by software architecture evaluators.  

III. SOFTWARE ARCHITECTURE 

EVALUATION METHODS  

Evaluation of software architecture can be done in 

any stage of architecture design. Most of the 

techniques are applied after architecture design 

specification, and before implementation.  for 

iterative or incremental methodologies the 

architectural decisions are specified at the end of 

each iteration [12]. Architectural evaluation is an 

activity related to human actions. Most of the time, 

the reviews are the main stakeholders such as 

clients, designers, and the evaluation team. 

Therefore it can be done by experiments, modeling, 

and evaluating scenarios, or even it can be done by 

experts who look for gaps and possible risks in the 

architecture by using their experience. In addition, 

analytic models, simulation tools can be used for 

software architecture evaluation,  those targeting a 

single quality goal (e.g. performance or 

modifiability), or even several quality attributes.   

Architecture evaluation techniques are categorized 

into questioning, measuring techniques, and hybrid 

[13]. Scenarios, questionnaires, and checklists are 

using in questioning techniques. On the other hand, 

metrics, simulation, or experimentations are 

applying in measuring techniques. In addition, 

Hybrid combines both questioning and measuring 

together and make a new technique. Most of the 

architecture evaluation methods are commonly 

hybrid; during the elicitation mostly we use 

questioning and then use sorts of measurements for 

reasoning. 



 

March - April 2020 

ISSN: 0193-4120 Page No. 293 - 298 

 

 

295 Published by: The Mattingley Publishing Co., Inc. 

The quality attributes are non-functional 

requirements such as modifiability, scalability, 

performance, security, and availability. Each 

software evaluation method has several objectives 

that are implemented at different phases in software 

development life-cycle or may concentrate on 

different quality attributes[14]. Research works are 

being processed regarding software architecture 

evaluation methods [4],[10].  Architectural 

evaluation can be accompanied based on the 

specification of the software architecture. The 

scenario-based techniques are flexible and simple 

[4],[15]. However, mathematical evaluation 

methods based on modeling are well used for 

evaluating the quality attributes, such as reliability 

and performance too. These methods especially are 

used in real-time software systems. This paper 

distinguishes the evaluation methods which are 

scenario-based and then identifies the most 

common architectural evaluation methods that are 

using for evaluating software architecture regarding 

modifiability. 

Scenario-based software evaluation techniques 

examine software architecture's capacity 

considering a set of related scenarios. There are 

different scenario-based evaluation techniques [4] , 

[6], [10], [16], [17]. The scenario-based evaluation 

techniques propose an organized approach to 

evaluating software architecture by using scenarios. 

If the software architecture can not execute the 

scenario, the evaluation techniques list all required 

modifications regarding supporting the scenario and 

estimate the cost of applying the modifications. In 

scenario-based evaluation techniques, significant 

stakeholders should be presented and elicit 

scenarios based on requirements. In Table 1, some 

of the Scenario-based evaluation techniques are 

presented, the most considerable quality attribute is 

indicated in the last column: 

Table 1. Scenario-based evaluation techniques 

Evaluation 

Technique Name 

References Quality 

attributes 

SAAM 

(Scenario-based 

Software 

Architecture 

Analysis Method) 

[1], [4], 

[6],[17]  

Modifiability  

ATAM (Architecture [1], [18], [19] Multiple 

based Tradeoff 

Analysis Method) 

Quality 

Attributes 

ALMA 

(Architecture-Level 

Modifiability 

Analysis) 

[3], [20]  Modifiability  

CBAM (Cost-Benefit 

Analysis Method) 

[1], [21]  Costs, 

Benefits 

FAAM 

(Family-Architecture 

Assessment Method) 

[22] Extensibility 

SALUTA 

(Scenario-based 

Architecture Level 

UsabiliTy Analysis) 

[23]  Usability  

SBAR 

(Scenario-Based 

Architecture 

Reengineering) 

[24]  Multiple 

Quality 

Attributes 

In this paper, two main techniques that are suitable 

for evaluating modifiability including ALMA and 

SAAM are compared.  

IV. SCENARIO-BASED ARCHITECTURE 

ANALYSIS METHOD  

A. Scenario-Based Architecture Analysis 

Method(SAAM)  

is the first scenario-based software architecture 

analysis technique. SAAM can verify architectural 

values against documents that describe the 

characteristics of a system. The quality attributes 

especially those that are related to modifiability can 

be expressed during the SAAM application.  

Problem identification in the early stages and having 

the comprehensive documentation are the main 

advantages of SAAM [6], this technique can be 

used regarding compare multiple software 

architectures.   

According to SAAM has six phases: scenario 

development, software architecture description, 

scenario classification and prioritization, individual 

scenario evaluation, scenario interaction, and 

overall evaluation. The first two phases are iterative 

[6]. Figure 2 shows the different phases in SAAM. 

As one of the scenario-based software architecture 

evaluation techniques, SAAM assesses each 

scenario by mapping it onto software architecture 



 

March - April 2020 

ISSN: 0193-4120 Page No. 293 - 298 

 

 

296 Published by: The Mattingley Publishing Co., Inc. 

design and check whether the software architecture 

can support this scenario without any modification  

(direct scenario) or it needs some modification 

(indirect scenario). The cost including the needed 

time and effort for accommodating each indirect 

scenario is estimated by counting the number of 

required changes and the number of affected 

components. Scenario interaction analysis reveals if 

many indirect scenarios affect the same component, 

a sign of lack of encapsulation or ignoring the loose 

coupling principle.  

 

Figure 2. SAAM Process 

V. ARCHITECTURE LEVEL MODIFIABILITY 

ANALYSIS  

Architecture Level Modifiability Analysis 

(ALMA) is focusing on adaption and modifiability 

[20], [24].  ALMA is considered as a goal-oriented 

evaluation technique. After goal setting, most of the 

activities in this approach are dealing with 

evaluation of the goals. The main goal of this 

technique is related to modifiability.  

The goal of ALMA is to deliver a structured 

method  to evaluate the three major aspects of 

mantainability, which includes the risk assessment, 

software architecture comparison and maintenance 

prediction.  The method describes five major 

phases, namely to describe the software 

architecture, to determine the evaluation goal and 

elicit of relevant and evaluation scenarios, and 

finally results are interpretated and conclusions are 

drawn from them [3]. Figure 2 shows the related 

process of ALMA. The techniques are applied to 

select relevant scenarios and reduce the number of 

scenarios [20]. It also manages when to stop 

generating scenarios. ALMA The ALMA uses 

impact analysis to evaluate software architecture 

regarding modifiability. Regarding the 

modification, the evaluation technique identifies 

affected components, and how much effort it needs. 

The results are construed depending on the goal of 

evaluation. ALMA offers a framework to describe 

results quantitatively. As ALMA has been validated 

with several applications, the method is considered 

quite mature. 

As it is mentioned, the specific goal of ALMA is to 

address modifiability. ALMA is usually applied 

before implementing the software architecture but it 

is still useful for the legacy systems. ALMA has 

successfully been useful in telecommunications, 

information systems,  and medical domains [24].  

The main benefits of using ALMA are the 

identification of software architecture risks, 

estimation of the efforts required to accommodate 

the changes, or selection of optimal software 

architecture [20].   

 

 

Figure 2. ALMA Process 

VI. METHOD COMPARISON 

In scenario-based methods, there are many 

activities that remains to be the same at the top 

pevel; however, if it is gone through in detail into 

the activities, there are a number of differences 

being revealed. For example, in the scenario based 

methods, scenario development and evaluation 

activities are found be so common, however, the 

techniques used to perform these activities are 

entirely different. ALMA uses scenario profiles to 

categorize the generated scenarios [20], and 

software architecture is also documented using 

various views [1], [4]. Both of SAAM and ALMA 



 

March - April 2020 

ISSN: 0193-4120 Page No. 293 - 298 

 

 

297 Published by: The Mattingley Publishing Co., Inc. 

use software architecture views, however, the 

number and type of views vary for them. For 

example, logical and module views suit both SAAM 

and ALMA, however, SAAM is purely 

scenario-based, ALMA uses a variety of methods 

related evaluation goals. ALMA also provides 

analytical models for modifiability, while SAAM 

uses those provided analytical models [25]. In 

addition, we can compare these two techniques 

regarding the type of involved stakeholders.  

SAAM works with all major stakeholders however 

ALMA deals with a small set of stockholders such 

as architects or developers [20].  

 Generally, we can say AlMA can be used for the 

purpose of risk evaluation, however, SAAM can be 

applied for finding out the complexity and 

interactions in software architecture.  

 On the other hand, both the evaluating techniques 

do recognize the importance of suitable tool 

support, but, only SAAM provides a tool 

(SAAMTOOL) [21] to support the evaluation 

process partially. Further, another feature of 

automation is the management of knowledge for the 

purpose of reusability, which is considered to be 

one of the most important way to increase the 

quality, productivity as well as the 

cost-effectiveness [23].  None of these evaluation 

techniques provides guidance on generating and 

utilizing the reusable artifacts, i.e., identified risks, 

scenarios, quality attributes etc [13].   

Software architecture evaluation methods can 

also be compared to the aspect of maturity as it may 

raise confidence in method users. It is to be 

concluded that these two software architectures can 

be so classified within one of the four maturity 

phases of the software architecture lifecycle, 

especially inception, dormant and development 

refinement [2]. ALMA and SAAM are considered 

in the refinement and development stage, 

respectively. The method development process and 

techniques employed in order to validate it, may 

lead to encourage or discourage the evalautors, so 

that they may select any one method as compared to 

the other methods [24]. Methods reviewed are 

validated in various several domains. The summary 

of the comparison between ALMA and SAAM is 

presented in Table 3.  

Table 2. Summary Table 

ALMA SAAM 

Goal-Oriented 

 

Scenario-Based 

Risk Assessment  Find out complexity and 

interactions 

Estimate cost based on 

goal  

Estimate cost for indirect 

scenarios 

Small set of stockholders 

(Architect- developers) 

All major stockholders 

Can not use in legacy 

systems 

Can be use in legacy 

systems 

Apply in the refinement 

stage 

Apply in the development 

stage 

                         

                   

    REFERENCES 

[1] P. Clements, R. Kazman, and M. Klein, 

“Evaluating Software Architectures: Methods 

and Case Studies”, Addison-Wesley, 2002.  

[2] C.-H. Lung and K. Kalaichelvan, "An Approach 

to Quantitative Software Architecture 

Sensitivity Analysis," International Journal of 

Software Engineering and Knowledge 

Engineering, vol. 10, no. 1, pp. 97-114, 2000. 

 [3] P. Bengtsson, "Towards Maintainability 

Metrics on Software Architecture: An 

Adaptation of Object-Oriented Metrics," First 

Nordic Workshop on Software Architecture, 

Ronneby, 1998. 

[4] M. A Babar and I. Gorton, “Comparison of 

Scenario-Based Software Architecture 

Evaluation Methods”, Asia-Pacific Software 

Engineering Conference, APSEC. 2004. 

[5] A. Athar, R. M. Liaqat and F. Azam, “A 

Comparative Analysis of Software Architecture 

Evaluation Methods”, Journal of Software, vol. 

11, no.9. 2016. 

[6] R. Kazman, L. Bass, G. Abowd, and M. Webb, 

"SAAM: A Method for Analyzing the 

Properties of Software Architectures," 

Proceedings of the 16th International 

Conference on Software Engineering, 1994. 

[7] P. Bengtsson, N. Lassing, J. Bosch, and H. V. 

Vliet, "Architecture-Level Modifiability 



 

March - April 2020 

ISSN: 0193-4120 Page No. 293 - 298 

 

 

298 Published by: The Mattingley Publishing Co., Inc. 

Analysis," Journal of Systems and Software, 

vol. 69, 2004. 

[8] N. Lassing, D. Rijsenbrij, and H. v. Vliet, "The 

goal of software architecture analysis: 

Confidence building or risk assessment," 

Proceedings of First BeNeLux conference on 

software architecture, 1999.  

[9] C.-H. Lung, S. Bot, k. Kalaichelvan, and R. 

Kazman, "An Approach to Software 

Architecture Analysis for Evolution and 

Reusability," Proceedings of CASCON, 1997. 

[10] P. C. Clements, "Active Reviews for 

Intermediate Designs," SEI, Carnegie Mellon 

University CMU/SEI-2000-TN-009, 2000. 

[11] D.L. Parnas. Software Aging. In: I6th 

International Conference on Software 

Engineering, Sorento, Italy, pp. 279-287.1994. 

[12] C.D Rosso. Continuous evolution through 

software architecture evaluation: a case study. 

Journal of Software Maintenance and 

Evolution: Research and Practice. Vol.18, pp. 

351-383, 2006 

[13] S. Angelov, Patrick de Beer, Software 

Architecture, vol. 9278, pp. 157, 2015. 

[14] B. Eilouti. Architectural design process 

automation. Applications of Informatics and 

Cybernetics in Science and 

Engineering, Orlando, Florida, USA (2015), 

pp. 370-375. 2015 

[15] M. A. Babar, L. Zhu and R. Jeffery. A 

Framework for Classifying and Comparing 

Software Architecture Evaluation Methods. In 

the Proceedings on Australian Software 

engineering, pp. 309-318, 2004. 

[16] H. Cervantes, R. KazmanDesigning Software 

Architectures: A Practical Approach 

Addison-Wesley, Bostonm .2016. 

[17] H. Cervantes, R. KazmanDesigning Software 

Architectures: A  Practical Approach. 

Addison-Wesley, Bostonm.2016. 

[18] Reijonen, V., Koskinen, J., and Haikala, I.. 

Experiences from scenario-based architecture 

evaluations with atam. In European Conference 

on Software Architecture, pages 214–229. 

Springer.2010. 

[19] Zalewski, A. and Kijas, S. Beyond atam: Early 

architecture evaluation method for large-scale 

distributed systems. Journal of Systems and 

Software, vol. 86, no.3, pp.683–697. 2013. 

[20] P. Bengtsson, N. Lassing, J. Bosch, and H. V. 

Vliet. Architecture-Level Modifiability 

Analysis. Journal of Systems and Software, vol. 

69, 2004 

[21] “CBAM: Cost Benefit Analysis Method 

http://www.sei.cmu.edu/ata/products_services/

cbam.html 

[22] A. Alkussayer and W. H. Allen, "A 

scenario-based framework for the security 

evaluation of software architecture,". 3rd 

International Conference on Computer Science 

and Information Technology, Chengdu, 2010, 

pp. 687-695.2010. 

[23] E. Folmer, J. Gurp and J. Bosch. Software 

Architecture Analysis of Usability. In the 

Proceedings on 9th IFIP Working Conference 

on Engineering Human Computer Interaction 

and Interactive Systems, pp. 321-339, 2004. 

[24] Bengtsson, PO., Lassing, N., and Bosch, J., 

“Architecture Level Modifiability Analysis 

(ALMA),” Journal of Systems and Software, 

vol. 69, pp. 129-147, 2002. 

[25] M. Svahnberg, C. Wohlin, L. Lundberg, and 

M. Mattsson. A Method for Understanding 

Quality Attributes in Software Architecture 

Structures. In Proceedings of the 14th 

International Conference on Software 

Engineering and Knowledge Engineering, 2002. 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=del+Rosso%2C+Christian
https://onlinelibrary.wiley.com/journal/15320618
https://onlinelibrary.wiley.com/journal/15320618

