

March - April 2020

ISSN: 0193-4120 Page No. 107 - 113

107 Published by: The Mattingley Publishing Co., Inc.

Efficient Power Reduction Scheme for AES using

Hardware-Software Co-Design

[1]
 Padmini G Kaushik,

[2]
 Dr.S.M.Gulhane

[1]

 Assistant Professor,
[2]

 Professor
[1]

padmini.jp@gmail.com,
[2]

 smgulhane67@rediffmail.com

Article Info

Volume 83

Page Number: 107 - 113

Publication Issue:

March - April 2020

Article History

Article Received: 24 July 2019

Revised: 12 September 2019

Accepted: 15 February 2020

Publication: 12 March 2020

Abstract

Embedded product design is driven by various design constraints like Device surface

area utilization, volume, power consumption, and performance. These designs may even

need to concurrently address the hardware and software requirements to bring out the

product features at each stage while factoring in that, these requirements may

additionally constrain or contribute to each other. All of these ought to be accomplished

preserving in context time to Market and the Market timing. Hardware/Software Co-

design methodology is an frequently employed way to deal to design embedded systems

to reduce product development time and power consumption. Co-design offers the

adaptability of design, as there are numerous Soft-core processors and Hardware

development platforms that are offered in the market. This paper proposes a new

Hardware/Software Co-design methodology, which has been used for enforcing the

Advanced Encryption Standard (AES) algorithm for encrypting and decrypting 128,198

and 256 bits of data using NIOS II processor, from ALTERA to be imposed in FPGA

retaining pace, area, and thermal dissipation as the focal point.

Keywords: AES, NIOS-II, Hardware/software co-design, Rijndael algorithm.

1. Introduction

Embedded systems having significant

computing capability and supporting various

functionalities and applications are

continuously evolving and are increasingly

becoming prevalent.

Design techniques of this embedded system

are also evolving with the growth in

complexity of the embedded system. Co-

Design which approaches the embedded

system solution as a combination of software

and hardware is known to advance the system

performance.

The well-known cryptographic AES

algorithm, also known as Rijndael, process the

data and encrypts at the sender (encipher) and

again processes and decrypt (decipher) the

information at the receiver end. Since this has

both compute and memory-intensive tasks, we

have chosen this algorithm to illustrate the Co-

design approach. Running the cryptography

algorithms in software can cause lack of

processing speed and hence the performance

of the overall system. Hence the processing

activities are done in the Hardware and the

rest of the activities are executed via the

Software in our illustration.

1.1 Co-Design

Hardware/software co-design is described as

the consolidated implementation of hardware

and software. The goal of co-design is to

compact the manufacturing time, while

March - April 2020

ISSN: 0193-4120 Page No. 107 - 113

108 Published by: The Mattingley Publishing Co., Inc.

plunging the structure endeavor and

expenditure of the planned items [2].

A platform for implementing the Co-design

can be an embedded system and processor is

the main part of any embedded system. As

software is more lithe and inexpensive than

hardware, numerous benefits can be achieved

using processors. This flexibility of software

opens overdue design modifications and

debugging. In addition, the chance of

reutilization of programs by targeting it to

different processors lessens an opportunity to-

advertise and the design exertion [2] [4].

When processors are not ready to fulfill the

essential, the hardware is utilized to vanquish

the design challenge. This tradeoff among

hardware and software represents the

enhancement aspects of the co-design

problem. Co-design is an

interdisciplinary activity, bringing insight and

thoughts from assorted fields together, e.g.

system-level modeling, hardware design and

software design [5].

Fig. 1 Design Flow for HW-SW co-design

 A general structure for a co-design

methodology is illustrated in fig. 1

Step1: System-level behavior of the co-design

is specified in this step.

Step 2: After verification of all algorithms, a

pure software system will be evolved.

Step 3: System bottlenecks are to be

determined through analyzing the performance

of the system.

Step 4: Determine the partitioning of the

system for hardware and software

implementation. This partitioning is merely

relying at the complexity of the system,

computations required and memory used by

the system. Some design bottleneck will get

swapped by means of hardware to advance the

overall performance.

Step 5: Hardware and software parts will be

designed based on the outcome of step 4.

Step 6: After combining hardware and

software, analyze the system performance in

terms of speed, power dissipation, and area.

Step 7: If essential results are not met through

the step 6, then a new scheme and design will

be applied for HW/SW partitioning.

Plan tradeoffs, rehashed confirmation during

the structure cycle, and common impact of

both HW and SW from the get-go in the

structure cycle

1.2 Motivation

The co-design technique is often used to

reduce the duration spent on the design cycle

and the troubleshooting process. Partitioning

of the system (Co-design) is the most ideal

approach to accomplish structure tradeoffs,

repeated affirmation during the design cycle,

and common impact of both hardware and

software early in the design cycle [5].

The incorporation of composite system on a

Chip (SoC) is facilitated by modernization in

ASIC and FPGA technologies. The utilization

of various Co -design strategies is application-

specific. In the proposed method, we are

March - April 2020

ISSN: 0193-4120 Page No. 107 - 113

109 Published by: The Mattingley Publishing Co., Inc.

targeting for a fast and low power system. For

FPGA implementation with the highest

operating frequency, NIOS-II soft-core

processor is suitable, as it also permits salvage

of code and extremely configurable. These

facilities provoked us to illustrate Co-design

methodology with NIOS-II soft core processor

by using AES Algorithm implementation to

study the system performance mainly focusing

on power reduction.

2. AES Algorithm

 The co-design method is frequently used to

reduce the duration spent on the design cycle

and investigating the process. Partitioning of

the system (Co-design) is the most ideal

approach to accomplish design tradeoffs,

repeated affirmation during the design cycle,

and shared impact of both hardware and

software early in the design cycle [5].

The consolidation of composite framework on

a Chip (SoC) is encouraged by modernization

in ASIC and FPGA technologies. The utilize

of various Co-design strategies is application-

specific. In the proposed method, we required

a fast and low power system. For FPGA

implementation with the highest operating

frequency, NIOS-II soft-core processor is

appropriate, as it also permits salvage of code

and extremely configurable. These facilities

provoked us to illustrate Co-design

methodology with NIOS-II soft core processor

by using AES Algorithm implementation to

study the system performance mainly focusing

on power reduction.

AES algorithm is implemented in three ways,

namely AES - 128, AES - 192, and AES-256.

The number in each case describes the key

size (in bits) used for encryption/decryption.

Depending on the range of the block and the

key size chosen, the above modes are finished

in 10, 12 or 14 rounds. AES just permits a data

of size 128 bits and separated into four

operational blocks. These blocks work on 4*4

matrix arrays which are generally called as the

states.

 For both encryption and decryption

algorithms, the flow initialized with an Add

round key stage pursued by nine rounds of

four stages and the tenth round of three stages

[1] [3]. Following four stages are used to

implement these rounds:

In the Encryption process, every round

comprises of four operations: Sub-Bytes,

Shift-Rows, Mix-Columns, and Add-Round-

key. For 128 bit key, there will be a total of 10

rounds. In any case, in the last round, Add-

round-key operation is not performed.

Sub-Bytes: The format required for input data

and the key is a matrix with the size of a byte.

To make a new matrix, X-OR operation is

performed among data and key. S-box byte

is substituted for each byte in the matrix,

where S-box is a standard substitution table in

the algorithm.

Shift-Rows: After the Sub-byte operation, the

elements in the array are moved to case side.

The starting row of the array stays unaltered,

the subsequent row is moved left by 1 byte,

the third row by 2 bytes and the last row is

shifted by 3 bytes to frame a new matrix.

Mix-Columns: This stage of transformation is

depends on Galois Field multiplication. Each

element of this column is altered with another

value that is an each element of four bytes in

the given column. The Mix-Column

transformation executes on the State column-

by-column, regarding every column as a four-

term polynomial GF (28).

Add-round-key: In this round, State matrix is

added with a Round Key by performing

bitwise operation on plain text and input key.

Key schedule generation provides round Key

March - April 2020

ISSN: 0193-4120 Page No. 107 - 113

110 Published by: The Mattingley Publishing Co., Inc.

of size Nb. Columns of the States are then

added with these keys. The lat round i.e.10
th

round of Mix columns stage is not included.

The four stage operations for initial rounds of

the algorithm implementation are given by

Inverse Shift rows, Inverse Substitute Bytes ,

Add round key, Inverse Mix columns. All

these four stages are completed in 9 rounds.

The last round Inverse Mix columns stage i.e.

tenth in this case, is not covered

again.

Figure 2-AES Flow

3. System Design Using Soft Core

Processor

Altera provides soft core processor NIOS-II as

32-bit processor. It includes a processor

(NIOS II), a set of memory on-chip and

accessories, GPIOs, all linked with Avalon

bus to generate a system [9, 10]. It is a

reconfigurable soft-core processor, as

contrasting to a off-the-shelf, fixed,

microcontroller. As the processor is

configurable adding and eliminating

components or features on a system is simple

to satisfy overall performance desires in

phrases of area. NIOS-II can be focused to any

FPGA family of Altera [7].

Following are the features of Altera soft core

processors:

• It is a general-purpose RISC processor core

with full 32-bit instruction set, data path, and

address space, 32 general-purpose registers,

Access to a variety of on-chip peripherals, 32

interrupt sources, External interrupt controller

interface for more interrupt sources, and

interfaces to off-chip memories and

peripherals, Single-instruction 32 × 32

multiply and divide producing a 32-bit result,

Optional memory protection unit (MPU),

Instruction set architecture (ISA) perfect over

all NIOS- II processor systems, Performance

up to 250 DMIPS, Software advancement

environment dependent on the GNU C/C++

tool chain and NIOS IDE,.

3.1 Implementation

Essential components required for building

AES design using FPGA soft core processors

are NIOS II Processor, Input, Output GPIO'S,

JTAG UART, Performance Counter, SRAM

MEMORY.

The interconnection of the building blocks to

incorporate the parts in the hardware system is

automatically generated by SOPC Builder.

The selection of these blocks can be chosen

from the list provided in NIOS- II EDS.

The figure 3 & 4 shows the component

selection to build and generate the design. The

components used to build the design are

accessed by SOPC Builder is shown by the

figure 3and successful generation of the

system is shown in figure 4.

March - April 2020

ISSN: 0193-4120 Page No. 107 - 113

111 Published by: The Mattingley Publishing Co., Inc.

Fig. 3 System contents in SOPC Builder

Fig. 4 Successful System generation in SOPC

Builder

Figure 5 shows, the execution of encryption

with 128-bit key and 128-bit

Plaintext/Ciphertext in NIOS -II.

After successful generation of SOPC model,

NIOS II IDE will be activated to implement

the design by targeting “.sopcinfo” file as a

hardware platform.

The AES Algorithm is written in C by using

the inbuilt project template “Hello_world.c

file (Encryption & Decryption separately).

AES project is then compiled /build using the

command “Build Project”. The built project

next targeted to CYCLONE II

(EP2C35F672C6) FPGA by running the

command “Run as NIOS II Hardware”.

Subsequently, encrypted cipher text will be

found on output Window of NIOS II

platform.

Fig. 5 Execution of AES encryption on NIOS-

II

In Figure 5, shows output of AES encryption

and timing analysis when executed using

NIOS-II processor. This execution uses the

soft core processor available in Altera.

4. Implementation of Hw/Sw Codesign o

On Cyclone-II:

A digital ASIC implementation of the

hardware-software co-design consequences in

consistent, steady and highly performing

circuit design, at the same time as the strength

optimized hardware-software co-design

fashion leads to Power efficient architecture.

As Hardware works parallel, speed will be

accomplished as significant preferred position

On account of programming, each move is

made by the microcontroller, so it runs in

consecutively.

Programming advancement is quick and it

shows up very straightforward when we are

dealing with the entangled task however

equipment improvement gets intense if there

should be an occurrence of the volumetric

venture. So in any circumstance, the two

advantages can be mixed to acquire

streamlined execution. Considering these

factors, we have selected a hardware-software

co-design strategy for AES performance

assessment. Some part of the system is

executed using NIOS-II tool and a portion of

the segment is actualized in FPGA as custom

IP. This co-design is actualized utilizing the

Altera platform.

March - April 2020

ISSN: 0193-4120 Page No. 107 - 113

112 Published by: The Mattingley Publishing Co., Inc.

Critical programmable requirements comprise

of:

SW, TSBOX or GSBOX: A developer will have

a software table (SW), pre-store hardware table

(TSBOX), delivering change with the aid of

combinational logic to execute SBOX

(GSBOX), which is acknowledged by

amalgamated field calculation as

communicated in the earlier part.

Number of SBOX: A user can select many

SBOX to implement: 1, 4, 8 or16 if TSBOX or

GSBOX used.

Mix-Column: A user can decide whether to

realize it using hardware.

ShiftRow+ Add-round-key: A user can decide

whether to realize it using hardware.

By using the grouping of the appropriate

programmable parameter, 36 combinations

can be made [8].

AES is generated and interfaced with NIOS-II

as a periphery. This is connected with register

logics available in NIOS processor. These

registers are used as a memory of 32 bits. The

plain text data are fetched in 4 parts using this

Four 32-bit registers. The plain text is of 32

bytes. Every plain text is expressed in ASCII

format. Association arrangement is utilized for

the conversion of a byte to 32-bit register. Key

data and Plain text data takes 4 each. The

cipher text will be stored using 4 more

registers for additional implementation or

presentation. AES algorithm and status of the

AES algorithm are controlled by two registers.

Status of operation completion is checked

through AES controls to the AES engine.

Time is calculated using this flag.

The identical key is used to implement

encryption and decryption. But keys are used

in reverse order for decryption process. The

key for first round of the decryption is the key

used for last round of encryption. The keys are

stored in an array and then the array the values

are called in the reverse order.

Figure 6(a) Simulation of Encryption

In figure 6(a) & (b), all in-between and

ending result of design are demonstrated.

Time line of the process is shown by a yellow

line.

Figure 6(b) Simulation of Encryption

Figure 7 shows performance of Hardware and

software designs. AES encryption

implemented using Cyclone-II FPGA and

NIOS-II from Altera. To evaluate the power,

we export the HDL files from Quartus-II to

create an EDIF (Electronic Design Interchange

Format) netlist.

Fig.7: Output of encryption and decryption

March - April 2020

ISSN: 0193-4120 Page No. 107 - 113

113 Published by: The Mattingley Publishing Co., Inc.

Synopsys Design Compiler is used afterward.

By the proposed method around 25%-30%

power reduction is achieved. Table 1 gives

the achievement of proposed method in terms

of reduction in dynamic power for the design

types with only Hardware and Co-Design.

Table 1 Dynamic Power consumption

comparison

System implementation

type

Dynamic

consumption

(μW)

AES Hardware only

design
20.0146

AES Hardware Software

Co design
14.9077

5. Conclusion

Hardware-software co-design seems

imperative given the prevailing day design

demanding situations of time to market, cost

and ever-increasing product capabilities and

design complexity. Co-design allows a

technique to view the product from various

perspectives and optimize product

performance. We have seen how co-design

offers an option for power management.

Partitioning is at the crux of hardware-

software co-design. This approach is a

effective tool with its own set of dynamism

and complexities, which when dealt with

diligence and cognizance, yields great results.

References

[1] FIPS PUB 197, Advanced Encryption

Standard (AES), National Institute of

Standards and Technology, U.S. Department

of Commerce, November

2001,(http://csrc.nist.gov/publications/fips/fip

s197/fips-197.pdf).

[2] Jason G. Tong, Ian D. L. Anderson, and

Mohammed A. S. Khalid: Soft-Core

Processors for Embedded Systems, the 18th

International Conference on Microelectronics

(ICM) 2006.

[3] J. Daemen and V. Rijmen," AES Proposal:

Rijndael," AES Algorithm Submission, Sept.

1999.

[4] Ernst, R.: "Co-design of embedded systems:

status and trends", Proceedings of IEEE

Design and Test, April–June 1998, pp.45–54

[5] Y. Li, T. Callahan, E. Darnell, R. Harr, U.

Kurkure, and J.Stockwood, "Hardware-

Software Codesign of Embedded

Reconfigurable Architectures", in Proc.

Design Automation Conference, 2000.

[6] Altera Corporation, "Nios Embedded

Processor, 32-Bit Programmer's Reference

Manual" [Online Document] January 2003

[7] Altera Corporation, "Nios Software

Development Tutorial," [Online Document],

2003 July, [Cited2004 March 1], Available

HTTP:

http://www.altera.com/literature/tt/tt_nios_sw

.pdf

[8] Kuan Jen Lin, Chin-Mu Hsiao, and Ching

Hung Jhan. (2009). Exploring HW/SW Co-

design of AES Algorithm Using Custom

Instructions.

