

November-December 2019

 ISSN: 0193-4120 Page No. 2280 - 2290

2280

Published by: The Mattingley Publishing Co., Inc.

Parallel K-Means Clustering Algorithm on Map

Reduce Framework

Seung-Hee Kim
1,

Jun-Ki Min
2

1
 Department of IT Convergence Software Engineering, Korea University of Technology and Education, Republic

of Korea, sh.kim@koreatech.ac.kr
2
School of Computer Science and Engineering, Korea University of Technology and Education, Republic of

Korea, jkmin@koreatech.ac.kr



Article Info

Volume 81

Page Number: 2280 - 2290

Publication Issue:

November-December 2019

Article History

Article Received: 5 March 2019

Revised: 18 May 2019

Accepted: 24 September 2019

Publication: 12 December 2019

Abstract

Clustering is the algorithm for partitioning the points in a given data set into several

groups. The goal of clustering is that the points in a group are similar while the

dissimilar points are in the different groups. Among the diverse clustering algorithms,

K-Means as a center based clustering algorithm is one of the most widely used

algorithms. In this paper, we propose an efficient parallel K-mean algorithm, called

MPKMeans, which utilizes the MapReduce framework for processing large volume

data sets. In MPKMeans, for each center, we maintain the distance to the closest center

of it and we check whether each point is needed to compute the distances to all center

points by using the maintained minimal distances. Additionally, in contrast to the

existing parallel algorithm, since we design MPKMeans composed of map phases

only, we eliminate the overhead for conducting shuffle and reduce phases.

Keywords: Clustering, K-Means, MapReduce, BigData

1. INTRODUCTION

Clustering is one of fundamental problem in the

data analysis and understanding. The goal of data

clustering is to split a set of multi-dimensional

points into groups known as clusters such that the

points belonging to the same group are as similar

as possible whereas the dissimilar points are

located in different clusters.

One of the most widely used data clustering

methods is K-means algorithm [1] for

unsupervised classification and and analysis for

multivariate observations. Owing to its

simplicity and its linearity of time complexity,

K-means clustering algorithm is one of the most

popular and efficient algorithm. It has been

widely used in diverse applications such as such

as recommendation [2, 3], data mining [4, 5],

machine learning [6], pattern recognition [7].

As an unsupervised learning algorithm, K-Means

algorithm is based on iterative and repetitive

processing. The requirement of K-Means is to

provide the number of clusters k as an input

parameter. Given a number of clusters k,

K-Means algorithm partitions a d-dimensional

data set D =={p1, p2, ..., pn} into k clusters and

computes the center of each cluster iteratively.

In each iteration, the computation of the distance

from each point p in D to centers calculated in the

previous iteration is the crux of K-Means in order

to assign p into the closest center which

represents a cluster. Furthermore, at the initial

iteration, k centers are randomly generated since

there are no centers computed with the data set D.

Furthermore, in K-means algorithm, the results

November-December 2019

 ISSN: 0193-4120 Page No. 2280 - 2290

2281

Published by: The Mattingley Publishing Co., Inc.

of one iteration are not stored to feed the next

iteration. Each calculation is done on original

dataset. Therefore, as the number n and

dimension d of points increase, execution time of

K-means algorithm becomes slow down.

Nowadays, the volume of data increases

explosively due to the proliferation of internet

and smart devices and thus classical tool and

systems are not applicable for bigdata. Therefore,

the traditional serial K-means algorithm running

on a single machine becomes computationally

infeasible. For such data-intensive applications,

the MapReduce [8] has recently attracted a lot of

attention. As a distributed and parallel data

processing framework, MapReduce provides a

programming model that allows easy

development of scalable parallel applications to

process big data on large clusters of commodity

machines. Google's MapReduce or its

open-source equivalent Hadoop [9] is a powerful

tool for building such applications.

In this paper, we propose an efficient parallel

K-means clustering algorithm, called

MPKMeans (abbreviated from Mapreduce based

Parallel K-Means), running on the MapReduce

framework.

Our proposed MPKMeans algorithm calculates k

centers of clusters by running t rounds. In

contrast to previous MapReduce algorithms

[10,11,12], each round of MPKMeans consists of

a single map phase. Thus, we can alleviate the

overhead for synchronization, data grouping and

network transmission during the shuffle and

reduce phases. Furthermore, to reduce the

computational overhead for calculating the

distance from each point to each center, we

devise a method in which we effectively identify

the points whose closet center is not changed.

The rest of this paper is organized as follows. In

Section 2, briefly explain the traditional K-means

algorithm and MapReduce. Section 3 provides

the summary of related work. In Section 4, we

present the details of our proposed parallel

MPKMeans algorithm. We demonstrate the

efficiency of our developed algorithm compared

with previous parallel K-Means algorithm in

Section 5. The research is summarized in Section

6.

2. PRELIMINARY

Since our work is based on parallel data

clustering, we first explain the behavior of the

traditional K-means algorithm and next present

the feature of the MapReduce framework.

1.1 K-means algorithm

In 1967, MacQueen [1] developed K-Means

clustering algorithm for unsupervised

classification and analysis for multivariate

observations. Since K-means clustering

technique has long and rich history, there are

many variants. Among the diverse variants

[13,14,15,16,18] of serial K-means clustering

algorithm, Lloyd’s algorithm [13] is regarded as

a typical K-Means algorithm. Figure 1 shows the

pseudo code of Lloyd’s algorithm.

Procedure K-Means(D, k)

D: a set of d-dimensional data set

k: the number of clusters

1: initialize k centers K ={c1, c2,..., ck}

2: repeat

3: for each p  D do

4: find closest center ci in K

5: assign p to the Cluster Ci

6: update every ci  K using the points in each Ci

7: until there are no changes in K

Figure 1: Pseudo code of Lloyd’s algorithm

As shown in Figure 1, K-means algorithm takes a

set of d-dimensional data set D={p1, p2, ..., pn},

and the number of clusters k. Initially, k centers

are randomly generated (line 1 of K-Means in

Figure 1). Let a set of k centers be K ={c1, c2,...,

ck}. For each point p in D, the closest center Ci

among k centers is identified and assign p to the

cluster Ci represented by Ci in the for loop (lines

3-5). After assigning every point p to the cluster

Ci whose center Ci is closest among k centers c1,

November-December 2019

 ISSN: 0193-4120 Page No. 2280 - 2290

2282

Published by: The Mattingley Publishing Co., Inc.

c2,..., ck, we compute the center of each cluster Ci

by using the points allocated in Ci (line 6).

Ideally, the main loop (lines 3-6) of K-means

algorithm is repeated until the k centers

converges and there is no change (line 7).

However, in practice, this condition may never

be satisfied or its satisfaction may require

massive iterations. Thus, in general, the main

loop of the K-Means algorithm is usually

bounded to a fixed number t.

Given a d-dimensional data set D={p1, p2, ..., pn},

since we have to compute the distance from each

point p in D to every center in K, the time

complexity of the main loop of K-means

becomes O(dnk) and since the maximum

iteration number is t, the time complexity of

K-means algorithm is O(tdnk).

Although K-means algorithm is simple and

shows the linear time complexity, it has the

following shortcomings. The first one is that it is

hard to know the proper cluster number k for a

given data set in advance. The second thing is the

high dependency of clustering quality to the

initial k centers. The last is that the calculation of

the distance between each d-dimensional point p

in D and each center ci in K in order to find the

closest center for each point p is the performance

bottleneck of K-Means since the results of one

iteration are not stored to feed the next iteration.

In other words, each calculation is done on

original dataset. In this work, we alleviate the last

shortcoming by developing an efficient parallel

K-means algorithm.

1.2 MapReduce

Inspired by the map and reduce primitives

present in functional languages, Google

developed the MapReduce [8] framework that

enables the users to easily develop large scale

distributed applications. MapReduce is a

distributed as well as parallel processing model

and execution environment in the shared-nothing

clusters of commodity machines. Hadoop [9] is

implemented in the Open Source community as

the MapReduce framework. In Hadoop, using the

Hadoop Distributed File System (HDFS), a large

sized file is initially partitioned into several

fragments, called chunk, and stored in several

machines redundantly for reliability. The size of

a chunk is typically 64 MB.

In MapReduce, a program consists of a map

function and a reduce function which are

user-defined functions. The associated

implementation parallelizes large computations

easily as each map function invocation is

independent and uses re-execution as the primary

mechanism of fault tolerance. Basically, the

MapReduce framework consists of one job

tracker and several task trackers. Each task

tracker is running on a commodity machine,

called slave. A slave processes data using a map

function and a reduce function each of which is

invoked by the task tracker. The job tracker

running on a single machine, called master, takes

responsibility for error detection, load balancing

and so on.

Figure 2: Data flow in MapReduce

Figure 2 illustrates the data flow in the

MapReduce framework. Conceptually, the map

and reduce functions implemented by the user

have the following types:

map(key1, value1) → list(key2, value2)

reduce(key2, list(value2)) → (key3,

list(values3))

In the MapReduce framework, the computation

takes a set of input key/value pairs, and produces

a set of output key/value pairs. The data

November-December 2019

 ISSN: 0193-4120 Page No. 2280 - 2290

2283

Published by: The Mattingley Publishing Co., Inc.

processing in MapReduce is composed of three

phases: map phase, shuffle phase and reduce

phase.

Map phase: In the map phase, a task tracker is

called a mapper. A map function invoked by a

mapper takes a key-value pair (key1, value1) as

input, executes some computation and may

output a set of intermediate key-value pairs

(key2, value2). In addition, by applying a

combine function, additional computation to

intermediate results can be executed.

Shuffle phase: In this phase, intermediate

key-value pairs are grouped with respect to the

key key2. Thus, a reduce function to be executed

in the next phase can obtain a list of values

having the same key. Therefore, through this

phase, each work is assigned the data lists as

(key2, list(value2)).

Reduce phase: Finally, a reduce function with a

key and a value list is invoked by a task tracker,

called a reducer, at the reduce phase. Each reduce

function executes computation for the value list

and emits a key-value list pair (key3, list(value3))

as a final result. The intermediate values are

supplied to the reduce function via an iterator.

This allows MapReduce to handle lists of values

that are too large to fit in main memory.

Furthermore, each mapper can invoke a setup

function before executing map functions and a

cleanup function after executing all map

functions. Similarly, each reducer also has the

setup and cleanup functions.

3. RELATED WORK

In this section, we briefly present several variants

of K-Means algorithm including parallel version

of K-Means clustering.

To solve the issue of estimating the right number

of clusters, G-means [15] and X-means[16] were

proposed. To learn the integer k required in

K-means, G-means [15] uses Gaussian mixture

model. Starting with a small value of k, G-means

splits the clusters that fail a test of spherical

Gaussianity. Between each statistical test, the

K-means algorithm is applied to refine the

solution. In X-means [16], Bayesian information

criterion (BIC) [17] is used to merge or split the

clusters generated by K-means algorithm.

To alleviate the dependency of clustering quality

to the initial k centers, K-means++ was proposed

in [18]. The K-means++ is identical to the

K-mean except the selection of initial k centers.

K-means++ tries to select carefully the set of

initial centers instead of random generation.

Initially, a single center is randomly selected

from a set of points D in K-means++. Let dist(p)

denote the shortest distance from a data point p in

D to the closest center among the centers which

we have already chosen. Then, K-means++

chooses a point pi in D as another center with

probability dist(pi)/pD dist(p) until k initial

centers are generated. In other words,

K-means++ tries to choose the points in D as

initial centers which are far from each other. In

[20], another method for initial center generation

is proposed. In [20], K-means algorithm is

conducted on j sample groups to obtain jk

centers. Then, K-means algorithm is applied

again to the generated jk centers to generate k

centers.

For several years, to speed up K-means

clustering, several parallel algorithms

[10,11,19,12] have been proposed. However,

some parallel K-Means algorithms [10,11] are a

simple extension of a serial K-means algorithm.

In [10,11], the cluster of every point p is

identified by compute the distance from p to

every center of each cluster at the map phase.

Then, during the shuffle phase, the points

belonging to the same cluster are grouped.

Finally, new center of each cluster are calculated

by using the points in the cluster at the reduce

phase. This procedure are repeated for maximum

number of iteration or every cluster’s center is

not changed. In the whole process of iteration,

November-December 2019

 ISSN: 0193-4120 Page No. 2280 - 2290

2284

Published by: The Mattingley Publishing Co., Inc.

since reducers in the MapReduce framework

should fetch the intermediate data blocks from

remote nodes, it will cause a large amount of

communication overheads.

Although the parallel algorithm presented in [19]

consists of a single MapReduce round, since it

computes k centers approximately, it is not an

actual K-means algorithm. In [12], to reduce the

computational overhead, when a point p is an

extreme point, the distance from p to a center is

calculated by L1 distance (i.e., manhattan

distance) instead of L2 distance (i.e., Euclidian

distance). To decide whether p is an extreme

point, kurtosis is used in [12]. However, since

kurtosis is the statistical measure over the data set

D, it is inapplicable to individual point. Thus, the

algorithm in [12] is technically incorrect.

Additionally, in [12] the large computational

overhead for obtaining the farthest point from a

center occurs.

In [21], to reduce the computational overhead of

K-means clustering, a kd-tree is utilized. In this

technique, the number of distance calculation is

reduce by filtering a points which cannot belong

to a cluster by traveling the kd-tree. However, in

the MapReduce framework, there is no

functionality provided for building and accessing

such spatial indexes because it is difficult to

provide efficient and scalable distributed indexes

in multiple machines. Thus, it is hard to apply the

technique proposed in [21] to the MapReduce

framework.

4. MPKMEANS

In this section, we present the details of our

proposed algorithm MPKMeans. Our proposed

MPKMeans algorithm calculates k centers of

clusters by running t rounds. In contrast to

previous MapReduce algorithms [10,11,12],

each round of MPKMeans consists of a single

map phase. Thus, we can alleviate the overhead

for synchronization, data grouping and network

transmission during the shuffle and reduce

phases. Furthermore, we devise a method in

which the computational overhead by exploiting

the minimum distance from each center ci to the

other centers.

Definition 1. Given a center ci in a set of k

centers K ={c1, c2,..., ck}, cmdisti = min1 j k, j i

distance(ci, cj), where (ci, cj) is ||ci-cj||. In other

words, cmdisti denotes the minimum L2 distance

of the center ci to the other centers in K.

Figure 3: The relationship of a point p and cmdisti

Figure 3 illustrates that a point p within the half

of cmdisti from a center ci, ci is the closest center

of p among c1, c2,..., ck. Let us assume that cj is

the closest center of the center ci as shown in

Figure 3. Then, when a point p is located within a

half of cmdisti from ci, p is closer to ci than cj.

Furthermore, since cj is the closest center of ci, ci

is the closest center of p. From the above

observation, we devise the following lemma.

Lemma 1. Given a center ci in a set of k centers K

= {c1, c2,..., ck} and a point p  D, if distance(p,

ci)  cmdisti /2, ci is the closest center of p among

c1, c2,..., ck.

Proof. When distance(p, ci)  cmdisti/2 is

satisfied, 2distance(p, ci)  cmdisti. By Definition

1, since cmdisti is the distance from ci to its

closest center, cmdisti  distance(ci, cj) always

holds for the every centers cj ( ci) in K. Thus, we

have 2distance(p, ci)  distance(ci, cj). Then, we

get

distance(p, ci)  distance(ci, cj)- distance(p,

ci) . (1)

November-December 2019

 ISSN: 0193-4120 Page No. 2280 - 2290

2285

Published by: The Mattingley Publishing Co., Inc.

In addition, by triangle inequality, we know

distance(ci, cj)  distance(p, ci) + distance(p, cj).

Then, we have

distance(ci, cj) - distance(p, ci)  distance(p,

cj). (2)

By using (1) and (2), we get distance(p, ci) 

distance(p, cj) for every center cj ( ci) in K if

distance(p, ci)  cmdisti/2. In other words, ci is

the closet center of p.

Given a cluster Ci whose center ci, if a point p is

located within cmdisti/2, we do not need to

calculate the distance from p to other centers

since ci is the closest center of p by Lemma 1.

The pseudo code of our proposed algorithm

MPKMeans is presented in Figure 4. As shown

in Figure 4, MPKMeans takes D, k, t which are

the set of d-dimensional data, number of clusters

and number of iterations, respectively. Initially,

we generate a set of k centers K (line 1 of

MPKMeans in Figure 4). We then calculate

cmdisti for each center ci in K by invoking

compute_cmdist() and keep the all cmdistis into

M (line 2 of

Procedure MPKMeans(D, k, t)

D: a set of d-dimensial data set

k: the number of clusters

t: the number of iteration

1: initialize k centers K ={c1, c2,..., ck}

2: M = compute_cmdist(K)

3: broadcast K, M

4: for itr = 1 to t do

5: S= RunMapReduce(ClusterRound)

6: K = compute_centers(S)

7: M = compute_cmdist(K)

8: broadcast K, M

Figure 4: Pseudo code of MPKMeans

MPKMeans in Figure 4). In other words, M is

{cmdist1, cmdist2, ..., cmdistk}. To utilize the

center set K and minimum distance set M in every

machine, K and M are broadcast to every

machine participated in the MapReduce

framework. Then, MPKMeans executes the

MapReduce algorithm ClusterRound for t times

and, at the end of each iteration, MPKMeans

updates K by invoking compute_centers

procedure with the result of ClusterRound S and

recalculates all cmdistis in M by using the newly

computed centers (lines 4-7). Note that, to

compute the new center of each cluster, the sum

and number of points belonging to the cluster are

required. And next, since K and M are required at

the next round, K and M is broadcast repeatedly

(line 8 in Figure 4).

Figure 5. Pseudo code of ClusterRound

ClusterRound.Mapper

ClusterRound.setup()

1: sums = {sum1=0, sum2=0, ..., sumk=0}

2: counts = {count1=0, count2=0, ..., countk=0}

ClusterRound.map(key, p)

key: null

p: a point in D

1: minDist = , idx = -1, i =1

2: for i = 1 to k do

3: if (distance(p, ci) < minDist)

4: idx = i

5: if(dist(p, ci) < cmdisti /2) break;

6: minDist = distance(p, ci)

7: sumidx = sumidx+p

8: countidx++

ClusterRound.cleanup()

1: for i = 1 to k do

2: emit(null, <i, sumi, counti>)

Figure 5: Pseudo code of ClusterRound

Figure 5 illustrates pseudo code of ClusterRound

invoked by MPKMeans. In contrast to the

previous MapReduce algorithms, our proposed

algorithm MPKMeans conducts the map phase

only in each round.

As mentioned in Section 2, each mapper can

invoke a setup function before executing map

functions. In our algorithm, setup function is

used for initializing the variables sums = {sum1,

sum2, ..., sumk} and counts = {count1, count2, ...,

countk} which keep the sum of coordinates of the

points belonging to clusters and the numbers of

points in clusters (lines 1-2 of

ClusterRound.setup in Figure 5).

November-December 2019

 ISSN: 0193-4120 Page No. 2280 - 2290

2286

Published by: The Mattingley Publishing Co., Inc.

In the map function of ClusterRound in Figure 5,

minDist keeps the current minimum distance

from a point p to a center cidx. Thus, for each

center ci with 1  i  k, we calculate distance(p,

ci) and if distance(p, ci) is less than minDist, we

keep the index i in the variable idx and update

minDist by distance(p, ci) (lines 2-6 of

ClusterRound.map in Figure 3). Furthermore, if

distance(p, ci)  cmdisti/2, we do not need to

calculate the distances from p to the other centers

since ci is the closest center of p by Lemma 1.

Thus, when such a condition is satisfied, we exit

the loop for finding the closest center (line 5).

Finally, we accumulate the coordinates of p in

sumidx and increase countidx by 1 (lines 7-8 of

ClusterRound.map in Figure 5) since they are

sufficient to compute new center of the cluster

Cidx at line 6 in Figure 4.

After all points are processed by the mapper, the

accumulated coordinate and count for each

cluster are emitted by the cleanup function (lines

1-2 of ClusterRound.cleanup in Figure 5).

Procedure compute_centers(S)

1: tss = {ts1=0, ts2=0, ..., tsk=0}

2: tcs = {tc1=0, tc2=0, ..., tck=0

3: for each <i, sumi, counti> in S do

4: tsi = tsi+sumi

5: tci = tci + counti

6: create K = {c1, c2,..., ck} where ci = tsi/tci

7: return K

Figure 6: compute_centers procedure

Figure 6 shows the procedure compute_centers

invoked by MPKMeans at line 6 in Figure 4. In

the procedure compute_centers, he every sumi

and counti for a cluster Ci (with 1  i  k) emitted

by every mapper are accumulated in tsi and tci,

respectively (lines 3-5 in Figure 6). Then, the

new center ci for each cluster Ci is computed by

dividing tsi by tci and the set of newly computed

centers K are returned (lines 6-7 in Figure 6).

4. EXPERIMENTS

4.1 Experimental Environment

We show the efficiency of our proposed parallel

algorithm MPKMeans by comparing with

another parallel algorithm PKMeans [10].

To perform the experiments, we ran our

implemented algorithms on a cluster of 36

commodity machines. One of machines acts as

the master and the others act as slaves. The

master has 3.1GHz Intel Xeon E3-1220 CPU,

16GByte memory and 500GByte hard-disk. Each

slave has 3.2GHz Intel Core i5 CPU, 4GByte

memory and 1TByte disk. All machines are

connected through a 1Gbps Ethernet switch.

Every machine is running on Linux (Ubuntu

10.04 Lucid). We used Hadoop 2.7.3 for the

MapReduce framework implementation obtained

from [9]. All implemented algorithms were

compiled by Javac1.8.

To evaluate the proposed algorithm, we used

synthetic data sets. The domain of each

dimension is [1, 500,000]. To distribute the

points in the domain space, we initially produced

500 d-dimensional points randomly. Then, for

each initially generated point p, we scattered the

points around p following the normal distribution,

N(p, 50,000
2
).

Table 1: Parameters

Parameter Range Default value

of points (n) 110
7
~ 510

7
 310

7

of clusters (k) 10, 20, 30, 40, 50 20

of dimensions (d) 5, 10, 15, 20, 25 10

of iterations (t) 10, 20, 30, 40, 50 20

To generate d-dimensional data sets as synthetic

data sets, we used some parameters, as

summarized in Table 1, to make diverse

environments. As reported in Table 1, we varied

the number of points n from 110
7
 to 510

7
 to

show the scalability of our algorithm. In addition,

we varied the number of clusters k from 10 to 50

in order to measure the effect of the cluster

November-December 2019

 ISSN: 0193-4120 Page No. 2280 - 2290

2287

Published by: The Mattingley Publishing Co., Inc.

number. We also varied the number of

dimensions d and the number of iterations t. The

default values of n, k, d and t are 310
7
, 20, 10

and 20, respectively.

4.2 Experimental Result

In our experiment, we evaluated the execution

time of each implemented algorithm. We ran

each algorithm five times and report the average

execution time of each algorithm in this section.

Varying the number of points (n): We varied the

number of points n from 110
7
 to 510

7
and plot

the running time of each algorithm in Figure 7.

As shown in Figure 7, the execution times of both

algorithms increase gradually with increasing n

since we have to find the closest center for every

point in both algorithms. However, our proposed

MPKMeans algorithm is about 11% faster than

the previous parallel K-Mean algorithm

PKMeans since we alleviate the computational

overhead by exploiting the minimum distance

from each center to the other centers based on

Lemma 1.

Figure 7: Varying n

Figure 8: Varying k

Varying the number of clusters (k): Figure 8

shows the experimental result varying the

number of cluster k. As illustrated in Figure 8, the

execution time of PKMeans is increased with

increasing the number of cluster k since the

number of group and communication overhead

increase at the shuffle phase as well as the

number of reducers each of which computes the

center of each cluster is increased. In contrast to

PKMeans, since MPKMeans consists of a map

phase only over each MapReduce round, the

overheads occurred at the shuffle and reduce

phases in PKMeans are alleviated. Thus, the

performance of MPKMeans is better than

PKMeans and stable [22-24].

Figure 9: Varying d

Varying the number of dimensions (d): We also

varied the number of dimensions of each point

from 5 to 25 with the default values of other

parameters. In Figure 9, we plot the execution

times of MPKMeans and PKMeans [25].

November-December 2019

 ISSN: 0193-4120 Page No. 2280 - 2290

2288

Published by: The Mattingley Publishing Co., Inc.

As shown in Figure 9, the performances of both

algorithms are degraded as the number of

dimensions increase since the computational

overhead for computing distance between each

point and ever center in order to find the closest

center of each point increases. However,

MPKMeans utilizes the closest distance cmdisti

of each center ci to reduce the computational

overhead for find the closest center of a point p.

Only when distance(p, ci) is greater than

cmdisti/2, MPKMeans computes the distance to

other centers. Thus, MPKMeans is faster than the

previous parallel algorithm PKMeans.

Figure 10: Varying t

Varying the number of iterations (t): In this

experiment, we measure the effect of the number

of iterations. As plotted in Figure 10, although

the execution times of both algorithms linearly

increase as the number of iterations t increases,

MPKMeans shows the better performance than

PKMeans as well as the performance gap

between PKMeans and MPKMeans increases

with increasing t. Consequently, MPKMeans is

superior to PKMeans over all cases.

5. CONCLUSION

In this paper, we propose an efficient parallel

K-Means algorithm consisting of a single map

phase in each MapReduce round. Thus, we can

alleviate the overhead for synchronization, data

grouping and network transmission during the

shuffle and reduce phases. Furthermore, to

alleviate the computational overhead, we utilized

the distance to the closest center of each center.

The calculation of distances between k centers

and points in a data set is reduced by exploiting

the minimum distance from each center to the

other centers since we can guarantee that a center

ci is the closest center of a point p if the distance

from p to ci is less than the half of the minimum

distance from the center ci to the other centers.

ACKNOWLEDGEMENT

This research was supported by Basic Science

Research Program through the National Research

Foundation of Korea (NRF) funded by the

Ministry of Science, ICT

(NRF-2019R1F1A1062511).

REFERENCES

1. J. MacQueen. Some methods for classification

and analysis of multivariate observations, In

Proceedings of Berkeley Symposium on

Mathematical Statistics and Probability, vol. 1,

no. 14, 1967, pp. 281-297.

2. S. Kant, T. Mahara, V. K. Jain, D. K. Jain, and

A. K. Sangaiah. Leader Rank based k-means

clustering initialization method for

collaborative filtering, Computers & Electrical

Engineering, vol. 69, pp. 598-609, Jul. 2018.

https://doi.org/10.1016/j.compeleceng.2017.12.0

01

3. Y. S. Cho, S. C. Moon, S. C. Noh, and K. H. Ryu,

Implementation of Personalized

recommendation System using k-means

Clustering of Item Category based on RFM,

In Proceedings of IEEE International Conf. on

Management of Innovation & Technology

(ICMIT), 2012, pp. 373-383.

https://doi.org/10.1109/ICMIT.2012.6225835

4. L. Mashayekhy, MM. Nejad, D. Grosu, Q. Zhang

and W. Shi. Energy-aware scheduling of

Mapreduce jobs for big data applications,

IEEE Transactions on Parallel & Distributed

Systems, vol. 26, no. 10, pp. 2720–2733, Oct.

2015

https://doi.org/10.1109/TPDS.2014.2358556

https://doi.org/10.1016/j.compeleceng.2017.12.001
https://doi.org/10.1016/j.compeleceng.2017.12.001
https://doi.org/10.1109/ICMIT.2012.6225835
https://doi.org/10.1109/TPDS.2014.2358556

November-December 2019

 ISSN: 0193-4120 Page No. 2280 - 2290

2289

Published by: The Mattingley Publishing Co., Inc.

5. D. Van Hieu and P. Meesad. Fast k-means

clustering for very large datasets based on

mapreduce combined with a new cutting

method, In Knowledge and Systems

Engineering. Springer International Publishing,

2015, pp. 287–298.

https://doi.org/10.1007/978-3-319-11680-8_23

6. M. Tartara and S. Crespi Reghizzi. Parallel

iterative compilation: using MapReduce to

speedup machine learning in compilers, In

Proceedings of Third International Workshop on

Mapreduce and its Applications date. ACM:

Delft, the Netherlands, 2012, pp. 33–40.

https://doi.org/10.1145/2287016.2287023

7. H. Yao, Q. Duan, D. Li and J. Wang. An

improved k-means clustering algorithm for

fish image segmentation, Mathematical and

Computer Modelling, vol. 58, no. 3, pp.790–798,

Aug. 2013.

https://doi.org/10.1016/j.mcm.2012.12.025

8. J. Dean and S. Ghemawat. Mapreduce:

Simplifed data processing on large clusters,

Communication of the ACM, vol. 51, no. 1, 2008,

pp. 107-113.

https://doi.org/10.1145/1327452.1327492

9. Apache, Apache hadoop,

http://hadoop.apache.org, 2010.

10. W. Zhao, H. Ma, and Q. He. Parallel k-means

clustering based on mapreduce, In

Proceedings of IEEE International Conf. on

Cloud Computing, 2009, pp. 674-679.

https://doi.org/10.1007/978-3-642-10665-1_71

11. S. S. Bandyopadhyay, A. K. Halder. P.

Chatterjee, M. Nasipuri, and S. Basu,

HdK-means: Hadoop based parallel K-means

clustering for big data, In Proceedings of IEEE

Calcutta Conference (CALCON), 2019, pp.

452-456.

https://doi.org/10.1109/CALCON.2017.8280774

12. Z. Tang, K. Liu, J. Xiao, L. Yang, and Z. Xiao. A

parallel k‐means clustering algorithm based

on redundance elimination and extreme

points optimization employing MapReduce,

Concurrency and Computation: Practice and

Experience, vol. 29, no. 20, pp. e4109, Mar.

2017.

https://doi.org/10.1002/cpe.4109

13. S. Lloyd. Least squares quantization in PCM,

IEEE transactions on information theory, vol.

28, no. 2, pp. 129-137, Mar. 1982.

14. C. Elkan. Using the triangle inequality to

accelerate k-means, in Proceedings of

International Conference on Machine Learning,

2003, pp. 147-153.

15. G. Hamerly, and C. Elkan. Learning the k in

K-means, in Proceedings of Advances in neural

information processing systems, 2004, pp.

281-288.

16. D. Pelleg, and A. W. Moore. X-means:

Extending K-means with Efficient Estimation

of the Number of Clusters, in Proceedings of

the International Conference on Machine

Learning, 200. pp. 727-734.

17. R. E. Kass, and L.Wasserman. A reference

Bayesian test for nested hypotheses and its

relationship to the Schwarz criterion, Journal

of the american statistical association, vol. 90,

no. 431, pp. 928-934, Sep. 1995.

18. D. Arthur and S. Vassilvitskii. k-means++: The

advantages of careful seeding, in Proceedings

of CM-SIAM symposium on Discrete algorithms,

2007, pp. 127-1037.

https://doi.org/10.1145/1283383.1283494

19. S. Shahrivari and S. Jalili. Single-pass and

linear-time k-means clustering based on

MapReduce, Information Systems, vol. 60, no.

C, pp. 1-12, Aug.-Sep. 2016.

https://doi.org/10.1016/j.is.2016.02.007

20. P. S. Bradley, and U. M. Fayyad. Refining

Initial Points for K-Means Clustering, in

Proceedings of International Conf. on Machine

Learning, pp. 91-99, 1998.

21. K. Alsabti, S. Ranka, and V. Singh. An efficient

k-means clustering algorithm, Electrical

https://doi.org/10.1145/2287016.2287023
https://doi.org/10.1016/j.mcm.2012.12.025
https://doi.org/
https://doi.org/
http://hadoop.apache.org/
https://doi.org/10.1109/CALCON.2017.8280774
https://doi.org/10.1002/cpe.4109

November-December 2019

 ISSN: 0193-4120 Page No. 2280 - 2290

2290

Published by: The Mattingley Publishing Co., Inc.

Engineering and Computer Science. 43,

Syracuse University, 1997.

https://doi.org/10.1109/TPAMI.2002.1017616

22. Kormishkina, L. A., Kormishkin, E. D., Gorin, V.

A., Koloskov, D. A., Koroleva, L. P. 2019.

Environmental investment: the most adequate

neo-industrial response to the growth dilemma of

the economy. Entrepreneurship and

Sustainability Issues, 7(2), 929-948.

http://doi.org/10.9770/jesi.2019.7.2(10)

23. Bernardi, A. 2019. The capability approach and

organizational climate as tools to study

occupational health and safety, Insights into

Regional Development 1(2): 155-169.

https://doi.org/10.9770/ird.2019.1.2(6)

24. Prakash, G., Darbandi, M., Gafar, N., Jabarullah,

N.H., & Jalali, M.R. (2019) A New Design of

2-Bit Universal Shift Register Using Rotated

Majority Gate Based on Quantum-Dot Cellular

Automata Technology, International Journal of

Theoretical Physics,

https://doi.org/10.1007/s10773-019-04181-w.

25. Hussain, H.I., Kamarudin, F., Thaker, H.M.T. &

Salem, M.A. (2019) Artificial Neural Network to

Model Managerial Timing Decision: Non-Linear

Evidence of Deviation from Target Leverage,

International Journal of Computational

Intelligence Systems, 12 (2), 1282-1294.

https://doi.org/10.1109/TPAMI.2002.1017616

