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Abstract 

Clustering is the algorithm for partitioning the points in a given data set into several 

groups. The goal of clustering is that the points in a group are similar while the 

dissimilar points are in the different groups. Among the diverse clustering algorithms, 

K-Means as a center based clustering algorithm is one of the most widely used 

algorithms. In this paper, we propose an efficient parallel K-mean algorithm, called 

MPKMeans, which utilizes the MapReduce framework for processing large volume 

data sets. In MPKMeans, for each center, we maintain the distance to the closest center 

of it and we check whether each point is needed to compute the distances to all center 

points by using the maintained minimal distances. Additionally, in contrast to the 

existing parallel algorithm, since we design MPKMeans composed of map phases 

only, we eliminate the overhead for conducting shuffle and reduce phases. 
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1. INTRODUCTION 

Clustering is one of fundamental problem in the 

data analysis and understanding. The goal of data 

clustering is to split a set of multi-dimensional 

points into groups known as clusters such that the 

points belonging to the same group are as similar 

as possible whereas the dissimilar points are 

located in different clusters.  

One of the most widely used data clustering 

methods is K-means algorithm [1] for 

unsupervised classification and and analysis for 

multivariate observations. Owing to its 

simplicity and its linearity of time complexity, 

K-means clustering algorithm is one of the most 

popular and efficient algorithm. It has been 

widely used in diverse applications such as such 

as recommendation [2, 3], data mining [4, 5], 

machine learning [6], pattern recognition [7].  

As an unsupervised learning algorithm, K-Means 

algorithm is based on iterative and repetitive 

processing. The requirement of K-Means is to 

provide the number of clusters k as an input 

parameter. Given a number of clusters k, 

K-Means algorithm partitions a d-dimensional 

data set D =={p1, p2, ..., pn} into k clusters and 

computes the center of  each cluster iteratively.  

In each iteration, the computation of the distance 

from each point p in D to centers calculated in the 

previous iteration is the crux of K-Means in order 

to assign p into the closest center which 

represents a cluster. Furthermore, at the initial 

iteration, k centers are randomly generated since 

there are no centers computed with the data set D. 

Furthermore, in K-means algorithm, the results 



 

November-December 2019 

  ISSN: 0193-4120 Page No. 2280 - 2290 

 

 

2281 

 
Published by: The Mattingley Publishing Co., Inc. 

of one iteration are not stored to feed the next 

iteration. Each calculation is done on original 

dataset. Therefore, as the number n and 

dimension d of points increase, execution time of 

K-means algorithm becomes slow down.  

Nowadays, the volume of data increases 

explosively due to the proliferation of internet 

and smart devices and thus classical tool and 

systems are not applicable for bigdata. Therefore, 

the traditional serial K-means algorithm running 

on a single machine becomes computationally 

infeasible. For such data-intensive applications, 

the MapReduce [8] has recently attracted a lot of 

attention. As a distributed and parallel data 

processing framework, MapReduce provides a 

programming model that allows easy 

development of scalable parallel applications to 

process big data on large clusters of commodity 

machines. Google's MapReduce or its 

open-source equivalent Hadoop [9] is a powerful 

tool for building such applications. 

In this paper, we propose an efficient parallel 

K-means clustering algorithm, called 

MPKMeans (abbreviated from Mapreduce based 

Parallel K-Means), running on the MapReduce 

framework.  

Our proposed MPKMeans algorithm calculates k 

centers of clusters by running t rounds. In 

contrast to previous MapReduce algorithms 

[10,11,12], each round of MPKMeans consists of 

a single map phase. Thus, we can alleviate the 

overhead for synchronization, data grouping and 

network transmission during the shuffle and 

reduce phases. Furthermore, to reduce the 

computational overhead for calculating the 

distance from each point to each center, we 

devise a method in which we effectively identify 

the points whose closet center is not changed. 

The rest of this paper is organized as follows. In 

Section 2, briefly explain the traditional K-means 

algorithm and MapReduce. Section 3 provides 

the summary of related work. In Section 4, we 

present the details of our proposed parallel 

MPKMeans algorithm. We demonstrate the 

efficiency of our developed algorithm compared 

with previous parallel K-Means algorithm in 

Section 5. The research is summarized in Section 

6. 

2. PRELIMINARY 

Since our work is based on parallel data 

clustering, we first explain the behavior of the 

traditional K-means algorithm and next present 

the feature of the MapReduce framework. 

1.1 K-means algorithm 

In 1967, MacQueen [1] developed K-Means 

clustering algorithm for unsupervised 

classification and analysis for multivariate 

observations. Since K-means clustering 

technique has long and rich history, there are 

many variants. Among the diverse variants 

[13,14,15,16,18] of serial K-means clustering 

algorithm, Lloyd’s algorithm [13] is regarded as 

a typical K-Means algorithm. Figure 1 shows the 

pseudo code of  Lloyd’s algorithm.  

Procedure K-Means(D, k) 

D: a set of d-dimensional data set 

k: the number of clusters 

1: initialize k centers K ={c1, c2,..., ck}  

2: repeat  

3:   for each p  D do 

4:      find closest center ci in K 

5:      assign p to the Cluster Ci 

6:   update every ci  K using the points in each Ci 

7: until there are no changes in K 

Figure 1: Pseudo code of Lloyd’s algorithm 

As shown in Figure 1, K-means algorithm takes a 

set of d-dimensional data set D={p1, p2, ..., pn}, 

and the number of clusters k. Initially, k centers 

are randomly generated (line 1 of K-Means in 

Figure 1). Let a set of k centers be K ={c1, c2,..., 

ck}. For each point p in D, the closest center Ci 

among k centers is identified and assign p to the 

cluster Ci represented by Ci in the for loop (lines 

3-5). After assigning every point p to the cluster 

Ci whose center Ci is closest among k centers c1, 
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c2,..., ck, we compute the center of each cluster Ci 

by using the points allocated in Ci (line 6). 

Ideally, the main loop (lines 3-6) of K-means 

algorithm is repeated until the k centers 

converges and there is no change (line 7). 

However, in practice, this condition may never 

be satisfied or its satisfaction may require 

massive iterations. Thus, in general, the main 

loop of the K-Means algorithm is usually 

bounded to a fixed number t. 

Given a d-dimensional data set D={p1, p2, ..., pn}, 

since we have to compute the distance from each 

point p in D to every  center in K, the time 

complexity of the main loop of K-means 

becomes O(dnk)  and since the maximum 

iteration number is t, the time complexity of 

K-means algorithm is O(tdnk). 

Although K-means algorithm is simple and 

shows the linear time complexity, it has the 

following shortcomings. The first one is that it is 

hard to know the proper cluster number k for a 

given data set in advance. The second thing is the 

high dependency of clustering quality to the 

initial k centers. The last is that the calculation of 

the distance between each d-dimensional point p 

in D and each center ci in K in order to find the 

closest center for each point p is the performance 

bottleneck of K-Means since the results of one 

iteration are not stored to feed the next iteration. 

In other words, each calculation is done on 

original dataset. In this work, we alleviate the last 

shortcoming by developing an efficient parallel 

K-means algorithm. 

1.2 MapReduce  

Inspired by the map and reduce primitives 

present in functional languages, Google 

developed the MapReduce [8] framework that 

enables the users to easily develop large scale 

distributed applications. MapReduce is a 

distributed as well as parallel processing model 

and execution environment in the shared-nothing 

clusters of commodity machines. Hadoop [9] is 

implemented in the Open Source community as 

the MapReduce framework. In Hadoop, using the 

Hadoop Distributed File System (HDFS), a large 

sized file is initially partitioned into several 

fragments, called chunk, and stored in several 

machines redundantly for reliability. The size of 

a chunk is typically 64 MB. 

In MapReduce, a program consists of a map 

function and a reduce function which are 

user-defined functions. The associated 

implementation parallelizes large computations 

easily as each map function invocation is 

independent and uses re-execution as the primary 

mechanism of fault tolerance. Basically, the 

MapReduce framework consists of one job 

tracker and several task trackers. Each task 

tracker is running on a commodity machine, 

called slave. A slave processes data using a map 

function and a reduce function each of which is 

invoked by the task tracker. The job tracker 

running on a single machine, called master, takes 

responsibility for error detection, load balancing 

and so on.  

 

Figure 2: Data flow in MapReduce 

Figure 2 illustrates the data flow in the 

MapReduce framework. Conceptually, the map 

and reduce functions implemented by the user 

have the following types: 

map(key1, value1) → list(key2, value2) 

reduce(key2, list(value2)) → (key3, 

list(values3)) 

In the MapReduce framework, the computation 

takes a set of input key/value pairs, and produces 

a set of output key/value pairs. The data 
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processing in MapReduce is composed of three 

phases: map phase, shuffle phase and reduce 

phase.  

Map phase: In the map phase, a task tracker is 

called a mapper. A map function invoked by a 

mapper takes a key-value pair (key1, value1) as 

input, executes some computation and may 

output a set of intermediate key-value pairs 

(key2, value2). In addition, by applying a 

combine function, additional computation to 

intermediate results can be executed. 

Shuffle phase: In this phase, intermediate 

key-value pairs are grouped with respect to the 

key key2. Thus, a reduce function to be executed 

in the next phase can obtain a list of values 

having the same key. Therefore, through this 

phase, each work is assigned the data lists as 

(key2, list(value2)). 

Reduce phase: Finally, a reduce function with a 

key and a value list is invoked by a task tracker, 

called a reducer, at the reduce phase. Each reduce 

function executes computation for the value list 

and emits a key-value list pair (key3, list(value3)) 

as a final result. The intermediate values are 

supplied to the reduce function via an iterator. 

This allows MapReduce to handle lists of values 

that are too large to fit in main memory. 

Furthermore, each mapper can invoke a setup 

function before executing map functions and a 

cleanup function after executing all map 

functions. Similarly, each reducer also has the 

setup and cleanup functions. 

3. RELATED WORK 

In this section, we briefly present several variants 

of K-Means algorithm including parallel version 

of K-Means clustering. 

To solve the issue of estimating the right number 

of clusters,  G-means [15] and X-means[16] were 

proposed. To learn the integer k required in 

K-means, G-means [15] uses Gaussian mixture 

model. Starting with a small value of k, G-means 

splits the clusters that fail a test of spherical 

Gaussianity. Between each statistical test, the 

K-means algorithm is applied to refine the 

solution. In X-means [16], Bayesian information 

criterion (BIC) [17] is used to merge or split the 

clusters generated by K-means algorithm. 

To alleviate the dependency of clustering quality 

to the initial k centers, K-means++ was proposed 

in [18]. The K-means++ is identical to the 

K-mean except the selection of initial k centers. 

K-means++ tries to select carefully the set of 

initial centers instead of random generation. 

Initially, a single center is randomly selected 

from a set of points D in K-means++.  Let dist(p) 

denote the shortest distance from a data point p in 

D to the closest center among the centers which 

we have already chosen. Then, K-means++ 

chooses a point pi in D as another center with  

probability dist(pi)/pD dist(p) until k initial 

centers are generated. In other words, 

K-means++ tries to choose the points in D as 

initial centers which are far from each other. In 

[20], another method for initial center generation 

is proposed. In [20], K-means algorithm is 

conducted on j sample groups to obtain jk 

centers. Then, K-means algorithm is applied 

again to the generated jk centers to generate k 

centers. 

For several years, to speed up K-means 

clustering, several parallel algorithms 

[10,11,19,12] have been proposed. However, 

some parallel K-Means algorithms [10,11] are a 

simple extension of a serial K-means algorithm. 

In [10,11], the cluster of every point p is 

identified by compute the distance from p to 

every center of each cluster at the map phase. 

Then, during the shuffle phase, the points 

belonging to the same cluster are grouped. 

Finally, new center of each cluster are calculated 

by using the points in the cluster at the reduce 

phase. This procedure are repeated for maximum 

number of iteration or every cluster’s center is 

not changed. In the whole process of iteration, 
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since reducers in the MapReduce framework 

should fetch the intermediate data blocks from 

remote nodes, it will cause a large amount of 

communication overheads. 

Although the parallel algorithm presented in [19] 

consists of a single MapReduce round, since it 

computes k centers approximately, it is not an 

actual K-means algorithm. In [12], to reduce the 

computational overhead, when a point p is an 

extreme point, the distance from p to a center is 

calculated by L1 distance (i.e., manhattan 

distance) instead of L2 distance (i.e., Euclidian 

distance). To decide whether p is an extreme 

point, kurtosis is used in [12]. However, since 

kurtosis is the statistical measure over the data set 

D, it is inapplicable to individual point. Thus, the 

algorithm in [12] is technically incorrect. 

Additionally, in [12] the large computational 

overhead for obtaining the farthest point from a 

center occurs. 

In [21], to reduce the computational overhead of 

K-means clustering, a kd-tree is utilized. In this 

technique, the number of distance calculation is 

reduce by filtering a points which cannot belong 

to a cluster by traveling the kd-tree. However, in 

the MapReduce framework, there is no 

functionality provided for building and accessing 

such spatial indexes because it is difficult to 

provide efficient and scalable distributed indexes 

in multiple machines. Thus, it is hard to apply the 

technique proposed in [21] to the MapReduce 

framework.  

4. MPKMEANS 

In this section, we present the details of our 

proposed algorithm MPKMeans. Our proposed 

MPKMeans algorithm calculates k centers of 

clusters by running t rounds. In contrast to 

previous MapReduce algorithms [10,11,12], 

each round of MPKMeans consists of a single 

map phase. Thus, we can alleviate the overhead 

for synchronization, data grouping and network 

transmission during the shuffle and reduce 

phases. Furthermore, we devise a method in 

which the computational overhead by exploiting 

the minimum distance from each center ci to the 

other centers. 

Definition 1. Given a center ci in a set of k 

centers K ={c1, c2,..., ck}, cmdisti = min1 j k, j i 

distance(ci, cj), where (ci, cj) is ||ci-cj||. In other 

words, cmdisti denotes the minimum L2 distance 

of the center ci to the other centers in K. 

 

Figure 3: The relationship of a point p and cmdisti 

Figure 3 illustrates that a point p within the half 

of cmdisti from a center ci, ci is the closest center 

of p among c1, c2,..., ck. Let us assume that cj is 

the closest center of the center ci as shown in 

Figure 3. Then, when a point p is located within a 

half of cmdisti from ci, p is closer to ci than cj. 

Furthermore, since cj is the closest center of ci, ci 

is the closest center of p. From the above 

observation, we devise the following lemma.  

Lemma 1. Given a center ci in a set of k centers K 

= {c1, c2,..., ck} and a point p  D, if distance(p, 

ci)  cmdisti /2,  ci is the closest center of p among 

c1, c2,..., ck. 

Proof. When distance(p, ci)  cmdisti/2 is 

satisfied, 2distance(p, ci)  cmdisti. By Definition 

1, since cmdisti is the distance from ci to its 

closest center, cmdisti  distance(ci, cj)  always 

holds for the every centers cj ( ci) in K. Thus, we 

have 2distance(p, ci)  distance(ci, cj).  Then, we 

get 

distance(p, ci)  distance(ci, cj)- distance(p, 

ci) .       (1) 
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In addition, by triangle inequality, we know 

distance(ci, cj)  distance(p, ci) + distance(p, cj). 

Then, we have 

distance(ci, cj) - distance(p, ci)   distance(p, 

cj).      (2) 

By using (1) and (2), we get distance(p, ci)  

distance(p, cj) for every center cj ( ci) in K if 

distance(p, ci)  cmdisti/2. In other words, ci is 

the closet center of p. 

Given a cluster Ci whose center ci, if a point p is 

located within cmdisti/2, we do not need to 

calculate the distance from p to other centers 

since ci is the closest center of p by Lemma 1. 

The pseudo code of our proposed algorithm 

MPKMeans is presented in Figure 4. As shown 

in Figure 4, MPKMeans takes D, k, t which are 

the set of d-dimensional data, number of clusters 

and number of iterations, respectively. Initially, 

we generate a set of k centers K (line 1 of 

MPKMeans in Figure 4). We then calculate 

cmdisti for each center ci in K by invoking 

compute_cmdist() and keep the all cmdistis into 

M (line 2 of 

Procedure MPKMeans(D, k, t) 

D: a set of d-dimensial data set 

k: the number of clusters 

t: the number of iteration 

1: initialize k centers K ={c1, c2,..., ck}  

2: M = compute_cmdist(K) 

3: broadcast K, M 

4: for itr = 1 to t do 

5:    S= RunMapReduce(ClusterRound) 

6:    K = compute_centers(S) 

7:  M = compute_cmdist(K) 

8:  broadcast K, M 

Figure 4: Pseudo code of MPKMeans 

MPKMeans in Figure 4). In other words, M is 

{cmdist1, cmdist2, ..., cmdistk}. To utilize the 

center set K and minimum distance set M in every 

machine, K and M are broadcast to every 

machine participated in the MapReduce 

framework. Then, MPKMeans executes the 

MapReduce algorithm ClusterRound for t times 

and, at the end of each iteration, MPKMeans 

updates K by invoking compute_centers 

procedure with the result of ClusterRound  S and 

recalculates all cmdistis in M by using the newly 

computed centers (lines 4-7). Note that, to 

compute the new center of each cluster, the  sum 

and number of points belonging to the cluster are 

required. And next, since K and M are required at 

the next round, K and M is broadcast repeatedly 

(line 8 in Figure 4). 

Figure 5. Pseudo code of ClusterRound 

ClusterRound.Mapper 

ClusterRound.setup() 

1: sums = {sum1=0, sum2=0, ..., sumk=0} 

2: counts = {count1=0, count2=0, ..., countk=0} 

 

ClusterRound.map(key, p) 

key: null 

p: a point in D 

1: minDist = , idx = -1, i =1 

2: for i = 1 to k do 

3:   if (distance(p, ci) < minDist) 

4:      idx = i 

5:      if(dist(p, ci) < cmdisti /2) break; 

6:      minDist = distance(p, ci) 

7: sumidx = sumidx+p 

8: countidx++ 

 

ClusterRound.cleanup() 

1: for i = 1 to k do 

2:  emit(null, <i, sumi, counti>) 

Figure 5: Pseudo code of ClusterRound 

Figure 5 illustrates pseudo code of ClusterRound 

invoked by MPKMeans. In contrast to the 

previous MapReduce algorithms, our proposed 

algorithm MPKMeans conducts the map phase 

only in each round.  

As mentioned in Section 2, each mapper can 

invoke a setup function before executing map 

functions. In our algorithm, setup function is 

used for initializing the variables sums = {sum1, 

sum2, ..., sumk} and counts = {count1, count2, ..., 

countk} which keep the sum of coordinates of the 

points belonging to clusters and the numbers of 

points in clusters (lines 1-2 of 

ClusterRound.setup in Figure 5). 
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In the map function of ClusterRound in Figure 5, 

minDist keeps the current minimum distance 

from a point p to a center cidx. Thus, for each 

center ci with 1  i  k, we calculate distance(p, 

ci) and if distance(p, ci)  is less than minDist, we 

keep the index i in the variable idx and update 

minDist by distance(p, ci) (lines 2-6 of 

ClusterRound.map in Figure 3). Furthermore, if 

distance(p, ci)  cmdisti/2, we do not need to 

calculate the distances from p to the other centers 

since ci is the closest center of p by Lemma 1. 

Thus, when such a condition is satisfied, we exit 

the loop for finding the closest center (line 5). 

Finally, we accumulate the coordinates of p in 

sumidx and increase countidx by 1 (lines 7-8 of 

ClusterRound.map in Figure 5) since they are 

sufficient to compute new center of the cluster 

Cidx at line 6 in Figure 4. 

After all points are processed by the mapper, the 

accumulated coordinate and count for each 

cluster are emitted by the cleanup function (lines 

1-2 of ClusterRound.cleanup in Figure 5). 

Procedure compute_centers(S) 

1: tss = {ts1=0, ts2=0, ..., tsk=0} 

2: tcs = {tc1=0, tc2=0, ..., tck=0 

3: for each <i, sumi, counti> in S do 

4:    tsi = tsi+sumi 

5:  tci = tci + counti 

6: create K = {c1, c2,..., ck} where ci = tsi/tci 

7: return K 

Figure 6: compute_centers procedure 

Figure 6 shows the procedure compute_centers 

invoked by MPKMeans at line 6 in Figure 4. In 

the procedure compute_centers, he every sumi 

and counti for a cluster Ci (with 1  i  k) emitted 

by every mapper are accumulated in tsi and tci, 

respectively (lines 3-5 in Figure 6). Then, the 

new center ci for each cluster Ci is computed by 

dividing tsi by tci and the set of newly computed 

centers K are returned (lines 6-7 in Figure 6). 

 

4. EXPERIMENTS 

4.1 Experimental Environment 

We show the efficiency of our proposed parallel 

algorithm MPKMeans by comparing with 

another parallel algorithm PKMeans [10].  

To perform the experiments, we ran our 

implemented algorithms on a cluster of 36 

commodity machines. One of machines acts as 

the master and the others act as slaves. The 

master has 3.1GHz Intel Xeon E3-1220 CPU, 

16GByte memory and 500GByte hard-disk. Each 

slave has 3.2GHz Intel Core i5 CPU, 4GByte 

memory and 1TByte disk. All machines are 

connected through a 1Gbps Ethernet switch. 

Every machine is running on Linux (Ubuntu 

10.04 Lucid). We used Hadoop 2.7.3 for the 

MapReduce framework implementation obtained 

from [9]. All implemented algorithms were 

compiled by Javac1.8.  

To evaluate the proposed algorithm, we used 

synthetic data sets. The domain of each 

dimension is [1, 500,000]. To distribute the 

points in the domain space, we initially produced 

500 d-dimensional points randomly. Then, for 

each initially generated point p, we scattered the 

points around p following the normal distribution, 

N(p, 50,000
2
). 

Table 1: Parameters 

Parameter Range Default value 

# of points (n) 110
7
~ 510

7
  310

7
 

# of clusters (k) 10, 20, 30, 40, 50 20 

# of dimensions (d) 5, 10, 15, 20, 25 10 

# of iterations (t) 10, 20, 30, 40, 50 20 

 

To generate d-dimensional data sets as synthetic 

data sets, we used some parameters, as 

summarized in Table 1, to make diverse 

environments. As reported in Table 1, we varied 

the number of points n from 110
7
 to 510

7
 to 

show the scalability of our algorithm. In addition, 

we varied the number of clusters k from 10 to 50 

in order to measure the effect of the cluster 
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number. We also varied the number of 

dimensions d and the number of iterations t. The 

default values of n, k, d and t are 310
7
, 20, 10 

and 20, respectively.  

4.2 Experimental Result 

In our experiment, we evaluated the execution 

time of each implemented algorithm.  We ran 

each algorithm five times and report the average 

execution time of each algorithm in this section. 

Varying the number of points (n): We varied the 

number of points n from 110
7
 to 510

7 
and plot 

the running time of each algorithm in Figure 7. 

As shown in Figure 7, the execution times of both 

algorithms increase gradually with increasing n 

since we have to find the closest center for every 

point in both algorithms. However, our proposed 

MPKMeans algorithm is about 11% faster than 

the previous parallel K-Mean algorithm 

PKMeans since we alleviate the computational 

overhead by exploiting the minimum distance 

from each center to the other centers based on 

Lemma 1. 

 

 

Figure 7: Varying n 

 

 

Figure 8: Varying k 

Varying the number of clusters (k): Figure 8 

shows the experimental result varying the 

number of cluster k. As illustrated in Figure 8, the 

execution time of PKMeans is increased with 

increasing the number of cluster k since the 

number of group and communication overhead 

increase at the shuffle phase as well as the 

number of reducers each of which computes the 

center of each cluster is increased. In contrast to 

PKMeans, since MPKMeans consists of a map 

phase only over each MapReduce round, the 

overheads occurred at the shuffle and reduce 

phases in PKMeans are alleviated. Thus, the 

performance of MPKMeans is better than 

PKMeans and stable [22-24]. 

 

Figure 9: Varying d 

Varying the number of dimensions (d): We also 

varied the number of dimensions of each point 

from 5 to 25 with the default values of other 

parameters. In Figure 9, we plot the execution 

times of MPKMeans and PKMeans [25]. 
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As shown in Figure 9, the performances of both 

algorithms are degraded as the number of 

dimensions increase since the computational 

overhead for computing distance between each 

point and ever center  in order to find the closest 

center of each point increases. However, 

MPKMeans utilizes the closest distance cmdisti 

of each center ci to reduce the computational 

overhead for find the closest center of a point p. 

Only when distance(p, ci) is greater than 

cmdisti/2, MPKMeans computes the distance to 

other centers. Thus, MPKMeans is faster than the 

previous parallel algorithm PKMeans. 

 

Figure 10: Varying t 

Varying the number of iterations (t): In this 

experiment, we measure the effect of the number 

of iterations. As plotted in Figure 10, although 

the execution times of both algorithms linearly 

increase as the number of iterations t increases, 

MPKMeans shows the better performance than 

PKMeans as well as the performance gap 

between PKMeans and MPKMeans increases 

with increasing t.  Consequently, MPKMeans is 

superior to PKMeans over all cases.  

5. CONCLUSION 

In this paper, we propose an efficient parallel 

K-Means algorithm consisting of a single map 

phase in each MapReduce round. Thus, we can 

alleviate the overhead for synchronization, data 

grouping and network transmission during the 

shuffle and reduce phases. Furthermore, to 

alleviate the computational overhead, we utilized 

the distance to the closest center of each center. 

The calculation of distances between k centers 

and points in a data set is reduced by exploiting 

the minimum distance from each center to the 

other centers since we can guarantee that a center 

ci is the closest center of a point p if the distance 

from p to ci is less than the half of the minimum 

distance from the center ci to the other centers. 
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