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Abstract 

This paper presents single precision floating point (32-bit) multiplier design using 

Parallel Prefix algorithm and Radix-4 Booth algorithm. Parallel prefix adders such as 

Kogge-Stone and Han-Carlson adders are implemented by parallel prefix algorithm 

is used to perform the partial product addition in the multiplication operation and this 

adder is also used in the exponent addition in the multiplier design. Radix-4 Booth 

algorithm is used to reduce the multiplier bits so that the number of partial products 

generation can be reduced significantly. The simulation results of single precision 

floating point multiplier designed using Kogge-Stone and Han-Carlson adder 
implementations are compared. The multiplier is designed using Tanner EDA 13.0 

tool in 130nm CMOS technology. 

Keywords; Parallel Prefix Algorithm, Radix-4Booth Algorithm, Single Precision 

Floating Point Multiplier, Adders 

 

I.  INTRODUCTION 

 

Arithmetic operations used in DSP 

algorithms and other applications can be 

implemented with many different techniques. 

These different techniques differ with respect to 

their implementation cost such as space, time and 

power. The data involved can be either bit-serial 

or bit-parallel are processed. Generally, a number 

can have an integer and a fractional part. This type 

of number systems are classified into two groups 

such as fixed-point and floating point number 

system. The arithmetic operations performed on 

these type of number systems are called as fixed-

point and floating point arithmetic. In fractional 

fixed point arithmetic, the numbers may be 

considered in the range 1 < x < 1. Hence, the 

product will be in the same range. The word 

length is reduced by keeping the left and dropping 

the right hand part. This would result in a small 

error in the quantized product. Conversely, a 

floating point arithmetic is described by a signed 

mantissa and a signed exponent, ex. ±m 2
±exp

. The 

magnitude of the mantissa is usually normalized 

to the interval [0.5, 1]. Floating point arithmetic is 

used in general purpose computers to handle 

values that vary over a large range. In most DSP 

algorithms, however, the necessary signal range 

can be made small by appropriate scaling of the 

signal levels [5].  

 

Three implementation styles for addition 

and multiplication are frequently encountered in 

many DSP and other applications such as bit-

serial, bit parallel and digit serial. Bit-serial 

systems process 1-bit of the input sample every 

clock cycle. These systems can be synthesized 

using integer linear programming based 

scheduling approach. Bit-parallel systems process 

one whole word of the input sample each clock 

cycle and ideal for high speed applications. Digit-

serial systems process multiple number of bits 

every clock cycle and are best suited for 

applications requiring moderate sample rate, 

where area and power consumptions are critical. 

Bit-serial arithmetic is used for the 

implementation of data-flow algorithms of 

medium complexity and low to medium data rate, 
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whereas Bit-parallel arithmetic operators are used 

for the implementation of data-flow algorithms of 

low complexity and high data rate [5].  

 

Multiplication involves two basic 

operations are the generation of partial products 

and their accumulation. Consequently there are 

two ways to speed up the multiplication process 

such as reduce the number of partial products or 

accelerate their accumulation of the partial 

products. To reduce the number of partial 

products, a straight forward approach is to 

examine 2 or more bits of the multiplier at a time. 

The reduction in the number of partial products 

can reduce the latency of the multiplication 

operation. However, this requires the generation 

of multiples 1A, 2A, 3A, etc., where A is the 

multiplicand [5]. To accelerate the partial products 

addition, high speed adders such as tree adders, 

etc., are used. Parallel Prefix Adders (PPA) are 

suitable for efficient and performance oriented 

designs. PPA are also known as logarithmic 

adders because the delay of these adders are lesser 

of the order of [log N] for an N-bit adder. These 

adders are less complex, regular structures as well 

as faster in operations and also it takes lesser 

number of steps to carry calculation. The various 

types of PPA are available such as Kogge-Stone, 

Brent-Kung, Knowles, Sklansky, Han-Carlson [1]. 

In this paper, we have presented the single 

precision floating point multiplier implementation 

using Booth algorithm which reduces the number 

of partial products and PPAs for faster addition 

process. The results between the implementation 

of Kogge-Stone and Han-Carlson adders are 

compared. The single precision floating point 

representation follows the standard Institute of 

Electrical and Electronics Engineers (IEEE) 

format.  

 

II.  IEEE REPRESENTATION 

 

An IEEE standard for Floating-Point 

arithmetic (IEEE 754) is established in 1985. This 

standard addresses many problems that found in 

the diverse floating point implementations that 

made them difficult to use portably and reliably. 

Most of the hardware floating point arithmetic 

units uses the standard IEEE 754 format. This 

format is a set of representations of symbols and 

numerical values. The IEEE format comprises of 

[6], 

 Finite numbers, which may be either base 

2 (binary) or base 10 (decimal). The 

numerical value of a finite number is 

represented in the equation (1). In equation 

(1),„s‟ is a sign value (zero or one), „c‟ is 

a significand value (or mantissa), „q‟ is 

an exponent value, b is a base (or radix). 
(−1)

s
 × c × b

q
   (1) 

 Two infinities are +∞ and -∞. 

 Two types of NaN are quiet NaN (qNaN) 

and signaling NaN (sNaN). The sign of a 

NaN has no meaning, but it may be 

predictable in some circumstances. 

 

The IEEE 754 format for single precision 

floating point number of in binary representation 

is given in the equation (2) and the decimal 

representation is given in the equation (3). Figure 

1 shows the single precision floating point number 

representation in IEEE 754 format. Sign bit 

represents the sign of the number and the sign of 

the mantissa also. Exponent value is either an 8-

bit unsigned integer (0 to 255) or an 8-bit signed 

integer (-128 to 127). If the unsigned integer 

format is used, the exponent value used in the 

arithmetic is the exponent shifted by a bias value 

127 which means for the IEEE 754 binary 

representation of 32 bits, an exponent value of 127 

is actual zero. The exponent value +127 (i.e. all 

0s) and +128 (i.e. all 1s) are used to indicate 

special numbers. The binary numbers to the right 

of decimal point is 23 bits which is referred as 

mantissa bits and the value „1‟ is referred as an 

implicit leading bit, unless the exponent is stored 

with all zeros[6].  

 

The representation of IEEE 754 in binary format 

is [6], 

 

(-1)
b31

x 2
(b30b29….b23)-127

 x (1.b22b21…b0)  (2) 

 

The representation of IEEE 754 in decimal format 

is [10], 

(-1)
sign

 x 2
(e-127)

 x (1. b23-i 2
-i
) )   (3)

 

https://en.wikipedia.org/wiki/Significand
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Figure 1. Single Precision Floating Point IEEE Format (32 bits) 

 

III.  BOOTH MULTIPLIER 

 

Booth‟s algorithm has the advantage of 

reducing the number of partial products and 

therefore it is widely used in the design of 

hardware or software multipliers. It can be used 

for both signed-magnitude numbers and 2‟s 

complement numbers with no need for a 

correction term. In the modified Booth recoding 

algorithm, the signed digit set {-2, -1, 0, +1, +2} 

is used and therefore it is termed as 5-level Booth 

recoding [7]. In Booth recoding algorithm, first 

multiplier bits are recoded into signed digit 

representation, then the partial products are 

generated using the recoded multiplier digits and 

finally it is accumulated. Booth recoded multiplier 

consists of three parts, the recoding circuitry for 

multiplier bits, the partial product generation and 

accumulation. The multiplier bits are represented 

as Xi+1, Xi are recoded into signed digit Zi with Xi-

1 serving as a reference bit. For an example, 8-bit 

number can be recoded are shown in the Figure 2 

[5]. 

 
Figure 2. Example Bit Pair Recoding of Modified 

Booth Algorithm 

 

Where X-1= 0 is appended after LSB of the 

multiplier bits as a reference bit. The modified 

Booth recoding algorithm to generate Zifrom Xi+1, 

Xi and Xi-1 is given in the Table 1. The value of 

Ziis calculated using the general equation (4) [5].  

 

Zi = Xi+ Xi-1 – 2Xi+1  (4) 

Booth Multiplier can be used in three 

distinct modes such as radix-2, radix-4,radix-8. 

Radix-4 Booth‟s algorithm is most widely because 

the number of partial products generation is 

reduced to n/2 where „n‟ is the number of 

multiplier bits. The Booth algorithm is as follows 

[7], 

 Append zero with the LSB. 

 If number of multiplier bits are even, then 

append the MSB with two zero or 

elseappend with one zero. 

 Divide the multiplier bits into overlapping 

group of 3-bits. 

 Determine the partial products scale factor 

from the recoding table. 

 Compute the multiplicand with the 

determined scale factor and thus results the 

partial product. 
 

The value of Zi(i.e. digit sets)can also be 

represented in the form of binary values and it is 

determined from the logic equations (5), (6) and 

(7) respectively. The Booth multiplier circuit is 

designed based on these binary value 

representation instead of digit sets representation. 

The binary values are represented as M, Y and 

Y2and the corresponding values are given in the 

Table 1 [10]. 

M = Xi+1   (5) 

Y = Xi Xi-1   (6) 

Y2 = (Xi+1 ● Xi ● Xi-1) + (Xi+1 ● Xi ● Xi-1)   (7) 

 

Table 1. Radix-4 MBE Recoding for A x B 

Bits of Multiplier 

B 

Zi M Y Y2 Partial 

Product 

Xi+1 Xi Xi-1 

0 0 0 0 0 0 0 A * 0 

0 0 1 +1 0 1 0 A * 1 
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0 1 0 +1 0 1 0 A * 1 

0 1 1 +2 0 0 1 A * 2 

1 0 0 -2 1 0 1 A * -2 

1 0 1 -1 1 1 0 A * -1 

1 1 0 -1 1 1 0 A * -1 

1 1 1 -0 1 0 0 A * 0 

 

IV.  PARALLEL PREFIX ADDERS 

 

For given „N‟ inputs {XN, ….., X1}, Parallel prefix circuit computes N outputs {YN, …,.Y1}using an 

arbitrary associative operator „‟ and explained as [4], 

Y1 = X1, Y2 = X2 X1, Y3 = X3 X2 X1, ……, YN = XN XN-1 ….  X2 X1   

 (8) 

 

The common prefix computations include addition, incrementation, priority encoding, etc. Most 

prefix computations pre-compute intermediate variables {ZN:N, …., Z1:1} from the inputs. The prefix 

network combines these intermediate variables to form the prefixes {ZN:1, …, Z1:1}. The outputs are post-

computed from the inputs and prefixes [4]. For example, adders take inputs {AN, …, A1}, {BN, …, B1} and 

Cin produces the sum output {SN, …, S1} using intermediate generate (G) and propagate (G) prefix signals 

[4]. The parallel prefix addition follows the three stages [8], 

 Pre-processing Stage:   
G[i:i] = Ai ● Bi,  G[0:0] = Cin      (9) 

P[i:i] = AiBi,  P[0:0] = 0      

 (10) 

 

 

 Prefix-computation:   

G[i:j] =     G[i:i]       if i = j 

       G[i:k] + P[i:k] G[k-1:j]      otherwise    

 (11) 

 

P[i:j] =    P[i:i]  if i = j 

   P[i:k] P[k-1:j]               otherwise    

 (12) 

 Post-processing: 

Ci= G[i:0] 

Si = PiG[i-1:0]        (13) 

 

 

There are different ways to perform prefix 

computation such as serial-prefix structures like 

ripple carry adder have a latency of O(N) where 

„N‟ is the number of bits. Single level carry look 

ahead structure reduce the latency by a constant 

factor. Parallel prefix structure uses a tree 

structure which reduces the latency to O(log N). 

The classic parallel prefix structures are Kogge-

Stone, Brent-Kung and Sklansky. The hybrid 

structures are Han-Carlson (Kogge-Stone and 

Brent-Kung), Knowles (Kogge-Stone and 

Sklansky) and Ladner-Fischer (Sklansky and 

Brent-Kung). An ideal prefix structure have log2N 

stages, a fanout never exceeding 2 at each stage 

and no more than one horizontal track of wire at 

each stage. The classic architecture of prefix 

structure deviates from the ideal architecture with 

2log2N stages, fan-out of [N/2 +1] and N/2 

horizontal tracks [4]. 
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 The conditional sum addition logic for 

prefix addition proposed by Sklansky (1960) 

offers a minimum depth prefix network at the cost 

of increased fan-out for certain computational 

nodes. In 1973, Kogge and Stone proposed an 

algorithm that has both low fan-out and optimal 

depth but the circuit design is complex with the 

large number of interconnects. The algorithm 

proposed by Brent and Kung (1982) uses less 

computational nodes but possess maximal depth 

which accounts for increased latency. In 1980 

Ladner and Fischer proposed a method that 

reduces the maximum fan-out for computational 

nodes in the critical path with slightly higher 

depth compared to Sklansky structure. Han and 

Carlson (1987) proposed the structure that 

combines both Kogge-Stone and Brent-Kung 

topology offers trade-off between logic-depth, 

interconnect count and the number of 

computational nodes. Knowles (2001) presented a 

class of logarithmic adders with minimum depth 

by allowing the fan-out to grow [9].  

 The prefix operator has two essential 

properties namely associative property and 

idempotent property which allows for greater 

parallelism. The associative property is explained 

in the equation (14) and idempotent property is 

explained in the equation (15) [1].  

(G, P)[h:j] (G, P)[j:k] = (G, P)[h:i] (G, P)[i:k]  (14) 

(G, P)[h:j] (G, P)[i:k] = (G, P)[h:k]  (15) 

  

where h >i ≥ j ≥ k. 

 In this paper, valency-2 prefix 

computation is used which means that it uses 2-

input associative operators. The parallel prefix 

structures are distinguished by the arrangement of 

prefix cells. For multiplier design, Han-Carlson 

Adder (HCA) and Kogge-Stone Adder (KSA) 

prefix structures are used and the results are 

compared. In Figure 5, the upper box performs the 

pre-processing and lower box performs the post-

processing operation which is discussed in the 

equation (9), (10) and (13). The middle stage of 

the prefix network comprises of black cells, grey 

cells and buffers. The black cell performs the full 

prefix operations as discussed in the equation (11) 

and (12) whereas the grey cell performs the prefix 

operation of equation (11) only. The buffers are 

used to reduce the loading effect on the critical 

path. The logic circuit of the black and grey cells 

are shown in the Figure 3 and 4 respectively.In 

Figure 3 and 4, „k-1‟ is represented as letter „l‟. 

 

   
Figure 3. Logic Circuit of Black Cell   Figure 4. Logic Circuit of Grey Cell 

 

A. KOGGE-STONE ADDER 

 

Figure 5 shows the prefix structure of 8-bit 

and 24-bit KSA. The 8-bit KSA[8] is used for 

exponent addition and 24-bit KSA [3] is used for 

partial products addition in the multiplier design. 

This prefix structure is suitable for high speed 

applications, but with the cost of area and power. 

The delay of this structure is log2(N) and the 

computational nodes are [N (log2N) – N + 1][8]. 

This structure resolves the fan-out problem by 

recursive doubling algorithm. To limit the lateral 

fan-out, idempotency property is used. But it 

increases the number of lateral wires at each stage. 

The reason is, there is a massive overlap between 

the prefix sub-terms being pre-computed. 
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Figure 5. Prefix Structure of 8-bit and 24-bit KSA 

 

B. HAN-CARLSON ADDER 

 

It is a hybrid design of Brent-Kung and 

Kogge-Stone. Figure 6 shows the prefix structure 

of 8-bit [8] and 24-bit HCA [2]. The first stage is 

the pre-processing stage, the second stage 

resembles Brent-Kung and the middle stages 

resemble kogge-Stone. It possess wires with 

shorter span than KSA. The black and grey cells 

are placed at the odd bit positions in the initial 

stages. In the final stage of prefix computation the 

grey cells are placed at the even bit positions. The 

delay of HCA is given by [log2N + 1] and the 

computation hardware complexity is [(N/2) 

log2N][8]. When compared to KSA, the hardware 

complexity is greatly reduced with the cost of an 

additional stage to its carry merge path. Similar to 

KSA, the 8-bit HCA is used in the exponent 

addition and 24-bit is used in the partial products 

addition. For example, say there are three rows of 

partial products which is 23-bit. First two rows of 

partial products are added using 24-bit HCA. 

From the result of the addition, last two LSB 

values are taken as final product value. The 

remaining 22-bits are added with the last row of 

the partial products using the same 24-bit HCA 

which gives final product appended with 

previously computed two LSBs.  

 

  
Figure 6. Prefix Structure of 8-bit and 24-bit HCA 

 

V.  DESIGN METHODOLOGY 

 

 Figure 7shows the overview of the single 

precision floating point multiplier using MBE and 

PPA.It consists of the components such as Input 

component where it receives two 32-bit single 

precision floating point format as inputs, Bias 

components where it computes the exponent part 
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of the input values, Booth multiplier component 

where the multiplicationof mantissa part takes 

place and the last one is the Normalize component 

where the normalization of the multiplication 

value takes place if it is not in normalized format. 

The sign value is computed by taking XOR of 

MSB of the given two inputs. The multiplication 

procedure is shown in the Figure 8 [10] and the 

block diagram of Booth multiplier part is shown 

in the Figure 9 [10]. 

 The 23-bit booth multiplier component for 

23-bit mantissa multiplication consists of 3-bit 

Radix-4 Booth encoder component to encode the 

multiplier bits, 23-bit partial product generator 

component and 24-bit PPA component for partial 

product addition. Booth Encoder logic circuit and 

23-bit partial product generator logic circuits are 

shown in the Figure 10 and 12 respectively. The 

logic gate of 1-bit partial product generator circuit 

is derived from the logic equation (16) and shown 

in the Figure 11. In equation (16), Xj and Xj-1 is 

consecutive multiplicand bits, Y, Y2 and M are 

encoded values of multiplier bits. In Figure 11, X-

1, X0 represents consecutive bits of the 

multiplicand and M, Y, Y2 represents the encoded 

values of the multiplier bits. Half Adder (HA) is 

used to compute the Partial Product (PP) for the 

corresponding multiplicand bit with the respective 

encoded value. For the first partial product (LSB 

value) CINis considered as „M‟ value and for the 

subsequent partial product generation, CIN value is 

taken from the previous Cout. The 24-bit PPA 

component have two different implementations 

for HCA and KSA. 

PPij= [(Xj● Y ● Y2) + (Xj-1 ● Y ● Y2)]  M   (16) 

       

 

 
Figure 7. Design of Single Precision Floating Point Multiplier using MBE and PPA 
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Figure 8. Mantissa Multiplication Flowchart    Figure 9. Block diagram of Booth 

Multiplier 

 

  
Figure 10. Booth Encoder Logic Circuit      Figure 11. 1-bit Partial Product Generator 

 

 
Figure 12. 23-bit Partial Product Generator Circuit 
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VI.  SIMULATION RESULTS AND 

COMPARISON 

 

 Figure 13 shows the simulation result for 

A=(-18) and B=(9.5) and the corresponding 

binary values are A = 

(11000001100100000000000000000000)2 and B 

= (01000001000110000000000000000000)2. 

Figure 14 shows the simulation result for A=(-

395.25) and B=(-200.567) and the binary 

representations are A = 

(11000011110001011010000000000000)2 and B 

= (11000011010010001001000100100111)2. 

Table 2 shows the comparison of parameters 

between KSA and HCA implementation of 

multiplier design. The comparison chart for each 

parameter is shown in theFigure 15. 

 

 PDP is calculated from power and delay, 

unit is „fJ‟ where f denotes “femto” (10
-15

). 

PDP = (Power * Delay) [8]. 

 EDP is calculated from PDP and delay, 

unit is „yJs‟ where y denotes “yocto” (10
-

24
). EDP = (PDP * Delay) [8]. 

 

Table 2. Comparison of various parameters between KSA and HCA implementation 

Parameters MBE with KSA MBE with HCA 

Power (µW) 17.842 12.368 

Delay (ns) 22.73 18.01 

Transistor Count 38730 30886 

PDP (fJ) 405.55 222.61 

EDP (yJs) 9.218 2.751 

 

 
Figure 13. Simulation Result 1    Figure 14. Simulation Result 2 
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Figure 15. Comparison chart for various parameters 

 

VII.  CONCLUSION 

 

In this paper, Single precision floating 

point multiplier using Booth and PPA are 

designed and the performance analysis between 

the KSA and HCA implementations are shown in 

the comparsion table. It is shown that, thedelay is 

improved upto 21%, average power consumption 

is improved upto 30% and the area is reduced upto 

20% in HCA implementation than KSA 

implementation. The result shows that the 

performance of the proposed multiplier results 

high speed, nominal power consumption and area 

requirement. 
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