

January - February 2020

ISSN: 0193 - 4120 Page No. 9830 - 9839

9830 Published by: The Mattingley Publishing Co., Inc.

Design and Performance Analysis of Single Precision

Floating Point Multiplier Using Parallel Prefix Adders

Dr. R.Senthil Ganesh
1
, Dr. S.A. Sivakumar

2
, Dr.R.Naveen

3
, Dr. B.Maruthi Shankar

 4

1
Associate Professor-ECE, P.S.R. Engineering College, Sivakasi, Tamilnadu, India.

2
Professor & Head-ECE, Dr.K.V.Subba Reddy College of Engineering for Women, Kurnool, AP, India.
3
Professor & Principal, Dr.K.V.Subba Reddy College of Engineering for Women, Kurnool, AP, India.

4
Associate Professor-ECE, Sri Krishna College of Engineering and Technology, Coimbatore, Tamilnadu, India.

1
senthilganeshgg@gmail.com,

2
drsasivakumar@gmail.com,

3
drnaveenraman@gmail.com,

4
maruthishankar@gmail.com,

Article Info

Volume 82

Page Number: 9830 - 9839

Publication Issue:

January-February 2020

Article History
Article Received: 18 May 2019

Revised: 14 July 2019

Accepted: 22 December 2019

Publication: 14 February 2020

Abstract

This paper presents single precision floating point (32-bit) multiplier design using

Parallel Prefix algorithm and Radix-4 Booth algorithm. Parallel prefix adders such as

Kogge-Stone and Han-Carlson adders are implemented by parallel prefix algorithm

is used to perform the partial product addition in the multiplication operation and this

adder is also used in the exponent addition in the multiplier design. Radix-4 Booth

algorithm is used to reduce the multiplier bits so that the number of partial products

generation can be reduced significantly. The simulation results of single precision

floating point multiplier designed using Kogge-Stone and Han-Carlson adder
implementations are compared. The multiplier is designed using Tanner EDA 13.0

tool in 130nm CMOS technology.

Keywords; Parallel Prefix Algorithm, Radix-4Booth Algorithm, Single Precision

Floating Point Multiplier, Adders

I. INTRODUCTION

Arithmetic operations used in DSP

algorithms and other applications can be

implemented with many different techniques.

These different techniques differ with respect to

their implementation cost such as space, time and

power. The data involved can be either bit-serial

or bit-parallel are processed. Generally, a number

can have an integer and a fractional part. This type

of number systems are classified into two groups

such as fixed-point and floating point number

system. The arithmetic operations performed on

these type of number systems are called as fixed-

point and floating point arithmetic. In fractional

fixed point arithmetic, the numbers may be

considered in the range 1 < x < 1. Hence, the

product will be in the same range. The word

length is reduced by keeping the left and dropping

the right hand part. This would result in a small

error in the quantized product. Conversely, a

floating point arithmetic is described by a signed

mantissa and a signed exponent, ex. ±m 2
±exp

. The

magnitude of the mantissa is usually normalized

to the interval [0.5, 1]. Floating point arithmetic is

used in general purpose computers to handle

values that vary over a large range. In most DSP

algorithms, however, the necessary signal range

can be made small by appropriate scaling of the

signal levels [5].

Three implementation styles for addition

and multiplication are frequently encountered in

many DSP and other applications such as bit-

serial, bit parallel and digit serial. Bit-serial

systems process 1-bit of the input sample every

clock cycle. These systems can be synthesized

using integer linear programming based

scheduling approach. Bit-parallel systems process

one whole word of the input sample each clock

cycle and ideal for high speed applications. Digit-

serial systems process multiple number of bits

every clock cycle and are best suited for

applications requiring moderate sample rate,

where area and power consumptions are critical.

Bit-serial arithmetic is used for the

implementation of data-flow algorithms of

medium complexity and low to medium data rate,

mailto:2

January - February 2020

ISSN: 0193 - 4120 Page No. 9830 - 9839

9831 Published by: The Mattingley Publishing Co., Inc.

whereas Bit-parallel arithmetic operators are used

for the implementation of data-flow algorithms of

low complexity and high data rate [5].

Multiplication involves two basic

operations are the generation of partial products

and their accumulation. Consequently there are

two ways to speed up the multiplication process

such as reduce the number of partial products or

accelerate their accumulation of the partial

products. To reduce the number of partial

products, a straight forward approach is to

examine 2 or more bits of the multiplier at a time.

The reduction in the number of partial products

can reduce the latency of the multiplication

operation. However, this requires the generation

of multiples 1A, 2A, 3A, etc., where A is the

multiplicand [5]. To accelerate the partial products

addition, high speed adders such as tree adders,

etc., are used. Parallel Prefix Adders (PPA) are

suitable for efficient and performance oriented

designs. PPA are also known as logarithmic

adders because the delay of these adders are lesser

of the order of [log N] for an N-bit adder. These

adders are less complex, regular structures as well

as faster in operations and also it takes lesser

number of steps to carry calculation. The various

types of PPA are available such as Kogge-Stone,

Brent-Kung, Knowles, Sklansky, Han-Carlson [1].

In this paper, we have presented the single

precision floating point multiplier implementation

using Booth algorithm which reduces the number

of partial products and PPAs for faster addition

process. The results between the implementation

of Kogge-Stone and Han-Carlson adders are

compared. The single precision floating point

representation follows the standard Institute of

Electrical and Electronics Engineers (IEEE)

format.

II. IEEE REPRESENTATION

An IEEE standard for Floating-Point

arithmetic (IEEE 754) is established in 1985. This

standard addresses many problems that found in

the diverse floating point implementations that

made them difficult to use portably and reliably.

Most of the hardware floating point arithmetic

units uses the standard IEEE 754 format. This

format is a set of representations of symbols and

numerical values. The IEEE format comprises of

[6],

 Finite numbers, which may be either base

2 (binary) or base 10 (decimal). The

numerical value of a finite number is

represented in the equation (1). In equation

(1),„s‟ is a sign value (zero or one), „c‟ is

a significand value (or mantissa), „q‟ is

an exponent value, b is a base (or radix).
(−1)

s
 × c × b

q
 (1)

 Two infinities are +∞ and -∞.

 Two types of NaN are quiet NaN (qNaN)

and signaling NaN (sNaN). The sign of a

NaN has no meaning, but it may be

predictable in some circumstances.

The IEEE 754 format for single precision

floating point number of in binary representation

is given in the equation (2) and the decimal

representation is given in the equation (3). Figure

1 shows the single precision floating point number

representation in IEEE 754 format. Sign bit

represents the sign of the number and the sign of

the mantissa also. Exponent value is either an 8-

bit unsigned integer (0 to 255) or an 8-bit signed

integer (-128 to 127). If the unsigned integer

format is used, the exponent value used in the

arithmetic is the exponent shifted by a bias value

127 which means for the IEEE 754 binary

representation of 32 bits, an exponent value of 127

is actual zero. The exponent value +127 (i.e. all

0s) and +128 (i.e. all 1s) are used to indicate

special numbers. The binary numbers to the right

of decimal point is 23 bits which is referred as

mantissa bits and the value „1‟ is referred as an

implicit leading bit, unless the exponent is stored

with all zeros[6].

The representation of IEEE 754 in binary format

is [6],

(-1)
b31

x 2
(b30b29….b23)-127

 x (1.b22b21…b0) (2)

The representation of IEEE 754 in decimal format

is [10],

(-1)
sign

 x 2
(e-127)

 x (1. b23-i 2
-i
)) (3)

https://en.wikipedia.org/wiki/Significand

January - February 2020

ISSN: 0193 - 4120 Page No. 9830 - 9839

9832 Published by: The Mattingley Publishing Co., Inc.

Figure 1. Single Precision Floating Point IEEE Format (32 bits)

III. BOOTH MULTIPLIER

Booth‟s algorithm has the advantage of

reducing the number of partial products and

therefore it is widely used in the design of

hardware or software multipliers. It can be used

for both signed-magnitude numbers and 2‟s

complement numbers with no need for a

correction term. In the modified Booth recoding

algorithm, the signed digit set {-2, -1, 0, +1, +2}

is used and therefore it is termed as 5-level Booth

recoding [7]. In Booth recoding algorithm, first

multiplier bits are recoded into signed digit

representation, then the partial products are

generated using the recoded multiplier digits and

finally it is accumulated. Booth recoded multiplier

consists of three parts, the recoding circuitry for

multiplier bits, the partial product generation and

accumulation. The multiplier bits are represented

as Xi+1, Xi are recoded into signed digit Zi with Xi-

1 serving as a reference bit. For an example, 8-bit

number can be recoded are shown in the Figure 2

[5].

Figure 2. Example Bit Pair Recoding of Modified

Booth Algorithm

Where X-1= 0 is appended after LSB of the

multiplier bits as a reference bit. The modified

Booth recoding algorithm to generate Zifrom Xi+1,

Xi and Xi-1 is given in the Table 1. The value of

Ziis calculated using the general equation (4) [5].

Zi = Xi+ Xi-1 – 2Xi+1 (4)

Booth Multiplier can be used in three

distinct modes such as radix-2, radix-4,radix-8.

Radix-4 Booth‟s algorithm is most widely because

the number of partial products generation is

reduced to n/2 where „n‟ is the number of

multiplier bits. The Booth algorithm is as follows

[7],

 Append zero with the LSB.

 If number of multiplier bits are even, then

append the MSB with two zero or

elseappend with one zero.

 Divide the multiplier bits into overlapping

group of 3-bits.

 Determine the partial products scale factor

from the recoding table.

 Compute the multiplicand with the

determined scale factor and thus results the

partial product.

The value of Zi(i.e. digit sets)can also be

represented in the form of binary values and it is

determined from the logic equations (5), (6) and

(7) respectively. The Booth multiplier circuit is

designed based on these binary value

representation instead of digit sets representation.

The binary values are represented as M, Y and

Y2and the corresponding values are given in the

Table 1 [10].

M = Xi+1 (5)

Y = Xi Xi-1 (6)

Y2 = (Xi+1 ● Xi ● Xi-1) + (Xi+1 ● Xi ● Xi-1) (7)

Table 1. Radix-4 MBE Recoding for A x B

Bits of Multiplier

B

Zi M Y Y2 Partial

Product

Xi+1 Xi Xi-1

0 0 0 0 0 0 0 A * 0

0 0 1 +1 0 1 0 A * 1

January - February 2020

ISSN: 0193 - 4120 Page No. 9830 - 9839

9833 Published by: The Mattingley Publishing Co., Inc.

0 1 0 +1 0 1 0 A * 1

0 1 1 +2 0 0 1 A * 2

1 0 0 -2 1 0 1 A * -2

1 0 1 -1 1 1 0 A * -1

1 1 0 -1 1 1 0 A * -1

1 1 1 -0 1 0 0 A * 0

IV. PARALLEL PREFIX ADDERS

For given „N‟ inputs {XN, ….., X1}, Parallel prefix circuit computes N outputs {YN, …,.Y1}using an

arbitrary associative operator „‟ and explained as [4],

Y1 = X1, Y2 = X2 X1, Y3 = X3 X2 X1, ……, YN = XN XN-1 ….  X2 X1

 (8)

The common prefix computations include addition, incrementation, priority encoding, etc. Most

prefix computations pre-compute intermediate variables {ZN:N, …., Z1:1} from the inputs. The prefix

network combines these intermediate variables to form the prefixes {ZN:1, …, Z1:1}. The outputs are post-

computed from the inputs and prefixes [4]. For example, adders take inputs {AN, …, A1}, {BN, …, B1} and

Cin produces the sum output {SN, …, S1} using intermediate generate (G) and propagate (G) prefix signals

[4]. The parallel prefix addition follows the three stages [8],

 Pre-processing Stage:
G[i:i] = Ai ● Bi, G[0:0] = Cin (9)

P[i:i] = AiBi, P[0:0] = 0

 (10)

 Prefix-computation:

G[i:j] = G[i:i] if i = j

 G[i:k] + P[i:k] G[k-1:j] otherwise

 (11)

P[i:j] = P[i:i] if i = j

 P[i:k] P[k-1:j] otherwise

 (12)

 Post-processing:

Ci= G[i:0]

Si = PiG[i-1:0] (13)

There are different ways to perform prefix

computation such as serial-prefix structures like

ripple carry adder have a latency of O(N) where

„N‟ is the number of bits. Single level carry look

ahead structure reduce the latency by a constant

factor. Parallel prefix structure uses a tree

structure which reduces the latency to O(log N).

The classic parallel prefix structures are Kogge-

Stone, Brent-Kung and Sklansky. The hybrid

structures are Han-Carlson (Kogge-Stone and

Brent-Kung), Knowles (Kogge-Stone and

Sklansky) and Ladner-Fischer (Sklansky and

Brent-Kung). An ideal prefix structure have log2N

stages, a fanout never exceeding 2 at each stage

and no more than one horizontal track of wire at

each stage. The classic architecture of prefix

structure deviates from the ideal architecture with

2log2N stages, fan-out of [N/2 +1] and N/2

horizontal tracks [4].

January - February 2020

ISSN: 0193 - 4120 Page No. 9830 - 9839

9834 Published by: The Mattingley Publishing Co., Inc.

 The conditional sum addition logic for

prefix addition proposed by Sklansky (1960)

offers a minimum depth prefix network at the cost

of increased fan-out for certain computational

nodes. In 1973, Kogge and Stone proposed an

algorithm that has both low fan-out and optimal

depth but the circuit design is complex with the

large number of interconnects. The algorithm

proposed by Brent and Kung (1982) uses less

computational nodes but possess maximal depth

which accounts for increased latency. In 1980

Ladner and Fischer proposed a method that

reduces the maximum fan-out for computational

nodes in the critical path with slightly higher

depth compared to Sklansky structure. Han and

Carlson (1987) proposed the structure that

combines both Kogge-Stone and Brent-Kung

topology offers trade-off between logic-depth,

interconnect count and the number of

computational nodes. Knowles (2001) presented a

class of logarithmic adders with minimum depth

by allowing the fan-out to grow [9].

 The prefix operator has two essential

properties namely associative property and

idempotent property which allows for greater

parallelism. The associative property is explained

in the equation (14) and idempotent property is

explained in the equation (15) [1].

(G, P)[h:j] (G, P)[j:k] = (G, P)[h:i] (G, P)[i:k] (14)

(G, P)[h:j] (G, P)[i:k] = (G, P)[h:k] (15)

where h >i ≥ j ≥ k.

 In this paper, valency-2 prefix

computation is used which means that it uses 2-

input associative operators. The parallel prefix

structures are distinguished by the arrangement of

prefix cells. For multiplier design, Han-Carlson

Adder (HCA) and Kogge-Stone Adder (KSA)

prefix structures are used and the results are

compared. In Figure 5, the upper box performs the

pre-processing and lower box performs the post-

processing operation which is discussed in the

equation (9), (10) and (13). The middle stage of

the prefix network comprises of black cells, grey

cells and buffers. The black cell performs the full

prefix operations as discussed in the equation (11)

and (12) whereas the grey cell performs the prefix

operation of equation (11) only. The buffers are

used to reduce the loading effect on the critical

path. The logic circuit of the black and grey cells

are shown in the Figure 3 and 4 respectively.In

Figure 3 and 4, „k-1‟ is represented as letter „l‟.

Figure 3. Logic Circuit of Black Cell Figure 4. Logic Circuit of Grey Cell

A. KOGGE-STONE ADDER

Figure 5 shows the prefix structure of 8-bit

and 24-bit KSA. The 8-bit KSA[8] is used for

exponent addition and 24-bit KSA [3] is used for

partial products addition in the multiplier design.

This prefix structure is suitable for high speed

applications, but with the cost of area and power.

The delay of this structure is log2(N) and the

computational nodes are [N (log2N) – N + 1][8].

This structure resolves the fan-out problem by

recursive doubling algorithm. To limit the lateral

fan-out, idempotency property is used. But it

increases the number of lateral wires at each stage.

The reason is, there is a massive overlap between

the prefix sub-terms being pre-computed.

January - February 2020

ISSN: 0193 - 4120 Page No. 9830 - 9839

9835 Published by: The Mattingley Publishing Co., Inc.

Figure 5. Prefix Structure of 8-bit and 24-bit KSA

B. HAN-CARLSON ADDER

It is a hybrid design of Brent-Kung and

Kogge-Stone. Figure 6 shows the prefix structure

of 8-bit [8] and 24-bit HCA [2]. The first stage is

the pre-processing stage, the second stage

resembles Brent-Kung and the middle stages

resemble kogge-Stone. It possess wires with

shorter span than KSA. The black and grey cells

are placed at the odd bit positions in the initial

stages. In the final stage of prefix computation the

grey cells are placed at the even bit positions. The

delay of HCA is given by [log2N + 1] and the

computation hardware complexity is [(N/2)

log2N][8]. When compared to KSA, the hardware

complexity is greatly reduced with the cost of an

additional stage to its carry merge path. Similar to

KSA, the 8-bit HCA is used in the exponent

addition and 24-bit is used in the partial products

addition. For example, say there are three rows of

partial products which is 23-bit. First two rows of

partial products are added using 24-bit HCA.

From the result of the addition, last two LSB

values are taken as final product value. The

remaining 22-bits are added with the last row of

the partial products using the same 24-bit HCA

which gives final product appended with

previously computed two LSBs.

Figure 6. Prefix Structure of 8-bit and 24-bit HCA

V. DESIGN METHODOLOGY

 Figure 7shows the overview of the single

precision floating point multiplier using MBE and

PPA.It consists of the components such as Input

component where it receives two 32-bit single

precision floating point format as inputs, Bias

components where it computes the exponent part

January - February 2020

ISSN: 0193 - 4120 Page No. 9830 - 9839

9836 Published by: The Mattingley Publishing Co., Inc.

of the input values, Booth multiplier component

where the multiplicationof mantissa part takes

place and the last one is the Normalize component

where the normalization of the multiplication

value takes place if it is not in normalized format.

The sign value is computed by taking XOR of

MSB of the given two inputs. The multiplication

procedure is shown in the Figure 8 [10] and the

block diagram of Booth multiplier part is shown

in the Figure 9 [10].

 The 23-bit booth multiplier component for

23-bit mantissa multiplication consists of 3-bit

Radix-4 Booth encoder component to encode the

multiplier bits, 23-bit partial product generator

component and 24-bit PPA component for partial

product addition. Booth Encoder logic circuit and

23-bit partial product generator logic circuits are

shown in the Figure 10 and 12 respectively. The

logic gate of 1-bit partial product generator circuit

is derived from the logic equation (16) and shown

in the Figure 11. In equation (16), Xj and Xj-1 is

consecutive multiplicand bits, Y, Y2 and M are

encoded values of multiplier bits. In Figure 11, X-

1, X0 represents consecutive bits of the

multiplicand and M, Y, Y2 represents the encoded

values of the multiplier bits. Half Adder (HA) is

used to compute the Partial Product (PP) for the

corresponding multiplicand bit with the respective

encoded value. For the first partial product (LSB

value) CINis considered as „M‟ value and for the

subsequent partial product generation, CIN value is

taken from the previous Cout. The 24-bit PPA

component have two different implementations

for HCA and KSA.

PPij= [(Xj● Y ● Y2) + (Xj-1 ● Y ● Y2)]  M (16)

Figure 7. Design of Single Precision Floating Point Multiplier using MBE and PPA

January - February 2020

ISSN: 0193 - 4120 Page No. 9830 - 9839

9837 Published by: The Mattingley Publishing Co., Inc.

Figure 8. Mantissa Multiplication Flowchart Figure 9. Block diagram of Booth

Multiplier

Figure 10. Booth Encoder Logic Circuit Figure 11. 1-bit Partial Product Generator

Figure 12. 23-bit Partial Product Generator Circuit

January - February 2020

ISSN: 0193 - 4120 Page No. 9830 - 9839

9838 Published by: The Mattingley Publishing Co., Inc.

VI. SIMULATION RESULTS AND

COMPARISON

 Figure 13 shows the simulation result for

A=(-18) and B=(9.5) and the corresponding

binary values are A =

(11000001100100000000000000000000)2 and B

= (01000001000110000000000000000000)2.

Figure 14 shows the simulation result for A=(-

395.25) and B=(-200.567) and the binary

representations are A =

(11000011110001011010000000000000)2 and B

= (11000011010010001001000100100111)2.

Table 2 shows the comparison of parameters

between KSA and HCA implementation of

multiplier design. The comparison chart for each

parameter is shown in theFigure 15.

 PDP is calculated from power and delay,

unit is „fJ‟ where f denotes “femto” (10
-15

).

PDP = (Power * Delay) [8].

 EDP is calculated from PDP and delay,

unit is „yJs‟ where y denotes “yocto” (10
-

24
). EDP = (PDP * Delay) [8].

Table 2. Comparison of various parameters between KSA and HCA implementation

Parameters MBE with KSA MBE with HCA

Power (µW) 17.842 12.368

Delay (ns) 22.73 18.01

Transistor Count 38730 30886

PDP (fJ) 405.55 222.61

EDP (yJs) 9.218 2.751

Figure 13. Simulation Result 1 Figure 14. Simulation Result 2

January - February 2020

ISSN: 0193 - 4120 Page No. 9830 - 9839

9839 Published by: The Mattingley Publishing Co., Inc.

Figure 15. Comparison chart for various parameters

VII. CONCLUSION

In this paper, Single precision floating

point multiplier using Booth and PPA are

designed and the performance analysis between

the KSA and HCA implementations are shown in

the comparsion table. It is shown that, thedelay is

improved upto 21%, average power consumption

is improved upto 30% and the area is reduced upto

20% in HCA implementation than KSA

implementation. The result shows that the

performance of the proposed multiplier results

high speed, nominal power consumption and area

requirement.

REFERENCES

[1] A. Beaumont-Smith and C. Lim, “Parallel

Prefix Adder Design”,Proc. I5Ih IEEE Symp.

Comp. Arith., pp. 218-225, Jun 2001.

[2] T. Han and D. Carlson, “Fast Area-Efficient

VLSI adders”,Proc. Symp. Comp. Arith., pp.

49-56, Sep. 1987.

[3] P. Kogge and H. Stone, “A Parallel Algorithm

for the Efficient Solution of a General Class

of Recurrence Equations”,IEEE Trans.

Computers,Vol. C- 22, no. 8, pp. 786-793,

Aug. 1973.

[4] D. Harris. “A Taxonomy of Parallel Prefix

Networks”. Thirty-Seventh Asilomar

Conference on Signals, Systems and

Computers, 2003. Vol. 2, pp. 2213 – 2217,

Nov. 2003.

[5] A.D. Booth, “A Signed Binary Multiplication

Technique”, Qarterly J. Mechan. Appl.

Math., Vol. IV, pp.100-150,1951.

[6] IEEE 754-2008, IEEE Standard for Floating-

Point Arithmetic, 2008.

[7]R. Kalaimathi, R. Senthil Ganesh, “A Survey

on Area Efficient Low Power High Speed

Multipliers”, International Journal for

Research in Applied Science and Engineering

Technology, Vol.5, Issue XI, pp. 2932-2937,

Nov 2017.

[8] R. Senthil Ganesh, R. Kalaimathi, “Design and

Analysis of Kogge-Stone and Han-Carlson

Adders in 130nm CMOS Technology”,

International Journal of Research (IJR),

Vol.5, pp. 1063-1068, Mar 2018.

[9] Y. Choi, “Parallel Prefix Adder Design with

Matrix Representation”, Proc. 17th IEEE

Symposium on Computer Arithmetic, pp 90-

98, Jun 2005.

[10] R. Kalaimathi, R. Senthil Ganesh, “Design of

High Speed, Low Power and Area Efficient

32-bit Floating Point Multiplier”,

International Journal of Advanced

Engineering and Research Development,

Vol.4, Issue XI, pp. , Nov 2017.

.

