Some Fixed Point Theorems with Applications by Using a Concept of Altering Distances

T.Kusuma ${ }^{1^{*}}$ V.Ravindranath ${ }^{2}$ and A.Sree Rama Murthy ${ }^{3}$ (Retd.)
${ }^{\text {* Department of Mathematics, VNR Vignana Jyothi Institute of Engineering and }}$ Technology, Hyderabad-500 090, Telangana, India.
${ }^{2}$ Department of Mathematics J.N.T.U.K, Kakinada-533 003, Andhra Pradesh, India.
${ }^{3}$ Department of Mathematics, Ideal Institute of Technology, Kakinada-533003, Andhra Pradesh, India.

Article Info
Volume 82
Page Number: 8501-8512
Publication Issue:
January-February 2020
Article History
Article Received: 18 May 2019
Revised: 14 July 2019
Accepted: 22 December 2019
Publication: 07 February 2020

Abstract

: We attained few common fixed point theorems with application for two self maps on a complete metric space by using a concept of altering distances. These are the generalizations of the results of the Jose R.Morales and Edixon Rojas[3].

Keywords:Complete metric space, contractive mappings, altering distances, common fixed points.

1Introduction:

In recent times Jose R.Morales and Edixon Rojas established the following some fixed point theorems by using altering distances function.

Theorem 1.1.[3] let \mathcal{H} be a complete metric space and $\mathcal{T}: \mathcal{H} \rightarrow \mathcal{H}$ be a mapping satisfying the following condition:

$$
\chi(d(\mathcal{T} \ell, \mathcal{T} m)) \leq \eta(d(\ell, m)) \chi(d(\ell, m))
$$

where $\chi \in \mathrm{X}$ and $\eta: \Re_{+} \rightarrow[0,1)$ with

$$
\lim _{t \rightarrow u} \sup \eta(u)<1 \forall u>0 .
$$

then b_{0} is a unique fixed point
Corollary 1.2.[3] Let $\mathcal{T}: \mathcal{H} \rightarrow \mathcal{H}$ be a mapping $\operatorname{and}(\mathcal{H}, d)$ be a Complete metric space and satisfying inequality,

$$
\int_{0}^{\chi(d(\mathcal{T} \ell, \mathcal{T} m))} \mu(u) d u \leq \eta(d(\ell, m)) \int_{0}^{\chi(d(\ell, m))} \mu(u) d u
$$

where $\chi \in \mathrm{X}, \mu \in$ Mand $\eta: \Re_{+} \rightarrow[0,1)$ with $\lim _{t \rightarrow u} \sup \eta(u)<1, \forall u>0$.
Then $z_{0} \in \mathcal{H}$ is a unique common fixed point of \mathcal{T}
Similarly we generalize the remaining results of Jose R.Morales and Edixon Rojas[3]
Delbosco[2] and Skof[5] presented a different idea known as altering distances

Definition 1.1.([2] and[5])

A function $\chi: \mathfrak{R}^{+} \rightarrow \mathfrak{R}^{+}$is said to be an altering distances function if the following properties are satisfied

1. χ is continuous and strictly increasing on \mathfrak{R}^{+},
2. $\chi(p)=0$ if and only if $p=0$ and
3. $\chi(\mathcal{p}) \geq \mathcal{M}_{\mathcal{p}}{ }^{k}$ for every $k>0$ where $\mu>0$ and $\mathcal{M}>0$ are constants.

For example, $\chi(p)=p^{2}$
Definition 1.2. Let $\mu: \Re_{+} \rightarrow \Re_{+}$be a function and satisfied the below conditions

1. μ is a Lebesgue integrable function on each compact subset of \Re_{+}.
2. μ is nonnegative
3. $\int_{0}^{\varepsilon} \mu(p) d p>0$ for each $\varepsilon>0$

Lemma 1.3.([1]and [4])

Describe $\chi_{0}: \Re_{+} \rightarrow \Re_{+}$by $\chi_{0}(j):=\int_{0}^{j} \mu(\mathfrak{p}) d \mathcal{p}$ for every $\mathcal{p} \in \mathcal{R}_{+}$and $\mu \in \mathrm{M}$ then $\chi_{0} \in \mathrm{X}$.
Lemma 1.4. Consider $\mathcal{L b e}$ a metric space on d and $\left(\ell_{h}\right)_{h}$ be a sequence in \mathcal{L} such that $\lim _{h \rightarrow \infty} d\left(\ell_{h}, \ell_{h+1}\right)=0$. If $\left(\ell_{h}\right)_{h}$ is not a Cauchy sequence in \mathcal{L}, then \exists an $\epsilon>0$ for which we can find sub sequences $\left(\ell_{i(r)}\right)_{r}$ and $\left(\ell_{j(r)}\right)_{r}$ of $\left(\ell_{\ell}\right)_{h}$ with $i(r)>j(r)>r$ such that $d\left(\ell_{i(r)}, \ell_{j(r)}\right) \geq \epsilon$ and $d\left(\ell_{i(r)-1}, \ell_{j(r)}\right)<\epsilon$ and
i. $\quad \lim _{r \rightarrow \infty} d\left(\ell_{i(r)}, \ell_{j(r)}\right)=\epsilon$.
ii. $\quad \lim _{r \rightarrow \infty} d\left(\ell_{i(r)-1}, \ell_{j(r)}\right)=\epsilon$
iii. $\quad \lim _{r \rightarrow \infty} d\left(\ell_{i(r)-1}, \ell_{j(r)-1}\right)=\epsilon$
iv. $\quad \lim _{r \rightarrow \infty} d\left(\ell_{i(r)}, \ell_{j(r)+1}\right)=\epsilon$
v. $\quad \lim _{r \rightarrow \infty} d\left(\ell_{i(r)+1}, \ell_{j(r)+1}\right)=\epsilon$
vi. $\quad \lim _{r \rightarrow \infty} d\left(\ell_{i(r)+1}, \ell_{j(r)+2}\right)=\epsilon$

2 Main results

Theorem 2.1. Let (\mathcal{H}, d) be a complete metric space and let $p, q: \mathcal{H} \rightarrow \mathcal{H}$ be mappings satisfying the following condition: for every $\ell, m \in \mathcal{H}$
$\chi(d(q, \ell, p q m)) \leq \eta(d(\ell, p m)) \chi(d(\ell, p m))$
where $\chi \in \mathrm{X}$ and $\eta: \mathfrak{R}_{+} \rightarrow[0,1)$ with
$\lim _{t \rightarrow u} \sup \eta(s)<1$, for all $u>0$.
the range of q contains the range of p (2.3)
and $p q=q p$
then p, q, have a unique common fixed point.
Proof:
Since the range of q contains the range of p there exist a point $\ell_{1} \in \mathcal{H} \ni q \ell_{1}=p \ell_{0}$ here ℓ_{0} be an arbitrary point.
Consider $\ell_{n+1}, \ell_{n}, \ell_{n-1}$ such that $\ell_{n+1}=q, \ell_{n}=p \ell_{n-1}$
To showlim ${ }_{n \rightarrow \infty} d\left(\ell_{n}, \ell_{n+1}\right)=0$
Insert $\ell=\ell_{n-1}, m=\ell_{n-2}$ into the equation (2.1)

$$
\begin{align*}
& \chi\left(d\left(q, \ell_{n-1}, p q \ell_{n-2}\right)\right) \leq \eta\left(d\left(\ell_{n-1}, p \ell_{n-2}\right)\right) \chi\left(d\left(\ell_{n-1}, p \ell_{n-2}\right)\right) \\
& \chi\left(d\left(\ell_{n}, \ell_{n+1}\right)\right) \leq \eta\left(d\left(\ell_{n-1}, \ell_{n}\right)\right) \chi\left(d\left(\ell_{n-1}, \ell_{n}\right)\right)<\chi\left(\left(\ell_{n-1}, \ell_{n}\right)\right) \\
& \chi\left(d\left(\ell_{n}, \ell_{n+1}\right)\right)<\chi\left(d\left(\ell_{n-1}, \ell_{n}\right)\right) \tag{2.5}
\end{align*}
$$

$\left(d\left(\ell_{n}, \ell_{n+1}\right)\right)_{n}$ is a non-decreasing sequence.
To shown $\lim _{n \rightarrow \infty} d\left(\ell_{n}, \ell_{n+1}\right)=\delta \geq 0$ there exists a constant δ. Now, we are about to prove that $\delta=0$.
Assume $\delta>0$, then Insert (2.2) in equation (2.5) and setting limits $n \rightarrow \infty$ in (2.5)
Therefore

$$
\begin{aligned}
0<\chi(\delta) \leq \lim _{n \rightarrow \infty} \sup \chi\left(d\left(\ell_{n}, \ell_{n+1}\right)\right) & \\
& \leq \lim _{n \rightarrow \infty} \sup \left[\eta\left(d\left(\ell_{n-1}, \ell_{n}\right)\right) \chi\left(d\left(\ell_{n-1}, \ell_{n}\right)\right)\right] \\
\leq \lim _{n \rightarrow \infty} \sup [& \left.\eta\left(d\left(\ell_{n-1}, \ell_{n}\right)\right)\right] \lim _{n \rightarrow \infty} \sup \left[\chi\left(d\left(\ell_{n-1}, \ell_{n}\right)\right)\right] \\
& \leq \lim _{t \rightarrow \delta} \sup \eta(s) \chi(\delta)<\chi(\delta)
\end{aligned}
$$

Which is not true for our assumption. Hence $\delta=0$.
Implies that $\lim _{n \rightarrow \infty} d\left(\ell_{n}, \ell_{n+1}\right)=0$
Now, we establish $\left(\ell_{n}\right)_{n}$ is a Cauchy sequence in \mathcal{H}.
Consider $\left(l_{n}\right)_{n}$ is not a Cauchy sequence, that is there exists an $\theta_{0}>0$ such that for each positive integer i, there are positive integers $a(i)$ and $b(i)$ with $a(i)>b(i)>i$ such that $d\left(\ell_{a(i)}, \ell_{f(i)}\right) \geq \theta_{0}$ and $d\left(\ell_{a(i)-1}, \ell_{f(i)}\right)<\theta_{0}$.
From Lemma 1.4 we have
$\theta_{0}=\lim _{i \rightarrow \infty} d\left(\ell_{a(i)}, \ell_{f(i)+1}\right)=\lim _{i \rightarrow \infty} d\left(\ell_{a(i)+1}, \ell_{f(i)+2}\right)$
Insert $\ell=\ell_{a(i)}, m=\ell_{\ell(i)-1}$ in equation (2.1)
$\chi\left(d\left(q l_{a(i)}, p q l_{f(i)-1}\right)\right) \leq \eta\left(d\left(l_{a(i)}, p l_{f(i)-1}\right)\right) \chi\left(d\left(l_{a(i)}, p l_{f(i)-1}\right)\right)$
$\chi\left(d\left(l_{a(i)+1}, l_{f(i)+2}\right)\right) \leq \eta\left(d\left(l_{a(i)}, l_{f(i)+1}\right)\right) \chi\left(d\left(l_{a(i)}, l_{f(i)+1}\right)\right)$
$\chi\left(d\left(l_{a(i)+1}, l_{b(i)+2}\right)\right) \leq \chi\left(d\left(l_{a(i)}, l_{b(i)+1}\right)\right)$
By inserting (2.2) and (2.6) in equation (2.7) and taking limit as $n \rightarrow \infty$ in (2.7)

$$
\begin{gathered}
0 \leq \chi\left(\theta_{0}\right)=\lim _{k \rightarrow \infty} \sup \chi\left(d\left(l_{a(i)+1}, l_{f(i)+2}\right)\right) \\
\leq \lim _{k \rightarrow \infty} \sup \eta\left(d\left(l_{a(i)}, l_{f(i)+1}\right)\right) \lim _{k \rightarrow \infty} \sup \chi\left(d\left(l_{a(i)}, l_{f(i)+1}\right)\right)<\chi\left(\theta_{0}\right)
\end{gathered}
$$

This is a contradiction to our assumption,
Thus $\left(\ell_{n}\right)_{n}$ is a Cauchy sequence in the complete metric space (\mathcal{H}, d). Hence there exists $y_{0} \in \mathcal{H}$ such as $\lim _{n \rightarrow \infty} \ell_{n}=y_{0}$.
Now, we shown \mathfrak{p}, q, have a fixed point of y_{0}.
First, we prove that y_{0} is a fixed point of q.
Setting $l=y_{0}, m=\ell_{n-2}$ in equation (2.1)
$\chi\left(d\left(q, y_{0}, p q, \ell_{n-2}\right)\right) \leq \eta\left(d\left(y_{0}, p \ell_{n-2}\right)\right) \chi\left(d\left(y_{0}, p \ell_{n-2}\right)\right)$
$\chi\left(d\left(q, y_{0}, \ell_{n+1}\right)\right) \leq \eta\left(d\left(y_{0}, \ell_{n}\right)\right) \chi\left(d\left(y_{0}, \ell_{n}\right)\right)$
$\chi\left(d\left(q, y_{0}, \ell_{n+1}\right)\right) \leq \chi\left(d\left(y_{0}, \ell_{n}\right)\right)$
where $\chi\left(d\left(y_{0}, \ell_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$ i.e., $\lim _{n \rightarrow \infty} \chi\left(d\left(q, y_{0}, \ell_{n+1}\right)\right)=0$.
Since $\chi \in X$ we have that $\lim _{n \rightarrow \infty} d\left(q, y_{0}, \ell_{n+1}\right)=0$.

$$
\Rightarrow d\left(q, y_{0}, y_{0}\right)=0
$$

$$
q y_{0}=y_{0}
$$

That is y_{0} is a fixed point of q.
To show y_{0} is a fixed point of p.
Insert $l=\ell_{n}, m=y_{0}$ in equation (2.1)
$\chi\left(d\left(q \ell_{n}, p q y_{0}\right)\right) \leq \eta\left(d\left(\ell_{n}, p y_{0}\right)\right) \chi\left(d\left(\ell_{n}, p y_{0}\right)\right)$
$\chi\left(d\left(\ell_{n+1}, p q \mathcal{y}_{0}\right)\right) \leq \eta\left(d\left(\ell_{n}, p y_{0}\right)\right) \chi\left(d\left(\ell_{n}, p y_{0}\right)\right)$
$\chi\left(d\left(\left(\ell_{n+1}, p y_{0}\right)\right)\right) \leq \chi\left(d\left(\ell_{n}, y_{0}\right)\right)$
where $\chi\left(d\left(\ell_{n}, y_{0}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$ i.e., $\lim _{n \rightarrow \infty} \chi\left(d\left(\mathcal{p} y_{0}, \ell_{n+1}\right)\right)=0$.
Since $\chi \in \mathrm{X}$ we have that $\lim _{n \rightarrow \infty} d\left(p y_{0}, y_{0}\right)=0$.

$$
\begin{gathered}
\Rightarrow d\left(p y_{0}, y_{0}\right)=0 \\
p y_{0}=y_{0}
\end{gathered}
$$

Therefore y_{0} is a fixed point of \mathfrak{p}.
y_{0} is a common fixed point of p and q.
Now we show y_{0} is a unique common fixed point of p and q.
Suppose $z_{0} \in \mathcal{H}$ is another common fixed point of p and q.
Insert $\ell=y_{0}, m=z_{0}$ into the equation (2.1)

$$
\chi\left(d\left(q y_{0}, p q z_{0}\right)\right) \leq \eta\left(d\left(y_{0}, p z z_{0}\right)\right) \chi\left(d\left(y_{0}, p z_{0}\right)\right)
$$

$0 \leq \chi\left(d\left(q y_{0}, p q z_{0}\right)\right) \leq \eta\left(d\left(y_{0}, p z_{0}\right)\right) \chi\left(d\left(y_{0}, p z_{0}\right)\right)$
Case 1: If $\chi\left(d\left(q y_{0}, p q z_{0}\right)\right)=0$ then $\chi\left(d\left(y_{0}, z_{0}\right)\right)=0$
Since $\chi \in \mathrm{X}$ we have that $d\left(y_{0}, z_{0}\right)=0 \Rightarrow y_{0}=z_{0}$
Case 2:If $\chi\left(d\left(q y_{0}, p q z_{0}\right)\right)>0$

$$
\begin{array}{r}
0 \leq \chi\left(d\left(q y_{0}, p q, z_{0}\right)\right) \leq \eta\left(d\left(y_{0}, p z_{0}\right)\right) \chi\left(d\left(y_{0}, p z_{0}\right)\right) \\
\chi\left(d\left(y_{0}, z_{0}\right)\right) \leq \eta\left(d\left(y_{0}, z_{0}\right)\right) \chi\left(d\left(y_{0}, z_{0}\right)\right) \\
\chi\left(d\left(y_{0}, z_{0}\right)\right)<\chi\left(d\left(y_{0}, z_{0}\right)\right)
\end{array}
$$

Therefore this is a contradiction to our assumption

$$
\chi\left(d\left(q y_{0}, p q z_{0}\right)\right)=0 \Rightarrow \chi\left(d\left(y_{0}, z_{0}\right)\right)=0
$$

Since $\chi \in \mathrm{X}$ we have that $d\left(y_{0}, z_{0}\right)=0 \Rightarrow y_{0}=z_{0}$
From cases $1 \& 2$
y_{0} is a Unique common fixed point of p and q.

Application 1: The following is an application to Theorem 2.1

Corollary 2.2. Let \mathcal{H} be a complete metric space on d and let $p, q: \mathcal{H} \rightarrow \mathcal{H}$ be mappings satisfying the following condition:

$$
\int_{0}^{\chi(d(q \ell, p q m))} \mu(u) d u \leq \eta(d(\ell, p m)) \int_{0}^{\chi(d(\ell, p m))} \mu(u) d u(2.8)
$$

where $\chi \in \mathrm{X}, \mu \in$ Mand $\eta: \Re_{+} \rightarrow[0,1)$ with
$\lim _{t \rightarrow u} \sup \eta(s)<1, \forall u>0$.
then p, q have a unique common fixed point $y_{0} \in \mathcal{H}$.
Proof. We define $\chi_{0}: \Re_{+} \rightarrow \Re_{+}$by $\chi_{0}(h)=\int_{0}^{h} \mu(u) d u$ for $\in \mathrm{M}$, then $\chi_{0} \in \mathrm{X}$. We can write (2.8) in the form
$\chi_{0}(\chi(d(q, \ell, p q, m))) \leq \eta(d(\ell, p m)) \chi_{0}(\chi(d(\ell, p m)))$
$\chi_{1}(d(q, \ell, p q, m)) \leq \eta(d(\ell, p m)) \chi_{1}(d(\ell, p m))$

Where $\chi_{1}=\chi_{0} 0 \chi \in \chi$. Therefore, we obtain $y_{0} \in \mathcal{H}$ is a unique common fixed point of p, q, by theorem 2.1.

Theorem 2.3. Let $p, q: H \rightarrow H$ be mappings and H be a complete metric space on d and satisfying the following condition:
$\chi(d(q l, p q m)) \leq \eta(d(l, p m)) \chi(d(l, q l))+\zeta(d(l, p m)) \chi(d(p m, p q m))(2.9)$
where $\chi \in \mathrm{X}$ and $\eta, \zeta: \Re_{+} \rightarrow[0,1)$ with

$$
\left.\begin{array}{c}
\eta(t)+\zeta(t)<1 \text { for all } u \in \Re_{+}, \lim _{t \rightarrow 0^{+}} \sup \zeta(t)<1 \\
\lim _{t \rightarrow u^{+}} \sup \frac{\eta(s)}{1-\zeta(s)}<1, \text { for all } u>0 \tag{2.10}
\end{array}\right\}
$$

then p, q have a unique common fixed point $y_{0} \in H$ such that for each $y \in H$
Proof. Consider the sequence $\left(h_{n}\right)_{n}$ defined
$h_{n+1}=q h_{n}=f h_{n-1}, n=1,2, \ldots .$. where $h \in H$ be an arbitrary point
To showlim ${ }_{n \rightarrow \infty} d\left(h_{n}, h_{n+1}\right)=0$
Put $l=h_{n-1}, m=h_{n-2}$ in equation (2.9)

$$
\begin{aligned}
& \chi\left(d\left(q h_{n-1}, p q h_{n-2}\right)\right) \leq \eta\left(d\left(h_{n-1}, p h_{n-2}\right)\right) \chi\left(d\left(h_{n-1}, q h_{n-1}\right)\right) \\
& \quad+\zeta\left(d\left(h_{n-1}, p h_{n-2}\right)\right) \chi\left(d\left(p h_{n-2}, p q h_{n-2}\right)\right) \\
& \begin{array}{c}
\chi\left(d\left(q h_{n-1}, p q h_{n-2}\right)\right) \leq \eta\left(d\left(h_{n-1}, h_{n}\right)\right) \chi\left(d\left(h_{n-1}, h_{n}\right)\right) \\
+\zeta\left(d\left(h_{n-1}, h_{n}\right)\right) \chi\left(d\left(h_{n}, h_{n+1}\right)\right) \\
\chi\left(d\left(h_{n}, h_{n+1}\right)\right)-\zeta\left(d\left(h_{n-1}, h_{n}\right)\right) \chi\left(d\left(h_{n}, h_{n+1}\right)\right) \leq \eta\left(d\left(h_{n-1}, h_{n}\right)\right) \chi\left(d\left(h_{n-1}, h_{n}\right)\right) \\
\chi\left(d\left(h_{n}, h_{n+1}\right)\right)\left[1-\zeta\left(d\left(h_{n-1}, h_{n}\right)\right)\right] \leq \eta\left(d\left(h_{n-1}, h_{n}\right)\right) \chi\left(d\left(h_{n-1}, h_{n}\right)\right) \\
\chi\left(d\left(h_{n}, h_{n+1}\right)\right) \leq \frac{\eta\left(d\left(h_{n-1}, h_{n}\right)\right)}{\left[1-\zeta\left(d\left(h_{n-1}, h_{n}\right)\right)\right]} \chi\left(d\left(h_{n-1}, h_{n}\right)\right)
\end{array}
\end{aligned}
$$

Now, from (2.10) we obtain

$$
\chi\left(d\left(h_{n}, h_{n+1}\right)\right)<\chi\left(d\left(h_{n-1}, h_{n}\right)\right) \forall n \in z_{+}
$$

from Theorem 2.1, we determine that the $\left(d\left(h_{n}, h_{n+1}\right)\right)_{n}$ is non-increasing and converges to 0 . i.e., $\lim _{n \rightarrow \infty} d\left(h_{n}, h_{n+1}\right)=0$

Now, we Prove that $\left(h_{n}\right)_{n}$ is a Cauchy sequence in H. Assume that $\left(h_{n}\right)_{n}$ is not a Cauchy sequence, that is $d\left(h_{a(i)}, h_{b(i)}\right) \geq \theta_{0}$ and $d\left(h_{a(i)-1}, h_{b(i)}\right)<\theta_{0}$ there are positive integers $a(i)$ and $b(i)$ with $a(i)>b(i)>$ i

From Lemma 1.4 we have
$\theta_{0}=\lim _{i \rightarrow \infty} d\left(h_{a(i)+1}, h_{b(i)+2}\right)$ and from (2.9) we get that

$$
\chi\left(\theta_{0}\right)=\lim _{i \rightarrow \infty} \sup \chi\left(d\left(h_{a(i)+1}, h_{b(i)+2}\right)\right)
$$

$$
\begin{aligned}
& \chi\left(\theta_{0}\right)=\lim _{i \rightarrow \infty} \sup \chi\left(d\left(q h_{a(i)}, h_{b(i)-1}\right)\right) \\
& \leq \lim _{i \rightarrow \infty} \operatorname{Sup}\left(\eta\left(d\left(h_{a(i)}, h_{b(i)+1}\right)\right) \chi\left(d\left(h_{a(i)}, h_{b(i)+1}\right)\right)+\zeta\left(d\left(h_{a(i)}, h_{b(i)+1}\right)\right) \chi\left(d\left(h_{a(i)+1}, h_{b(i)+2}\right)\right)\right) \\
& \leq \lim _{i \rightarrow \infty} \operatorname{Sup}\left(\eta\left(d\left(h_{a(i)}, h_{b(i)+1}\right)\right)\right) \lim _{i \rightarrow \infty} \operatorname{Sup}\left(\chi\left(d\left(h_{a(i)}, h_{a(i)+1}\right)\right)\right) \\
& \quad+\lim _{i \rightarrow \infty} \operatorname{Sup}\left(\zeta\left(d\left(h_{a(i)}, h_{b(i)+1}\right)\right)\right) \lim _{i \rightarrow \infty} \operatorname{Sup}\left(\chi\left(d\left(h_{b(i)+1}, h_{b(i)+2}\right)\right)\right) \\
& \chi\left(\theta_{0}\right)=0
\end{aligned}
$$

This is not true
Hence $\left(h_{n}\right)_{n}$ is a Cauchy sequence in the complete metric space (H, d).

Now, we prove that y_{0} is a fixed point of p and q.
First, we show p has a fixed point of y_{0}.
Insert $l=y_{0}, m=h_{n-2}$ in equation (2.9)
$\chi\left(d\left(y_{0}, p q h_{n-2}\right)\right) \leq \eta\left(d\left(y_{0}, p h_{n-2}\right)\right) \chi\left(d\left(y_{0}, q y_{0}\right)\right)$

$$
+\zeta\left(d\left(y_{0}, p h_{n-2}\right)\right) \chi\left(d\left(p h_{n-2}, p q h_{n-2}\right)\right)
$$

$\chi\left(d\left(q y_{0}, h_{n+1}\right)\right) \leq \eta\left(d\left(y_{0}, h_{n}\right)\right) \chi\left(d\left(y_{0}, q y_{0}\right)\right)+\zeta\left(d\left(y_{0}, h_{n}\right)\right) \chi\left(d\left(h_{n}, h_{n+1}\right)\right)$
$\lim _{n \rightarrow \infty} \operatorname{Sup} \chi\left(d\left(q y_{0}, h_{n+1}\right)\right) \leq \lim _{n \rightarrow \infty} \operatorname{Sup} \eta\left(d\left(y_{0}, h_{n}\right)\right) \chi\left(d\left(y_{0}, q y_{0}\right)\right)$

$$
+\lim _{n \rightarrow \infty} \operatorname{Sup} \zeta\left(d\left(y_{0}, h_{n}\right)\right) \chi\left(d\left(h_{n}, h_{n+1}\right)\right)
$$

$0<\chi\left(d\left(q y_{0}, y_{0}\right)\right)<\chi\left(d\left(q y_{0}, y_{0}\right)\right)$
Which is a contradiction. Thus $d\left(q y_{0}, y_{0}\right)=0$
$q y_{0}=y_{0}$.
Now we show y_{0} is a fixed point of p .
Setting $l=h_{n}, m=y_{0}$ in equation (2.9)

$$
\begin{aligned}
& \chi\left(d\left(q h_{n}, p q y_{0}\right)\right) \leq \eta\left(d\left(h_{n}, p y_{0}\right)\right) \chi\left(d\left(h_{n}, q h_{n}\right)\right)+\zeta\left(d\left(h_{n}, p y_{0}\right)\right) \chi\left(d\left(p y_{0}, p q y_{0}\right)\right) \\
& \chi\left(d\left(h_{n+1}, p y_{0}\right)\right) \leq \eta\left(d\left(h_{n}, p y_{0}\right)\right) \chi\left(d\left(h_{n}, h_{n+1}\right)\right)+\zeta\left(d\left(h_{n}, p z_{0}\right)\right) \chi\left(d\left(p y_{0}, p y_{0}\right)\right) \\
& \lim _{n \rightarrow \infty} \operatorname{Sup} \chi\left(d\left(h_{n+1}, p y_{0}\right)\right) \\
& \leq \lim _{n \rightarrow \infty} \operatorname{Sup} \eta\left(d\left(h_{n}, p y_{0}\right)\right) \chi\left(d\left(h_{n}, h_{n+1}\right)\right)+\lim _{n \rightarrow \infty} \operatorname{Sup} \zeta\left(d\left(h_{n}, p y_{0}\right)\right) \chi\left(d\left(p y_{0}, p y_{0}\right)\right)
\end{aligned}
$$

$0<\chi\left(d\left(p y_{0}, y_{0}\right)\right) \leq 0$
Thus $d\left(p y_{0}, y_{0}\right)=0$
$p y_{0}=y_{0}$.
y_{0} is a fixed point p
$\therefore y_{0}$ is a common fixed point p and q.
Now prove that y_{0} is a unique common fixed point p and q.
Suppose $z_{0} \in H$ is another common fixed point of p and q.
Put $l=y_{0}, m=z_{0}$ in equation (2.9)

$$
\begin{gathered}
\chi\left(d\left(q y_{0}, p q z_{0}\right)\right) \leq \eta\left(d\left(y_{0}, p z_{0}\right)\right) \chi\left(d\left(y_{0}, q y_{0}\right)\right)+\zeta\left(d\left(y_{0}, p z_{0}\right)\right) \chi\left(d\left(p z_{0}, p q z_{0}\right)\right) 0 \\
<\chi\left(d\left(q y_{0}, p q z_{0}\right)\right) \leq \eta\left(d\left(y_{0}, p z_{0}\right)\right) \chi\left(d\left(y_{0}, y_{0}\right)\right)+\zeta\left(d\left(y_{0}, p z_{0}\right)\right) \chi\left(d\left(z_{0}, z_{0}\right)\right) \\
0<\chi\left(d\left(q y_{0}, p q z_{0}\right)\right) \leq 0 \\
d\left(y_{0}, z_{0}\right)=0 \Rightarrow y_{0}=z_{0}
\end{gathered}
$$

Therefore y_{0} is a unique common fixed point of $p \& q$

Application 2: The following is an application to the Theorem 2.3

Corollary 2.4.Let (H, d) be a Complete metric space and let $p, q: H \rightarrow H$ be mappings satisfying the following condition:

$$
\begin{equation*}
\int_{0}^{\chi(d(p l, p q m))} \mu(u) d u \leq \eta(d(l, p m)) \int_{0}^{\chi(d(l, q l))} \mu(u) d u+\zeta(d(l, p m)) \int_{0}^{\chi(d(p m, p q m))} \mu(u) d u \tag{2.12}
\end{equation*}
$$

where $\chi \in \mathrm{X}, \mu \in$ Mand $\eta, \zeta: \Re_{+} \rightarrow[0,1)$ with

$$
\left.\begin{array}{c}
\eta(u)+\zeta(u)<1 \text { for all } u \in \mathfrak{R}_{+}, \lim _{t \rightarrow 0^{+}} \sup \zeta(t)<1 \\
\lim _{t \rightarrow u^{+}} \sup \frac{\eta(s)}{1-\zeta(s)}<1, \text { for all } u>0
\end{array}\right\}
$$

then p, q have a unique common fixed point $y_{0} \in H$.
Proof. We define $\chi_{0}: \Re_{+} \rightarrow \Re_{+}$by $\chi_{0}(h)=\int_{0}^{h} \mu(u) d u$ for $\in M$, then $\chi_{0} \in X$ and so inequality (2.12) becomes

$$
\begin{gathered}
\chi_{0}(\chi(d(q l, p q m))) \leq \eta(d(l, p m)) \chi_{0}(\chi(d(l, q l)))+\zeta(d(l, p m)) \chi_{0}(\chi(d(p m, p q m))) \\
\chi_{1}(d(q l, p q m)) \leq \eta(d(l, p m)) \chi_{1}(d(l, p m))
\end{gathered}
$$

Where $\chi_{1}=\chi_{0} 0 \chi \in \chi$. Hence, from Theorem 2.3 we conclude that p, q have a unique common fixed point $y_{0} \in H$.
Theorem 2.5. Let (H, d) be a complete metric space and let $p, q: H \rightarrow H$ be mappings satisfying the following condition: for every $l, m \in H$
$\chi(d(q l, p q m)) \leq \eta(d(l, p m))[\chi(d(l, q l))+\chi(d(p m, p q m))]$
where $\chi \in \mathrm{X}$ and $\zeta: \Re_{+} \rightarrow\left[0, \frac{1}{2}\right)$ with

$$
\lim _{t \rightarrow u^{+}} \sup \frac{\zeta(s)}{1-\zeta(s)}<1, \text { for all } u>0
$$

then p, q have a unique common fixed point $y_{0} \in H$.
Proof. Let $h \in H$ be an arbitrary point, and Let the sequence $\left(h_{n}\right)_{n}$ defined
$h_{n+1}=q h_{n}=p h_{n-1}, n=1,2, \ldots \ldots$
To showlim $n_{n \rightarrow \infty} d\left(h_{n}, h_{n+1}\right)=0$
Insert $l=h_{n-1}, m=h_{n-2}$ in equation (2.13)

$$
\begin{gathered}
\chi\left(d\left(q h_{n-1}, p q h_{n-2}\right)\right) \leq \zeta\left(d\left(h_{n-1}, p h_{n-2}\right)\right)\left[\chi\left(d\left(h_{n-1}, q h_{n-1}\right)\right)+\chi\left(d\left(p h_{n-2}, p q h_{n-2}\right)\right)\right] \\
\chi\left(d\left(h_{n}, h_{n+1}\right)\right) \leq \zeta\left(d\left(h_{n-1}, h_{n}\right)\right)\left[\chi\left(d\left(h_{n-1}, h_{n}\right)\right)+\chi\left(d\left(h_{n}, h_{n+1}\right)\right)\right] \\
\chi\left(d\left(h_{n}, h_{n+1}\right)\right)-\zeta\left(d\left(h_{n-1}, h_{n}\right)\right) \chi\left(d\left(h_{n}, h_{n+1}\right)\right) \leq \zeta\left(d\left(h_{n-1}, h_{n}\right)\right) \chi\left(d\left(h_{n-1}, h_{n}\right)\right) \\
\chi\left(d\left(h_{n}, h_{n+1}\right)\right)\left[1-\zeta\left(d\left(h_{n-1}, h_{n}\right)\right)\right] \leq \zeta\left(d\left(h_{n-1}, h_{n}\right)\right) \chi\left(d\left(h_{n-1}, h_{n}\right)\right) \\
\chi\left(d\left(h_{n}, h_{n+1}\right)\right) \leq \frac{\zeta\left(d\left(h_{n-1}, h_{n}\right)\right)}{\left[1-\zeta\left(d\left(h_{n-1}, h_{n}\right)\right)\right]} \chi\left(d\left(h_{n-1}, h_{n}\right)\right) \\
\chi\left(d\left(h_{n}, h_{n+1}\right)\right)<\chi\left(d\left(h_{n-1}, h_{n}\right)\right) \forall n \in z_{+}
\end{gathered}
$$

as in the proof of Theorem 2.1, we conclude that the $\left(d\left(h_{n}, h_{n+1}\right)\right)_{n}$ is non-increasing and converges to 0 .
i.e., $\lim _{n \rightarrow \infty} d\left(h_{n}, h_{n+1}\right)=0$

Consider $\left(h_{n}\right)_{n}$ is not a Cauchy sequence, That means there are positive integers $a(j)$ and $b(j)$ with $a(j)>b(j)>j$ such that $d\left(h_{a(j)}, h_{b(j)}\right) \geq \theta_{0}$ and $d\left(h_{a(j)-1}, h_{b(j)}\right)<\theta_{0}$.
From Lemma 1.4 we have
$\theta_{0}=\lim _{k \rightarrow \infty} d\left(h_{a(j)+1}, h_{b(j)+2}\right)$ and from (2.13) we get that

$$
\begin{gathered}
\chi\left(\theta_{0}\right)=\lim _{k \rightarrow \infty} \sup \chi\left(d\left(h_{a(j)+1}, h_{b(j)+2}\right)\right) \\
\leq \lim _{k \rightarrow \infty} \operatorname{Sup}\left(\zeta\left(d\left(h_{a(j)+1}, h_{b(j)+1}\right)\right)\left[\chi\left(d\left(h_{a(j)}, h_{a(j)+1}\right)\right)+\chi\left(d\left(h_{b(j)+1}, h_{b(j)+2}\right)\right)\right]\right) \\
\leq \lim _{k \rightarrow \infty} \operatorname{Sup}\left(\zeta\left(d\left(h_{a(j)+1}, h_{b(j)+1}\right)\right) \chi\left(d\left(h_{a(j)}, h_{a(j)+1}\right)\right)+\zeta\left(d\left(h_{a(j)}, h_{b(j)+1}\right)\right) \chi\left(d\left(h_{b(j)+1}, h_{b(j)+2}\right)\right)\right) \\
=\lim _{k \rightarrow \infty} \operatorname{Sup}\left(\zeta\left(d\left(h_{a(j)+1}, h_{b(j)+1}\right)\right)\right) \lim _{k \rightarrow \infty} \operatorname{Sup}\left(\chi\left(d\left(h_{a(j)+1}, h_{a(j)+1}\right)\right)\right) \\
+\lim _{k \rightarrow \infty} \operatorname{Sup}\left(\zeta\left(d\left(h_{a(j)}, h_{b(j)+1}\right)\right)\right) \lim _{k \rightarrow \infty} \operatorname{Sup}\left(\zeta\left(d\left(h_{b(j)+1}, h_{b(j)+2}\right)\right)\right) \\
\chi\left(\theta_{0}\right)=0
\end{gathered}
$$

This is a contrary to our assumption
Thus $\left(h_{n}\right)_{n}$ is a Cauchy sequence in the complete metric space (H, d). Hence there exists $y_{0} \in H$ such that $\lim _{n \rightarrow \infty} h_{n}=y_{0}$.
Now, we prove that y_{0} is a fixed point of p and q.
First, we show y_{0} is a fixed point of q.
Setting $l=y_{0}, m=h_{n-2}$ in equation (2.13)

$$
\begin{gathered}
\chi\left(d\left(q y_{0}, p q h_{n-2}\right)\right) \leq \zeta\left(d\left(y_{0}, p h_{n-2}\right)\right)\left[\chi\left(v\left(y_{0}, q y_{0}\right)\right)+\chi\left(d\left(p h_{n-2}, p q h_{n-2}\right)\right)\right] \\
\chi\left(d\left(q y_{0}, h_{n+1}\right)\right) \leq \zeta\left(d\left(y_{0}, h_{n}\right)\right) \chi\left(d\left(y_{0}, q y_{0}\right)\right)+\zeta\left(d\left(y_{0}, h_{n}\right)\right) \chi\left(d\left(h_{n}, h_{n+1}\right)\right) \\
\lim _{n \rightarrow \infty} \operatorname{Sup} \chi\left(d\left(q y_{0}, h_{n+1}\right)\right) \leq \lim _{n \rightarrow \infty} \operatorname{Sup} \zeta\left(d\left(y_{0}, h_{n}\right)\right) \chi\left(d\left(y_{0}, q y_{0}\right)\right) \\
+\lim _{n \rightarrow \infty} \operatorname{Sup} \zeta\left(d\left(y_{0}, h_{n}\right)\right) \chi\left(d\left(h_{n}, h_{n+1}\right)\right)
\end{gathered}
$$

$0<\chi\left(d\left(q y_{0}, y_{0}\right)\right)<\chi\left(d\left(q y_{0}, y_{0}\right)\right)$
Which is a contradiction. Thus $d\left(q y_{0}, y_{0}\right)=0$
$q y_{0}=y_{0}$.
Now we show y_{0} is a fixed point of p .
Setting $l=h_{n}, m=y_{0}$ in equation (2.13)

$$
\begin{gathered}
\chi\left(d\left(q h_{n}, p q y_{0}\right)\right) \leq \zeta\left(d\left(h_{n}, p y_{0}\right)\right)\left[\chi\left(d\left(h_{n}, q h_{n}\right)\right)+\chi\left(d\left(p y_{0}, p q y_{0}\right)\right)\right] \\
\chi\left(d\left(h_{n+1}, p y_{0}\right)\right) \leq \zeta\left(d\left(h_{n}, p y_{0}\right)\right) \chi\left(d\left(h_{n}, h_{n+1}\right)\right) \\
+\zeta\left(d\left(h_{n}, p y_{0}\right)\right) \chi\left(d\left(p y_{0}, p y_{0}\right)\right) \\
\lim _{n \rightarrow \infty} \operatorname{Sup} \chi\left(d\left(h_{n+1}, p y_{0}\right)\right) \leq \lim _{n \rightarrow \infty} \operatorname{Sup} \zeta\left(d\left(h_{n}, p y_{0}\right)\right) \chi\left(d\left(h_{n}, h_{n+1}\right)\right) \\
+\lim _{n \rightarrow \infty} \operatorname{Sup} \zeta\left(d\left(h_{n}, p y_{0}\right)\right) \chi\left(d\left(p y_{0}, p y_{0}\right)\right)
\end{gathered}
$$

$0<\chi\left(d\left(p y_{0}, y_{0}\right)\right) \leq 0$
Which is a contradiction. Thus $d\left(p y_{0}, y_{0}\right)=0$
$p y_{0}=y_{0}$.
y_{0} is a fixed point p
$\therefore y_{0}$ is a common fixed point p and q.
and Now prove that y_{0} is a unique common fixed point p and q.
Suppose $z_{0} \in H$ is another common fixed point of p and q.
Setting $l=y_{0}, m=z_{0}$ in equation (2.13)

$$
\chi\left(d\left(q y_{0}, p q z_{0}\right)\right) \leq \zeta\left(d\left(y_{0}, p z_{0}\right)\right)\left[\chi\left(d\left(y_{0}, q y_{0}\right)\right)+\chi\left(d\left(p z_{0}, p q z_{0}\right)\right)\right]
$$

$0<\chi\left(d\left(q y_{0}, p q z_{0}\right)\right) \leq \zeta\left(d\left(y_{0}, p z_{0}\right)\right) \chi\left(d\left(y_{0}, y_{0}\right)\right)+\zeta\left(d\left(y_{0}, p z_{0}\right)\right) \chi\left(d\left(z_{0}, z_{0}\right)\right)$
$0<\chi\left(d\left(q y_{0}, p q z_{0}\right)\right) \leq 0$
$d\left(y_{0}, z_{0}\right)=0 \Rightarrow y_{0}=z_{0}$
Therefore y_{0} is a unique common fixed point of \& q.
Application 3: The following is an application to the Theorem 2.5
Corollary 2.6.Let (H, d) be a complete metric space and let $p, q: H \rightarrow H$ be mapping satisfying the following condition:
$\int_{0}^{\chi(d(q l, p q m))} \mu(u) d u \leq \zeta(d(l, p m))\left[\int_{0}^{\chi(d(l, q l))} \mu(u) d u+\int_{0}^{\chi(d(p m, p q m))} \mu(u) d u\right]$
where $\chi \in \mathrm{X}$ and $\zeta: \Re_{+} \rightarrow\left[0, \frac{1}{2}\right)$ with

$$
\lim _{t \rightarrow u^{+}} \sup \frac{\zeta(s)}{1-\zeta(s)}<1, \text { for all } u>0
$$

then p, q have a unique common fixed point $y_{0} \in H$.
Proof. We define $\chi_{0}: \Re_{+} \rightarrow \Re_{+}$by $\chi_{0}(h)=\int_{0}^{h} \mu(u) d u$ for $\in M$, then $\chi_{0} \in \mathrm{X}$ and so inequality
(2.15)becomes

$$
\chi_{0}(\chi(d(q l, p q m))) \leq \zeta(d(l, m))\left[\chi_{0}(\chi(d(l, q l)))+\chi_{0}(\chi(d(p m, p q m)))\right]
$$

where $\chi_{1}=\chi_{0} 0 \chi \in \chi$. Hence, from Theorem 2.5 we conclude that p, q have a unique fixed point $y_{0} \in H$.
Theorem 2.7.: Let (H, d) be a complete metric space and let $p, q: H \rightarrow H$ be continuous mappings. We denote $w(l, p m)=\max \left\{\frac{d(l, q l) d(p m, q p m)}{d(l, p m)}, d(l, p m)\right\} \forall l, m \in H, l \neq m$.

Suppose that p, q satisfies the following condition:

$$
\begin{equation*}
\chi(d(q l, p q m)) \leq \eta(d(l, p m)) \chi(w(l, p m)) \tag{2.17}
\end{equation*}
$$

$\forall l, m \in H, \chi \in \mathrm{X}$ and $\eta: \Re \rightarrow[0,1)$ is a function with $\lim _{t \rightarrow u} \operatorname{sup\eta }(t)<1 \forall u>0$ then p, q have a unique common fixed point $y_{0} \in H$.

Proof: Let $h_{0} \in H$ be an arbitrary point and we define the sequence $h_{n+1}=q h_{n}=p h_{n-1}$,

$$
n=1,2, \ldots \ldots \ldots .
$$

It follows from (2.17) that
$\chi\left(d\left(h_{n}, h_{n+1}\right)\right)=\chi\left(d\left(q h_{n-1}, p q h_{n-2}\right)\right)$

$$
\begin{aligned}
& \leq \eta\left(d\left(h_{n-1}, p h_{n-2}\right)\right) \chi\left(w\left(h_{n-1}, p h_{n-2}\right)\right) \\
& \quad \leq \eta\left(d\left(h_{n-1}, h_{n}\right)\right) \chi\left(w\left(h_{n-1}, h_{n}\right)\right)
\end{aligned}
$$

By using (2.16) we get
$w\left(h_{n-1}, h_{n}\right)=w\left(h_{n-1}, p h_{n-2}\right)$

$$
\begin{gathered}
=\max \left\{\frac{d\left(h_{n-1}, q h_{n-1}\right) d\left(p h_{n-2}, q p h_{n-2}\right)}{d\left(h_{n-1}, p h_{n-2}\right)}, d\left(h_{n-1}, p h_{n-2}\right)\right\} \\
=\max \left\{\frac{d\left(h_{n-1}, h_{n}\right) d\left(h_{n}, h_{n+1}\right)}{d\left(h_{n-1}, h_{n}\right)}, d\left(h_{n-1}, h_{n}\right)\right\}
\end{gathered}
$$

$=\max \left\{d\left(h_{n}, h_{n+1}\right), d\left(h_{n-1}, h_{n}\right)\right\}$,
which implies,
$\chi\left(d\left(h_{n}, h_{n+1}\right)\right) \leq \eta\left(d\left(h_{n-1}, h_{n}\right)\right) \chi\left(\max \left\{d\left(h_{n}, h_{n+1}\right), d\left(h_{n-1}, h_{n}\right)\right\}\right)$
from (2.18) we have
$\chi\left(d\left(h_{n}, h_{n+1}\right)\right)<\chi\left(\max \left\{d\left(h_{n}, h_{n+1}\right), d\left(h_{n-1}, h_{n}\right)\right\}\right)$
Case 1: If $d\left(h_{n}, h_{n+1}\right)>d\left(h_{n-1}, h_{n}\right)$ then $\chi\left(d\left(h_{n}, h_{n+1}\right)\right)<\chi\left(d\left(h_{n}, h_{n+1}\right)\right)$
Which is not true
Therefore $\max \left\{d\left(h_{n}, h_{n+1}\right), d\left(h_{n-1}, h_{n}\right)\right\}=d\left(h_{n-1}, h_{n}\right)$
$\chi\left(d\left(h_{n}, h_{n+1}\right)\right)<\chi\left(d\left(h_{n-1}, h_{n}\right)\right)$
Then, it follows that $\left(d\left(h_{n}, h_{n+1}\right)\right)_{n}$ is a monotone decreasing sequence of numbers consequently, there exists $\delta \geq 0$ such that $\lim _{n \rightarrow \infty} d\left(h_{n}, h_{n+1}\right)=\delta$. Suppose that $\delta>0$, then

$$
0<\chi(\delta) \leq \chi\left(d\left(h_{n}, h_{n+1}\right)\right)<\chi\left(d\left(h_{n-1}, h_{n}\right)\right)
$$

Taking limits as $n \rightarrow \infty$ above inequality yields $\chi(\delta)<\chi(\delta)$ which is a contradiction. Therefore $\delta=0$, thus $\lim _{n \rightarrow \infty} d\left(h_{n}, h_{n+1}\right)=0$

Now, we show that $\left(h_{n}\right)_{n}$ is a Cauchy sequence in H. Assume that $\left(h_{n}\right)_{n}$ is not a Cauchy sequence, then there exists a θ_{0} and subsequences $\left(h_{a(f)}\right)_{f},\left(h_{b(f)}\right)_{f}$ of $\left(h_{n}\right)_{n}$ with $a(f)>b(f)>f$ such that $d\left(h_{a(f)}, h_{b(f)}\right) \geq \theta_{0}$ and $d\left(h_{a(f)-1}, h_{b(f)}\right)<\theta_{0}$.
from Lemma 1.3 we have
$\lim _{k \rightarrow \infty} d\left(h_{a(f)-1}, h_{b(f)-1}\right)=\theta_{0}$
Inequality (2.17) gives us

$$
\begin{aligned}
\chi\left(\theta_{0}\right) \leq \chi\left(d\left(h_{a(f)}, h_{b(f)}\right)\right) & =\chi\left(d\left(q h_{a(f)-1}, p q h_{b(f)-3}\right)\right) \\
& \leq \eta\left(d\left(h_{a(f)-1}, p h_{b(f)-3}\right)\right) \chi\left(w\left(h_{a(f)-1}, p h_{b(f)-3}\right)\right) \\
& \leq \eta\left(d\left(h_{a(f)-1}, h_{b(f)-1}\right)\right) \chi\left(w\left(h_{a(f)-1}, h_{b(f)-1}\right)\right)
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
w\left(h_{a(f)-1}, h_{b(f)-1}\right) & =w\left(h_{a(f)-1}, p h_{b(f)-3}\right) \\
= & \max \left\{\frac{d\left(h_{a(f)-1}, q h_{a(f)-1}\right) d\left(p h_{b(f)-3}, q p h_{b(f)-3}\right)}{d\left(h_{a(f)-1}, p h_{b(f)-3}\right)}, d\left(h_{a(f)-1}, p h_{b(f)-3}\right)\right\} \\
& =\max \left\{\frac{d\left(h_{a(f)-1}, h_{a(f)}\right) d\left(p h_{b(f)-1}, h_{b(f)}\right)}{d\left(h_{a(f)-1}, h_{b(f)-1}\right)}, d\left(h_{a(f)-1}, h_{b(f)-1}\right)\right\}
\end{aligned}
$$

Now, by taking Upper limit as $k \rightarrow \infty$ and using (2.19) and (2.20), we have

$$
\chi\left(\theta_{0}\right)<\chi\left(\max \left(0, \theta_{0}\right)\right)=\chi\left(\theta_{0}\right)
$$

Which is a contradiction. Hence $\left(h_{n}\right)_{n}$ is a Cauchy sequence in the complete metric space (H, d).
Thus, there exist $y_{0} \in H$ such that $\lim _{n \rightarrow \infty} h_{n}=y_{0}$.
Furthermore, $p h_{n-1}=h_{n+1}$ [by definition]
Since p is continuous $\lim _{n \rightarrow \infty} p h_{n-1}=\lim _{n \rightarrow \infty} h_{n+1}$

$$
\begin{aligned}
p \lim _{n \rightarrow \infty} h_{n-1} & =\lim _{n \rightarrow \infty} h_{n+1} \\
p y_{0} & =y_{0}
\end{aligned}
$$

Similarly $q y_{0}=y_{0}$.
Now y_{0} is a common fixed point of $p \& q$.
If there is another fixed point y_{1} of $p \& q$ with $y_{0} \neq y_{1}$, then

$$
\begin{align*}
& \chi\left(d\left(y_{0}, y_{1}\right)\right)=\chi\left(d\left(q y_{0}, p y_{1}\right)\right)=\chi\left(d\left(q y_{0}, p q y_{1}\right)\right) \\
& \leq \eta\left(d\left(y_{0}, p y_{1}\right) \chi\left(w\left(y_{0}, p y_{1}\right)\right)\right. \\
& \leq \eta\left(d\left(y_{0}, y_{1}\right) \chi\left(w\left(y_{0}, y_{1}\right)\right)\right. \tag{2.21}
\end{align*}
$$

Where

$$
\begin{array}{r}
w\left(y_{0}, y_{1}\right)=w\left(y_{0}, p y_{1}\right)=\max \left\{\frac{d\left(y_{0}, q y_{0}\right) d\left(p y_{1}, q p y_{1}\right)}{d\left(y_{0}, p y_{1}\right)}, d\left(y_{0}, p y_{1}\right)\right\} \\
=\max \left\{\frac{d\left(y_{0}, y_{0}\right) d\left(p y_{1}, y_{1}\right)}{d\left(y_{0}, y_{1}\right)}, d\left(y_{0}, y_{1}\right)\right\} \\
=\max \left\{0, d\left(y_{0}, y_{1}\right)\right\}=d\left(y_{0}, y_{1}\right) \tag{2.22}
\end{array}
$$

From (2.21) \& (2.22) we get

$$
\chi\left(d\left(y_{0}, y_{1}\right)\right)<\chi\left(d\left(y_{0}, y_{1}\right)\right)
$$

Which is a contradiction to our assumption. Hence y_{0} is the unique common fixed point of $p \& q$ in H

REFERENCES

1. M.Abbas and M.Khan, Common fixed point theorem for two mappings satisfying a generalized weak contractive condition, International Journal of mathematics Sciences, Article ID 131068, 9 pages , doi:10.1155/2009/131068,(2009)
2. D.Delbosco,Un estensione di un teorema sul punto fisso di S.Reich, Rend.sem.Mat.Univers.Politecn.Torino35(1976-77),233-239
3. Jose R. Morales and Edixon Rojas, Some fixed point theorems by altering distance functions, Palestine Journal of mathematics,Vol. 1(2).(2012), 110-116.
4. V.Pupa and M.Mocano, Alteing distance and common fixed points under implicit relations, Hacettepe Jour. of Math. and Stat. 39 3, 329-357(2009).
5. F.Skof, Teorema di p utni fisso p er applicazioni n egli s pazi metrici, Atti.Accad.Aci.Torino,111(1977),323329.
