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lintroduction:
In recent times Jose R.Morales and Edixon Rojas established the following some fixed point theorems by
using altering distances function.

Theorem 1.1.[3] let  be a complete metric space and 7: H — H be a mapping satisfying the following
condition:
x(a(@e,7m)) < n(a(€, m))x(d(¢,m))
where y € X and n: R, — [0,1) with
lim,_,, supn(u) < 1Vu > 0.
then 4 is a unique fixed point

Corollary 1.2.[3] Let T:H — H be a mapping and(#,d)be a Complete metric space and satisfying
inequality,

x(atm))
u(w)du < n(d({’,/m))Jo uluw)du

where y € X,u € Mand n: R, - [0,1) with lim,_, supn(uw) <1, Vu > 0.

Thenz, € H is a unique common fixed point of T

Similarly we generalize the remaining results of Jose R.Morales and Edixon Rojas[3]
Delbosco[2] and Skof[5] presented a different idea known as altering distances

x(a@e,Tm))
J

Definition 1.1.([2] and[5])
A function y: Rt —» R™ is said to be an altering distances function if the following properties are satisfied
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1. y is continuous and strictly increasing on R,
2. x(p) =0ifandonlyif p = 0 and
3. x(p) = M p* for every £ > Owhere u > 0 and M > 0 are constants.
For example, y(p) = p*

Definition 1.2. Let u: R, — R_be a function and satisfied the below conditions
1. uis a Lebesgue integrable function on each compact subset of R, .
2. p is nonnegative

3. J, u(p)dp > 0 for each & > 0

Lemma 1.3.([1]and [4])
Describe yo: Ry = R, by xo(j) = fé u(p)dp forevery p € R and u € M then y, € X.

Lemma 1.4. ConsiderLbe a metric space on 4 and (£4), be a sequence in L such that
limy . d(€4,€p41) = 0. I1f(€,) 4 is not a Cauchy sequence in £, then 3 an € > 0 for which we can find
sub sequences (y(-)) . and (¢;))  of (€4)a With i(#) > j(+) > r such that d (£, £;¢)) = € and
d(fi(,,ﬂ)_l,‘fj(,,ﬂ)) < e and

I. limy_)oo d(€¢(¢),f7~(¢)) = €.

o limy e d(€i0m-1,1;0) = €
. im0 d(£i)-1,L50)-1) = €
V. limyo d(€i0m), Cjmy1) = €
Voo limyLo d(€imy41,Cjmy41) = €
Vi.  limye d(€iy+1.Li0m)+2) = €

2 Main results

Theorem 2.1. Let (H,d)be a complete metric space and let p,q:H — H be mappings satisfying the
following condition: for every ¢,m € H

x(d(gt, pam)) < n(d (€, pm))x(d(£, pm)) (2.1)

where y € X and n: R, — [0,1) with

lim,_,, supn(s) < 1, forall « > 0. (2.2)

the range of ¢ contains the range of p (2.3)

and pg = qp (2.4)

then p, g have a unique common fixed point.

Proof:

Since the range of g contains the range of p there exist a point £; € H 3 ¥, = p¥, here £, be an
arbitrary point.

Consider ¢,,41 ,£,,£,—1suchthat?, ., =qgf, = pf,_1

To showlim,,_,.. 4(£,,,€,,41) =0

Insert £=+¢,_,,m =+4,_, into the equation (2.1)
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x(A(@ 1, patn—2)) <A@, pLn-2))x(dEpt, pL1—2))
x(dntni1)) S (@1, £))x(A(p1,£4)) < x((Lr-1,£1))
x(dCntnir) < x(dp-1,£,)) (2.5)
(d(2,, {’nﬂ))n is a non-decreasing sequence.
To shown lim,,_,., d(¥,,,4,.+1) = 6 = 0 there exists a constant §. Now, we are about to prove that § = 0.

Assume § > 0, then Insert (2.2) in equation (2.5) and setting limits 7 — oo in (2.5)
Therefore

0 < x(6) < lim sup x(d(¥,,, £p11))
7M1—00
=< Al_r)rolo Sup[n(d(fn—lrf»n)))((d(fn—lr fn))]
< lim sup[n(2(£,-1,£,))] lim sup[x(d(£,-1,2.))]
< limsup (s)x(6) < x(8)
Which is not true for our assumption. Henced = 0.
Implies that lim,, ., d(£,,,€,,41) = 0
Now, we establish (¢,,),, is a Cauchy sequence in 7.
Consider (1), is not a Cauchy sequence, that is there exists an 8, > 0 such that for each positive integer
i, there are positive integers a(i) and #(4) with a(i) > b(4) > i such that d(€,.),€4)) = 6 and
d(£agy-1£s0)) < .
From Lemma 1.4 we have
0o = lim d(Laciy Coy+1) = ime d(Lay1, Lo iy+2) (2.6)
Insert £ = £,(4y , m = €4(;)—1 In equation (2.1)

X (d(qla@)’qu{y@)—ﬂ) <7 (d(la(@»l?l&(i)—l)))( (d(la(i)'pllr(i)—l))
X (d(la(i)+1» l&(i)+2)) =7 (d(la(i)' lz«(i)+1)))( (d(la(i)' lfy(z‘)+1))

X (A(latyr Lo+2)) < x (d(lagy Lo+ (27)
By inserting (2.2) and (2.6) in equation (2.7) and taking limitas n — oo in (2.7)

0<x(6y) = ]}1_{210 sup x (d(la(i)+1: l&(i)+2))

< Jim supn (Lo, Low+1)) lim sup x (d(Lagy, Loy+1) ) < X(80)
This is a contradiction to our assumption,
Thus (¢,,),, is a Cauchy sequence in the complete metric space (#, 4). Hence there exists ¢, € £ such as
lim, ., £, = 4.
Now, we shown p, g have a fixed point of ¢, .
First, we prove that ¢, is a fixed point of g.
Setting £ = ¢y, m =+¥,,_, inequation (2.1)
x(a(q yo, patn-2)) < n(dCyo, pln—2))x(A( o, ptn-2))
x(d(@ %o, Lni1)) < (a0, ) x(d(yo, £2))
X(d(% Y0 1€n+1)) < X(d( ’y)o»{)n))
where x(d( ¢, £,)) = 0asn - w e, lim, e x(4(g %o, £ni1)) = 0.
Since y € X we have that lim,,_,.,4(g %, £,+1) = 0.

= d(q %o, %0) =0
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9 Yo = Yo
That is y is a fixed point of g.
To show 4, is a fixed point of p.
Insert £ =+, ,m = g, inequation (2.1)
x(d(@tn pay0)) < 1AL py0))x(d L0 pY0))
X ((En10990)) < 1(d(, 230)) (A0, 2y0))

X (i1 00)) ) < 2(d(£,0))
where x(d(£,,40)) = 0asn - wi.e., lim, o, x(d(® %0, £ns1)) = 0.
Since y € X we have that lim,,_,.,d(pyo, 4¢) = 0.
= d(pyo. %) = 0
PYo = Yo
Therefore g, is a fixed point of p.
1 IS a common fixed point of p and g.
Now we show 1y, is a unique common fixed point of p and g.
Suppose zo € H is another common fixed point of p and g.
Insert £ = g, m = 3, into the equation (2.1)
X(d(%’yvo,#?%zo)) < U(d(’y)o'ﬁzo)))((d(’éﬂo,ﬁzo))
0 < x(d(@yo, #9%0)) < n(d (g0, 20))x(d (%0, 220))
Case 1: If x(d(g4o, #370)) = 0 then x(d (o, z0)) = 0
Since y € X we have that (g, 20) = 0 = 4o = 3
Case 2:Ifx(d(gy0, #320)) > 0
0 < x(d(gy0, #a50)) < 1(d(yo, #50))x(d (g0, #%0))
x(d(yo,20)) < n(d (g0, 20))x(d (%0, 50))
x(d(y0,20)) < x(d (g0, 20))
Therefore this is a contradiction to our assumption
x(d(@yo, p3%0)) = 0 = x(d(%0,20)) = 0
Since y € X we have that & (g, 20) = 0 = ¢ = 3
From cases 1& 2
4o 1S a Unique common fixed point of p and g.
Application 1: The following is an application to Theorem 2.1
Corollary 2.2. Let H'be a complete metric space on & and let p,g:H — H be mappings satisfying the
following condition:

f;( (datpam) uw)du <n(d(t, pm)) fOX (dctgm) pu(u)du(2.8)
where x € X,u € Mand n: R, — [0,1) with

lim,_, supn(s) < 1,Vu > 0.

then p, g have a unique common fixed point y, € H.

Proof. We define yy: R, = R, by xo(h) = foh u(u)du for € M, then y, € X. We can write (2.8) in the

form
xo (x(d(at, pgm))) < n(d (e, pm)xo (x(d (6, pm)))
x1(d(at, pam)) < n(ae, pm))x:(d(t, pm))
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Where y; = x¢0x € x. Therefore, we obtain y, € H isa unique common fixed point of p, gby theorem
2.1.
Theorem 2.3. Let p,q: H - H be mappings and H be a complete metric space on & and satisfying the
following condition:
x(d(ql,pgm)) < n(d(l,pm))x(d(l, qD)) + {(d(l, pm)) x(d(pm, pgm))(2.9)
where y € Xand n,{: R, — [0,1) with

n(t) + {(t) < 1forallu € Ry, lim,_ o+ sup J(t) < 1

n(s)

lim,_,,+ SUP T 5 <1,forallu>0

then p, g have a unique common fixed point y, € H such that for each y € H
Proof. Consider the sequence (h,,),, defined
h,+1 =qh, = fh,_1 ,mn=1,2,....where h € H be an arbitrary point
To showlim,, o, d(hy, hyp1) =0
Put [ = h,_;,m = h,_, in equation (2.9)
x(d(qhn—1,pqhy,—3)) < n(d(hy_1, Phy—2))x(d(hy—1, qhy 1))
+0(d(hy—1,Phn—2))x(d(Php—2, Py —2))
x(a(qhy—1,pqhy—2)) < n(d(hy—1, b)) x(d(hy_1, )
+0(d (hy—1, b)) x(d (hp, iy 11))
x(d(hy, hyi1)) = S(d(hy—1, b)) x (A (Ry, Byi1)) < (A (-1, B)) x(d (1, )
x(@d (o o)) [1 = ¢ (d g, )] < (A By, 7))t (A (s, )

d(h, 1, h,
X(d(hnlhrH-l))S n( ( : )) ]X(d(hn—l'hn))

[1 - Z(d(hn—lﬂ hn))
Now, from (2.10) we obtain

(2.10)

x(d(hy, hpt1)) < x(d(hp—1, hy))Vn € 24
from Theorem 2.1, we determine that the (d,(hn, hn+1))n is non-increasing and converges to 0.
i.e., lim,_ . d(h,, h,4+1) = 0 (2.11)
Now, we Prove that (h,),, is a Cauchy sequence in H. Assume that (h,),, is not a Cauchy sequence, that is
d(hay hpy) = 8o and d (-1, hyy) < 6o there are positive integers a(i) and b(i) with a(i) > b(i) >
l
From Lemma 1.4 we have

0o = lim; e, d(ha(i)+1, hpiy+2) and from (2.9) we get that
x(6y) = }Lrgosupx (d(ha(i)+1'hb(i)+2))
x(60) = limsup x (4(ahaqy hyy-1))
=< lim Sup (’7 (d(haw ho+1)) x (A(har r+1)) + 6 (2 lar o@s1)) 2 (A (Raosa, hb(i)+2))>
< lim Sup (n (4(haco, hb(l-)ﬂ))) lim Sup (X ((haey ha(l-)ﬂ)))

+ lim Sup (¢ ((haor hoon)) ) lim Sup (1 (A1, 0+2))

x(6y) =0
This is not true
Hence (h,,),, is a Cauchy sequence in the complete metric space (H, d).
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Now, we prove that y, is a fixed point of p and q.
First, we show p has a fixed point of y, .
Insert [ = yo,, m = h,,_, in equation (2.9)
x(d(yo,pqhy—2)) < n(d(yo, phy—2)) x(d( 0. 4¥0))

+¢(d( yo, php—2)) x(d (hy—2, Pghy—2))
x(d(q Y0, bns1)) < 1(d(yo, ha))x(d(¥0,q ¥0)) + (Ao, b)) x(d Ry, hni1))
lim Sup x(2(q yo, hn+1)) < lim Supn(d(yo, b)) x(d( 0,9 ¥0))

+ lim Sup ¢(d( o, ha))x(d (hn, ha11))

0 < x(d(qyo, ¥0)) < x(d(q yo, ¥0))

Which is a contradiction. Thus 4(q yo, yo) =0

aYo = Yo-

Now we show y, is a fixed point of p.

Setting [ = h, , m =y, in equation (2.9)
x(d(q hn,payo)) < n(d(hy, py0)) x(AChn, gho)) + (A hy, pyo) ) x(d (Yo, PGY0))
x(dChnt1,090)) < 1(dChy, py0) ) X(dChy, hy11)) + (A Chn, p20)) X (d0Y0, DY)

lim Sup x(a(hy11,p¥0))

< lim Sup n(d(hy, pyo))x(dChn, hyi1)) + lim Supd(d(ha, pyo))x(d(®yo, pY0))

0 < x(d(@yo ¥0)) <0

Thus d(p o, ¥o) =0

PYo = Yo-

Yo is a fixed point p

~ yo is a common fixed point p and q.

Now prove that y, is a uniqgue common fixed point p and q.

Suppose z, € H is another common fixed point of p and q.

Put [ = y,,m = z, in equation (2.9)

x(d(q y0,2920)) < 1(d(¥0,020)) x(A( 0, a¥0)) + {(A( Y0, 020)) x(d (P20, PqZ0) )0
< x(a(q y0,pq920)) < n(d(¥0,p20)) x(d(¥0,¥0)) + {(A(¥0,p20) ) x(d (20, 2p))

0 < x(d(q y0,pq20)) < 0
d(¥0,20) =0= yy =2

Therefore y, is a uniqgue common fixed point of p& q

Application 2: The following is an application to the Theorem 2.3

Corollary 2.4.Let (H,d)be a Complete metric space and let p,q: H —» H be mappings satisfying the

following condition:
x(d(pm,pgm))

x(d(l,pgm)) x(a(lqD))
[ udu < n(d(pm)) R + (e, pm) [ k() du
0 0 0
(2.12)
where y € X,u € Mand n,{: R, — [0,1) with
n(u) + {(u) < 1forallu € R,, tlirg1+ sup{(t) <1
: n(s)
tl_l)rJlJrsupl — () <1,forallu>0
8506
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then p, q have a unique common fixed point y, € H.

Proof. We define yy: R, — R, by xo(h) = foh,u(u)du for e M, then y, € X
and so inequality (2.12) becomes

xo (x(4(ql,pam))) < n(d(t,pm))xo (x(2, qD)) + (AL pm))xo (x(d(om, pgm)))

x1(d(ql,pgm)) < n(d(l, pm))x1(4(l, pm))
Where y; = x,0x € x. Hence, from Theorem 2.3 we conclude that p, g have a uniqgue common fixed point
Vo € H.
Theorem 2.5. Let (H, d) be a complete metric space and let p, g: H = H be mappings satisfying the
following condition: foreveryl[,m € H

x(d(ql,pgm)) < n(dl,pm))[x(d(, qD)) + x(d(m, pqm))] (2.13)
where y € Xand : R, — [0, %) with

y {(s)
et T P T = 4(s)

then p, q have a uniqgue common fixed point y, € H .
Proof. Let h € H be an arbitrary point, and Let the sequence (h,,),, defined
h,y1 =qh, =ph,_1 n=1.2, ..
To showlim,, o, d(h,, h,,+1) =0
Insert [ = h,_, , m = h,_, in equation (2.13)

x(a(qhn—1,pqhy—3)) < {(d(hy—1,Phn—2))[x(d(hy—1, ghn—1)) + x(d(Phy—2, PGy —2))]

x(@(hy, 1)) < C(d g, b)) (@, 1)) + x(d (o Bis))]

x(d By, hyi1)) = S(d(hy—1, b)) x (A (Ry, Byi1)) < {(d Ry, b)) x (A (Ry—1, hy))
2(@d (o)) [1 = C(d By, 7))] < S (et ) (d (o, hiy))
{(d(hur, 1))
x(d(hy, hyi1)) < = Z(d(hn_l.hn))]x(d(hn_l'h"))
x(d(hy, hyi1)) < x(d(hp—1,hy))Vn € 2,

as in the proof of Theorem 2.1, we conclude that the (d(hn, hn+1))n is non-increasing and converges to 0.
i.e., lim, ., d(h,, hy1) =0 (2.14)
Consider (h,), is not a Cauchy sequence, That means there are positive integers a(#) and b(4) with
a(#) > b(§) > j such that d(hqa (), hy(;)) = 6o and d(hagy-1, ho() < o.
From Lemma 1.4 we have
6o = limy_,e0 d(ha¢jy+1, hp(jy+2) and from (2.13) we get that

<1,forallu>0

x(8o) = Jim supy (d(ha(j)+1'hb(;‘)+2))
< lim Sup (¢ ((hagsn hoys1)) [ (A (o haiiin)) + 2 (2 (orin hocpa) )))
< lim Sup (5 (2(hagyer hore1)) 2 (A(hagy hagirer)) + € (2 (hagy hogire1) ) 2 (2 (Rogiran, hb(;)+z)))
= lim Sup (5 (d(ha(j)-i-l» hb(j)+1))) Jim Sup ()( (d(ha(;‘)+1' ha(;})+1)))

+ lim Sup (5 (d(ha(})' hb(;‘)ﬂ))) Jim Sup (( (d(hb(f)ﬂ' hb(;‘)ﬂ)))
x(6) =0

Published by: The Mattingley Publishing Co., Inc. 8507



January - February 2020

Engineering & Management

This is a contrary to our assumption
Thus (h,), is a Cauchy sequence in the complete metric space (H, d). Hence there exists y, € H such that
lim, o h, = yy.
Now, we prove that y, is a fixed point of p and q.
First, we show yj is a fixed point of g.
Setting | = y, , m = h,_, in equation (2.13)
x(d(q yo, pqhn—2)) < {(d(y0, phn-2)) [x(v( 0, a¥0)) + X(d(Phn—2, PGH—2))]
x(2(q y0, hn11)) < $(d(y0, ha))x(A(¥0,q ¥0)) + S (Ao, ) x (d My B 1))
lim Sup x(d(q yo, hn+1)) < lim Sup {(d(yo, hu))x(d(y0,q o))

+ lim Sup ¢(d( o, h))x(d(hn, hy 1))

0 < x(d(q yo, ¥0)) < x(d(q yo, ¥0))
Which is a contradiction. Thus 4(q yg, yo) = 0

qYo = Yo-
Now we show 1y is a fixed point of p.
Setting | = h, , m =y, in equation (2.13)
x(a(q hn,pqy0)) < S(d(hn, pyo)) X (d(hy, qhy)) + x(d (@Yo, PaY0))]
x(d(hyi1,0¥0)) < 3(dChn, pY0) ) x (A, hogr))
+3(d(hy, pyo) ) x(d (@Yo, PY0))
lim Sup x(d(hy1,p¥0)) < lim Sup (A, py0) )x(d( by hyi1))

+ lim Supl(d(hn, pyo))x(d®Yo, P¥0))

0 < x(d®yo, ¥0)) <0
Which is a contradiction. Thus &(p yo, yo) = 0
PYo= Yo
Yo IS a fixed point p
=~ Yo Isa common fixed point p and q.
and Now prove that y, is a uniqgue common fixed point p and q.
Suppose z, € H is another common fixed point of p and q.
Setting [ = y, , m = z; in equation (2.13)
x((q y0,p920)) < {(d(y0,p20)) [x(d( Y0, a¥0)) + x(d (P20, pq20))]

0 < x(d(q y0,p920)) < (A0, p20)) x(d( 0, ¥0)) + {(A( 0, p20) ) x (A (20, 2))

0 < x(d(qy0,rq20)) < 0

ad(y0,20) =0 = yy =2

Therefore y, is a uniqgue common fixed point of & q .

Application 3: The following is an application to the Theorem 2.5

Corollary 2.6.Let (H,d)be a complete metric space and let p,q:H - H be mapping satisfying the
following condition:

e pandu < ¢(apm) [ nepdu+ O uwdul (2.15)
where y € Xand {: R, — [0, %) with
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; I(s)
et TP T = (s)

then p, g have a unique common fixed point y, € H.

<1,forallu>0

Proof. We define yy: R, = R, by xo(h) = foh,u(u)du for e M, then y, € X and so inequality
(2.15)becomes

xo (x(a(alpam))) < (b, m)) [x0 (x(2t, q1))) + x0 (x(dGpm, pam)) )|

where y; = xo0x € x. Hence, from Theorem 2.5 we conclude that p, g have a unique fixed point y, € H.

Theorem 2.7.: Let (H,d) be a complete metric space and let p,q : H = H be continuous mappings. We

denote w(l,pm) = max {d(l'qg?l(gzsqpm),d(l, pm)}v ImeH,l#m. (2.16)

Suppose that p, q satisfies the following condition:

x(a(ql,pgm)) < n(d(l,pm))x(w(l,pm)) (2.17)
VIimeH,ye€Xandn:R — [0,1)is a function with lim,_,,, supn(t) < 1Vu >0 (2.18)
then p, g have a unique common fixed point y, € H .

Proof: Let hy € H be an arbitrary point and we define the sequence h, .1 = qh,, = ph,,_1,

It follows from (2.17) that
x(d(hn, hoy1)) = x(d(qhn -1, pqhy )
< n(d(hn—1, Phy—2)) x(W(hy 1, phy2))
< U(d(hn—p h))x(w(hy—1, hy))
By using (2.16) we get
w(hy_1, hy) = w(h,—1,phy—2)

- max {d(hn—lﬂ qhn—l)d(phn—Z' qphn—Z)
d(hn—lr phn—Z)

_ d(hn—lr hn)d(hnr hn+1)
= max{ d(hn_l,hn) 'd(hn—lrh’n)

) d(hn—lr phn—Z)}

= max{d(h’n» hn+1)r d(hn—lf hn)}v
which implies,

X(d(hnr hn+1)) < n(d(hn—lr hn)))((max{d(hn' hn+1)' d(hn—lﬂ hn)})
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from (2.18) we have

x(d(hy, 1)) < x(max{d (hy, bn 1), d(hy_, h)})

Case 1: If d(hy, hyy1) > d(h,_1, hy) then x(d(hy, hyi1)) < x(d(hy, hptt))
Which is not true

Therefore max{d(h,, hy, 1), d(h,_1, hy)}= d(h,_1, hy)

x(d(hyy b 1)) < x(d (o1, b))

Then, it follows that (ct(hn, hn+1))n is a monotone decreasing sequence of numbers consequently, there
exists § = 0 such that lim,,_,., 4(h,, h,,41) = 6. Suppose that § > 0, then

0< X((S) = X(d(hnthn+1)) < X(d(hn—l'hn))

Taking limits as n — oo above inequality yields y (&) < x(&) which is a contradiction. Therefore § = 0,
thus lim,, ., d(hy,, hy41) =0 (2.19)

Now, we show that (h,),, is a Cauchy sequence in H. Assume that (h,),, is not a Cauchy sequence, then
there exists a 8, and subsequences (ha(#))#, (hb(#))# of (h,),, with a(#) > b(#) > f such that

d(hae) hoip)) = 6 and d(hycp)—1, b)) < -

from Lemma 1.3 we have
limy oo @ (Rha(p)-1, o p)-1) = 0o (2.20)
Inequality (2.17) gives us
x(6y) < x (d(ha(#)» hb(#))) = x(a(qhacg)-1, b (p)-3))
< n(dChaggy-1, PRy §)-3))X (W Cha (-1, PR 5)-3))

< n(dChay-1 hop-1)Xx(Whagp)-1 hop)-1))

On the other hand, we have

w(ha(p-1 B (5)-1) = W(ha(py—1, Py ()-3)

dlh,cev_1, 00, cev_1 VA (Phy cprv_3, GDRY oy
=max{ (ha(p)-1, Ghacp)-1) A PRy g)-3, AR ()-3)

,d(hgpy—1, Py p)—
d(Ra(p)-1,Pho(p)-3) (hagpy-1- PRy ) 3)}

A (haggy-1, Pac)) APy (g)-1, b
:max{ (hacs)-1 ha )4 @ho -1 o )

’d h — Ih —
d(hap)—1, hp)-1) (hapy-1 o) 1)}
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Now, by taking Upper limit as k — oo and using (2.19) and (2.20), we have
x(6p) < x(max(0,6,)) = x(6)
Which is a contradiction. Hence (h,,),, is a Cauchy sequence in the complete metric space (H, 4).
Thus, there exist y, € H such that lim,,_,., h,, = V.
Furthermore, ph,,_; = h, .1 [by definition]
Since p is continuous lim,, ., ph,_1 = lim,, ¢, Ay 41
plim h,_y = lim by,
PYo = Yo
Similarly gy, = y,.
Now y, is a common fixed point of p& q.

If there is another fixed point y; of p & q with y, # y; , then
x(d(vo, 1)) = x(a(qyvo, py1)) = x(a(qyv0, Pqy1))
< n(d( o, Y1) XW(Y0,D¥1))

< n(d( Yo, Y1) xW(¥0,¥1)) (2.21)

Where

d( Yo, 9Y0)A(pY1, 90Y1)
d(y0,ry1)

w(yo,y1) = w( Yo, py1) = max{ yd( YO'pY1)}

B {d( Y0, Y0)ad(py1,¥1)
= max

a( Yo, ¥1) 3 yo,}h)}

= max{0,d(yo,y1)} = d(¥0,¥1)

From (2.21) & (2.22) we get (2.22)

x(d(yo,y1)) < x(d(y0, 1))
Which is a contradiction to our assumption. Hence 1y is the unique common fixed point of p & g in H
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