Dominator Coloring of Central and Middle Graph of Closed Helm Graph

T.Manjula ${ }^{1}$, R.Rajeswari ${ }^{2}$
${ }^{1}$ Research Scholar, Professor ${ }^{2}$,Department of Mathematics, Sathyabama Institute of Science \& Technology - Deemed to be University
Chennai, India.

Article Info
Volume 82
Page Number: 6228-6232
Publication Issue:
January-February 2020

Article History

Article Received: 18 May 2019
Revised: 14 July 2019
Accepted: 22 December 2019
Publication: 30 January 2020

Abstract

: Graph coloring and domination are the two fields of graph theory that have numerous applications in the field of computer science and biological networks. An area attained by merging the graph coloring and domination known as dominator coloring of a graph. It is well-defined as a proper coloring of vertices where each vertex of graph governs all vertices in an atleast 1 color class. The least number of colors is essential for a dominator coloring of a graph known as dominator chromatic number. The dominator chromatic number for central and middle graph of the closed Helm graph is obtained and a relationship between them is expressed in this paper.

Keywords: domination; coloring; dominator coloring; central graph; middle graph; closed Helm graph.

1.INTRODUCTION

A dominating set is a subset D_{S} of the vertex or node set of graph G in which each node either belongs to D_{s} or has a neighbour in D_{s} [1]. The domination number $\gamma(G)$ is the cardinality of a smallest dominating set of $G[1]$. It is applied for routing and sending data among the nodes in the network (which include military communications, emergency systems and disaster recovery etc.). Domination in graphs has applications in facility location problems, where the number of facilities has to be fixed (e.g., hospitals, fire stations) for optimizing minimum transportation cost, providing equitable service to customers etc.. The dominating sets play a significant role in an area of the human ProteinProtein Interaction (PPI) network in which it identify the proteins set that are contained in significant biological methods and mechanisms vital for cell vitality and drug target.

A proper coloring of a graph G is a function $f: V \rightarrow Z_{+}$such that for $u, v \in V, f(u) \neq f(v)$
whenever u and v adjacent nodes in G . One of the applications of graph coloring in real life problems is allocation of gates for flights without time conflict. Graph coloring techniques are used in biological networks in specific to PPI networks. The vertex coloring information helps to improve the quality i.e., homogeneity and separation of initial protein complexes and this finding help to improve existing protein complex detection methods. Graph coloring techniques are also applied to biological networks specifically to protein-protein interaction (PPI) networks.

A dominator coloring of a graph G is a proper coloring of graph such that every node or vertex of G dominates all nodes of at least one color class. The minimum cardinality of colors used in the graph for dominator coloring is called the dominator coloring number denoted by $\chi_{d}(G)$. [2]. Since dominator coloring is mixture of domination and coloring graphs which is used in PPI networks, facility location problems etc..

Gera in 2006 introduced the concept dominator coloring [2].The relationship between domination number, chromatic number and dominator chromatic number of various graphs were shown in [3], [4], [5]. The dominator coloring of prism graph, msplitting graph and m-shadow graph of path graph, closed Sun graph, closed Helm graph, generalized Flower Snark, Triangular belt, Alternate Triangular belt, central graph, middle and total graphs, etc. were also studied in various papers[6], [7], [8], [9], [10], [11].

A closed Helm graph denoted by $C H_{n}$ is constructed from the Helm graph by joining its outer vertices. It has $2 \mathrm{n}+1$ vertices and 4 n edges. The middle graph of a closed Helm graph $M\left(C H_{n}\right)$ is obtained by the subdivision of each edge of CH_{n} exactly once and connected by edge of all newly merged nodes of adjacent edges of $C H_{n}$. It have $6 n+1$ vertices and $8 n$ edges.

The dominator coloring number of middle and central of closed Helm graph are obtained and a relationship between them is expressed in this paper.

2. DOMINATOR COLORING NUMBER OF MIDDLE AND CENTRAL GRAPH OF CLOSED HELM GRAPH

Proposition 2.1: Every closed Helm graph denoted by $C H_{n}$ where $n \geq 4$ and n is even, has dominator chromatic number $\chi_{d}\left(C H_{n}\right)=\left\lceil\frac{n}{3}\right\rceil+3$.
Proposition 2.2: Every closed Helm graph denoted by $C H_{n}$ where $n \geq 5$ and n is odd, has dominator chromatic
number $\chi_{d}\left(\mathrm{CH}_{n}\right)=$
$\left\{\begin{array}{l}\left\lceil\frac{n}{3}\right\rceil+3 \quad \text { when } n(\bmod 3) \equiv 1 \\ \left\lceil\frac{n}{3}\right\rceil+4 \text { when } n(\bmod 3) \equiv 0 \text { or } 2\end{array}\right.$.
Theorem 2.3: If $M\left(C H_{n}\right)$ is the middle graph of closed Helm graph $C H_{n}$ then for $n \geq 5$ its dominator coloring
number
is $\chi_{d}\left(M\left(C H_{n}\right)\right)= \begin{cases}3\left\lceil\frac{n}{2}\right\rceil+3 & \text { when } n \text { is even } \\ 3\left\lceil\frac{n}{2}\right\rceil+1 & \text { when } n \text { is odd }\end{cases}$

Proof:
Let the node set and edge set of the closed Helm graph CH_{n} be
$V=\{w\} \cup\left\{v_{i}, u_{i} / 1 \leq i \leq n\right\}$
$E=\left\{v_{1} v_{n}, u_{1} u_{n}\right\} \cup\left\{v_{i} v_{j}, u_{i} u_{j} / 1 \leq i \leq n-1,\right\} \cup$ $\left\{u_{i} v_{i}, w v_{i} / 1 \leq i \leq n\right\}$.
The middle graph of a closed Helm graph $M\left(\mathrm{CH}_{n}\right)$ is obtained by the subdivision of each edge of CH_{n} exactly once and connecting by an edge of all the newly added nodes of adjacent edges of $C H_{n}$.
Let the new nodes obtained by the subdivision of edges $E\left(C H_{n}\right)$ be $\left\{x_{i}, y_{i}, z_{i}, t_{i} / 1 \leq i \leq n\right\}$.
The node set and edge set of the middle graph of the closed Helm graph $M\left(C H_{n}\right)$ are
$V\left(M\left(C H_{n}\right)\right)=\{w\} \cup\left\{u_{i}, v_{i}, x_{i}, y_{i}, z_{i}, t_{i} / 1 \leq i \leq n\right\}$ $E\left(M\left(C H_{n}\right)\right.$
$=\left\{u_{i} t_{i}, u_{i} z_{i}, z_{i} v_{i}, v_{i} y_{i}, v_{i} x_{i}, x_{i} w, x_{i} z_{i}, x_{i} y_{i}, z_{i} t_{i}, z_{i} y_{i}\right.$, $/ 1 \leq i \leq n\}$
$\cup\left\{t_{n} u_{1}, t_{1} t_{n}, y_{n} v_{1}, y_{1} y_{n}, x_{1} x_{n}, t_{n} z_{1}, y_{n} z_{1}\right\}$
$\cup\left\{t_{i} u_{i+1}, t_{i} z_{i+1}, t_{i} t_{i+1}, y_{i} v_{i+1}, y_{i} z_{i+1}, y_{i} y_{i+1}, x_{i} x_{i+1}\right.$ / $1 \leq i \leq n-1\}$
The procedure below explains the dominator coloring of nodes for middle graph of closed Helm graph
Case 1: When $n(\bmod 3) \equiv 0$
For $1 \leq i \leq n$, the nodes w, u_{i}, v_{i} are painted with color 1and the nodes x_{i} are given color $i+1$ respectively. For $1 \leq i \leq 3$, the nodes t_{i}, z_{i} are painted with color $i+1$ and $n+i+1$ respectively.For $1 \leq i \leq\left\lfloor\frac{n}{3}\right\rfloor$, the nodes $y_{3 i-2}, y_{3 i-1}, y_{3 i}$ are painted with color 4, 2, 3respectively. For $1 \leq i \leq\left\lfloor\frac{n}{3}\right\rfloor-1$, the nodes $z_{3 i+1}, z_{3 i+2}, z_{3 i+3}$ are painted with color 2,3 , 4respectively. For $1 \leq i \leq\left\lfloor\frac{n}{3}\right\rfloor-1$, the nodes $t_{3 i+1}, t_{3 i+2}, t_{3 i+3}$ are painted with color $n+3\left\lceil\frac{i}{2}\right\rceil+$ $2,2, n+3\left\lceil\frac{i}{2}\right\rceil+3$ respectively when i is odd and with color $4, n+3\left\lceil\frac{i}{2}\right\rceil+4,3$ respectively when i is even.
The nodes w, x_{i} aredominated by color class $n+1$. Then for $1 \leq i \leq 3$ the nodes $u_{i}, v_{i}, t_{i}, y_{i}, z_{i}$ are
dominated by color class $n+i+1$. For $4 \leq i \leq n$ the nodes v_{i}, y_{i}, z_{i} are dominated by color class $i+$ 1. And for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-2$ the nodes $u_{2 i+2}, u_{2 i+3}, t_{2 i+2}, t_{2 i+3}$ are dominated by color class $n+4+i$. The nodes u_{n}, t_{n} dominate color class $3\left[\frac{n}{2}\right]+3$ when n is even.
Every neighbouring node is given different color and also it is observed that every node of the graph dominates all the nodes of atleast one color class. Thus it is a dominator coloring of nodes.
Case 2: When $n(\bmod 3) \equiv 1$
For $1 \leq i \leq n$, the nodes w, u_{i}, v_{i} are painted with color 1 and the nodes x_{i} are given color $i+1$ respectively. For $1 \leq i \leq 3$, the nodes t_{i}, z_{i} are painted with color $i+1$ and $n+i+1$ respectively. For $1 \leq i \leq\left\lfloor\frac{n}{3}\right\rfloor-1$, the nodes $y_{3 i-2}, y_{3 i-1}, y_{3 i}$ are painted with color 4, 2, 3respectively. The nodes y_{n-2}, y_{n} are painted with color 2 , 3respectively and the nodes y_{n-3}, y_{n-1} are painted with color 4 . For $1 \leq i \leq\left\lfloor\frac{n}{3}\right\rfloor-2$, the nodes $z_{3 i+1}, z_{3 i+2}, z_{3 i+3}$ are painted with color 2, 3, 4respectively. The nodes z_{n-3}, z_{n} are painted with color 2 and the nodes z_{n-2}, z_{n-1} are painted with color 3 respectively. For $1 \leq i \leq\left\lfloor\frac{n}{3}\right\rfloor-2$, the nodes $t_{3 i+1}, t_{3 i+2}, t_{3 i+3}$ are painted with color $n+3\left\lceil\frac{i}{2}\right\rceil+$ $2,2, n+3\left\lceil\frac{i}{2}\right\rceil+3$ respectively when i is odd and with color $4, n+3\left\lceil\frac{i}{2}\right\rceil+4,3$ respectively when i is even. The nodes $t_{n-3}, t_{n-2}, t_{n-1}, t_{n}$ are painted with color $3\left\lceil\frac{n}{2}\right\rceil, 2,3\left\lceil\frac{n}{2}\right\rceil+1,4$ respectively when n is odd and with color $4,3\left\lceil\frac{n}{2}\right\rceil+2,4,3\left\lceil\frac{n}{2}\right\rceil+3$ respectively when n is even.

The nodes w, x_{i} aredominated by color class $n+1$. Then for $1 \leq i \leq 3$ the nodes $u_{i}, v_{i}, t_{i}, y_{i}, z_{i}$ are dominated by color class $n+i+1$. For $4 \leq i \leq n$ the nodes v_{i}, y_{i}, z_{i} are dominated by color class +1 . And for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-2$ the nodes $u_{2 i+2}, u_{2 i+3}, t_{2 i+2}, t_{2 i+3}$ are dominated by color class
$n+4+i$. The nodes u_{n}, t_{n} dominate color class $3\left[\frac{n}{2}\right]+3$ when n is even.

Every neighbouring node is given different color and also it is observed that every node of the graph dominates all the nodes of atleast one color class. Thus it is a dominator coloring of nodes.
Case 3: When $n(\bmod 3) \equiv 2$
For $1 \leq i \leq n$, the nodes w, u_{i}, v_{i} are painted with color 1and the nodes x_{i} are given color $i+1$ respectively. For $1 \leq i \leq 3$, the nodes t_{i}, z_{i} are painted with color $i+1$ and $n+i+1$ respectively. For $1 \leq i \leq\left\lfloor\frac{n}{3}\right\rfloor-1$, the nodes $y_{3 i-2}, y_{3 i-1}, y_{3 i}$ are painted with color 4, 2, 3respectively. The nodes y_{n-1}, y_{n} are painted with color 4, 3respectively. For $1 \leq i \leq\left\lfloor\frac{n}{3}\right\rfloor-1$, the nodes $z_{3 i+1}, z_{3 i+2}, z_{3 i+3}$ are painted with color 2,3 , 4respectively. The nodes z_{n-1}, z_{n} are painted with color 2 respectively. For $1 \leq i \leq\left\lfloor\frac{n}{3}\right\rfloor-2$, the nodes $t_{3 i+1}, t_{3 i+2}, t_{3 i+3}$ are painted with color $n+3\left\lceil\frac{i}{2}\right\rceil+$ $2,2, n+3\left\lceil\frac{i}{2}\right\rceil+3$ respectively when i is odd and with color $4, n+3\left\lceil\frac{i}{2}\right\rceil+4,3$ respectively when i is even. The nodes t_{n-1}, t_{n} are painted with color $3\left[\frac{n}{2}\right]+1,4$ respectively when n is odd and with color $4,3\left\lceil\frac{n}{2}\right\rceil+3$ respectively when n is even.

The nodes w, x_{i} aredominated by color class $n+1$. Then for $1 \leq i \leq 3$ the nodes $u_{i}, v_{i}, t_{i}, y_{i}, z_{i}$ are dominated by color class $n+i+1$. For $4 \leq i \leq n$ the nodes v_{i}, y_{i}, z_{i} are dominated by color class +1 . And for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-2$ the nodes $u_{2 i+2}, u_{2 i+3}, t_{2 i+2}, t_{2 i+3}$ are dominated by color class $n+4+i$. The nodes u_{n}, t_{n} dominate color class $3\left[\frac{n}{2}\right]+3$ when n is even.

Every neighbouring node is given different color and also it is observed that every node of the graph dominates all the nodes of atleast one color class. Thus it is a dominator coloring of nodes.

Thus the dominator coloring number of middle graph
$C H_{n}$ is $\chi_{d}\left(M\left(C H_{n}\right)\right)=$
$\left\{\begin{array}{c}3\left\lceil\frac{n}{2}\right\rceil+3 \text { when } n \text { is even } \\ 3\left\lceil\frac{n}{2}\right\rceil+1 \text { when } n \text { is odd }\end{array}\right.$.
Theorem 2.4: If $C\left(\mathrm{CH}_{n}\right)$ is the central graph of closed Helm graph CH_{n} then its dominator coloring number is $\chi_{d}\left(C\left(C H_{n}\right)\right)= \begin{cases}2 n & \text { when } n \geq 4 \\ 2 n+1 & \text { when } n=3\end{cases}$
Proof:
Let the node set and edge set of the closed Helm graph CH_{n} be
$V\left(C H_{n}\right)=\{w\} \cup\left\{v_{i}, u_{i} / 1 \leq i \leq n\right\}$
$E\left(C H_{n}\right)=\left\{v_{1} v_{n}, u_{1} u_{n}\right\} \cup\left\{v_{i} v_{j}, u_{i} u_{j} / 1 \leq i \leq\right.$ $n-1$, Uuivi, wvi/ $1 \leq i \leq n$.
The central graph of closed Helm graph denoted by $C\left(\mathrm{CH}_{n}\right)$ is obtained by the subdivision of each edge of CH_{n} exactly once and connecting by an edge all the non-adjacent nodes of CH_{n} in the central graph of closed Helm graph $C\left(\mathrm{CH}_{n}\right)$.

Let the new nodes obtained by the subdivision of edges $E\left(C H_{n}\right)$ be $\left\{x_{i}, y_{i}, z_{i}, t_{i} / 1 \leq i \leq n\right\}$.
The node set and edge set of the central graph of the closed Helm graph $C\left(\mathrm{CH}_{n}\right)$ are
$\begin{aligned} V\left(C\left(C H_{n}\right)\right)= & \{w\} \cup\left\{u_{i}, v_{i}, x_{i}, y_{i}, z_{i}, t_{i} / 1 \leq i \leq n\right\} \\ E\left(C\left(C H_{n}\right)=\right. & \left\{u_{i} t_{i}, u_{i} z_{i}, z_{i} v_{i}, v_{i} y_{i}, v_{i} x_{i}, w x_{i} / 1 \leq i\right. \\ & \leq n\} \cup\left\{t_{n} u_{1}, y_{n} v_{1}\right\} \\ & \cup\left\{t_{i} u_{i+1}, y_{i} v_{i+1} / 1 \leq i \leq n-1\right\} \\ & \cup E\left(C H_{n}\right)^{c}\end{aligned}$
The procedure below explains the dominator coloring of nodes for central graph of closed Helm graph
Case 1: When $n \geq 4$
The node w is painted with color $n+1$. For $1 \leq$ $i \leq n$, the nodes x_{i}, y_{i} are painted with color 1 and the nodes v_{i} are painted with color $n+i$ respectively. For $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$, the nodes $t_{2 i-1}, t_{2 i}, z_{2 i-1}, z_{2 i}$ are painted with color 2 when i is odd and color 1 when i is even. When n is odd, the nodes t_{n}, z_{n} are given color 2 . For $1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil$, the nodes $u_{2 i-1}$ are painted
with color $\left\lfloor\frac{n}{2}\right\rfloor+i$ and for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$, the nodes $u_{2 i}$ are painted with color i.

The node w dominates color classn. For $1 \leq i \leq$ $\left\lceil\frac{n}{2}\right\rceil$, the nodes $u_{2 i-1}$ dominate color class $\left\lfloor\frac{n}{2}\right\rfloor+i$ and for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$, the nodes $u_{2 i}$ dominate color class $2 n-i$ when i is odd and color class $2 n-i-1$ when i is even. For $1 \leq i \leq n-1$, the nodes $v_{i+1}, y_{i+1}, z_{i+1}$ dominate color class $n+i+$ 1. For $1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil-1$, the nodes $t_{2 i}, t_{2 i+1}$ dominate color class $\left\lfloor\frac{n}{2}\right\rfloor+i+1$. The nodes v_{1}, y_{1} dominate color class $2 n, n+2$ respectively. And the nodes z_{1}, t_{1} dominate color class $\left\lfloor\frac{n}{2}\right\rfloor+1$. For $1 \leq i \leq n$, the nodes x_{i} dominate color class $n+i$.

Every neighbouring node is given different color and also it is observed that every node of the graph dominates all the nodes of atleast one color class. Hence it is a dominator coloring of nodes and the dominator coloring number of central graph of closed Helm graph is $\chi_{d}\left(C\left(C H_{n}\right)\right)=2 n$.

Case 2: When $n=3$
The node w is painted with color 1 . For $1 \leq i \leq 3$, the nodes $t_{i}, x_{i}, y_{i}, z_{i}$ are painted with color 7 and the nodes u_{i}, v_{i} are painted with color $i, i+$ 3respectively.

The node w dominates color classn. For $1 \leq i \leq 3$, the nodes $v_{i}, x_{i}, y_{i}, z_{i}$ dominate color class $i+3$ and for $1 \leq i \leq 2$, the nodes t_{i}, u_{i+1} dominate color class $i+1$ respectively. The nodes t_{3}, u_{1} dominate color class 3,6 respectively.

Every neighbouring node is given different color and also it is observed that every node of the graph dominates all the nodes of atleast one color class. Hence it is a dominator coloring of nodes and the dominator coloring number of central graph of closed Helm graph is $\chi_{d}\left(C\left(C H_{n}\right)\right)=2 n+1$.

Hence the dominator coloring number of central graph of closed Helm graph is $\chi_{d}\left(C\left(C H_{n}\right)\right)=$ $\begin{cases}2 n & \text { when } n \geq 4 \\ 2 n+1 & \text { when } n=3\end{cases}$
Corollary 2.5: If $M\left(\mathrm{CH}_{n}\right)$ is the middle graph of closed Helm graph $C H_{n}$ thenfor everyn ≥ 4 the closed Helm graph satisfies the relation
$\chi_{d}\left(M\left(C H_{n}\right)\right)=$
$\begin{cases}\chi_{d}\left(C H_{n}\right)+n+\left\lfloor\frac{n}{6}\right\rfloor-1 & \text { when } n \text { is odd } \\ \chi_{d}\left(C H_{n}\right)+n+\left\lfloor\frac{n}{6}\right\rfloor & \text { when } n \text { is even }\end{cases}$
Corollary 2.6:If $C\left(\mathrm{CH}_{n}\right)$ is the central graph of closed Helm graph $C H_{n}$ thenfor every $n \geq 4$ the closed Helm graph satisfies the relation $\chi_{d}\left(C\left(C H_{n}\right)\right)=$
$\begin{cases}\chi_{d}\left(C H_{n}\right)+n+4\left\lfloor\frac{n}{6}\right\rfloor-3 & \text { when } n(\bmod 6) \equiv 0 \text { or } 1 \\ \chi_{d}\left(C H_{n}\right)+n+4\left[\frac{n}{6}\right\rfloor-2 & \text { when } n(\bmod 6) \equiv 2 \text { or } 3 \\ \chi_{d}\left(C H_{n}\right)+n+4\left[\frac{n}{6}\right\rfloor-1 & \text { when } n(\bmod 6) \equiv 4 \text { or } 5\end{cases}$
Corollary 2.7: If $M\left(C H_{n}\right), C\left(C H_{n}\right)$ are the middle graph and the central graph of the closed Helm graph $C H_{n} \quad$ thenfor \quad every $n \geq 4 \chi_{d}\left(C\left(C H_{n}\right)\right)=$ $\chi d M C H n+n-12-2$

REFERENCES

1. T.W.Haynes, S.T. Hedetniemi, Peter Slater, "Fundamentals of Domination in graphs", Marcel Dekker, New York, (1998).
2. Gera R M, S Horton, C. Rasmussen, "Dominator Colorings and Safe Clique Partitions", CongressusNumerantium 181, 19-32 (2006).
3. Gera R M, "On dominator coloring in graphs", Graph Theory Notes of New York LII 25-30 (2007).
4. Merouane, HoucineBoumediene, et al.,"DominatedColorings of Graphs", Graphs and Combinatorics 31.3: 713-727m (2015).
5. S.Arumugam, Jay Bagga and K. Raja Chandrasekar, "On dominator colorings in graphs", Proc. Indian Acad. Sci. (Math. Sci.) Vol. 122, No. 4, November 2012, pp. 561-571, Indian Academy of Sciences
6. T.Manjula and R.Rajeswari, "Dominator Coloring
of Prism graph", Applied Mathematical Sciences, Vol. 9, 2015, no. 38, 1889-1894
7. T.Manjula and R.Rajeswari, "Dominator Chromatic number of m -splitting graph and m shadow graph of path graph", Int. J. Biomedical Engineering and Technology, Vol. 27, No. 1/2, Pp 100-113, 2018.
8. T.Manjula, R.Rajeswari, AnumithaDey and Krishna Deepika, "Dominator Coloring of Certain graphs", International Journal of Engineering and Advanced Technology, Vol. 8, Issue 2s, Pp. 262268, Dec 2018,
9. R.Rajeswari, T.Manjula, Krishna Deepika and AnumithaDey, "Dominator Coloring Number of some class of graphs", International Journal of Engineering and Advanced Technology, Vol. 8, Issue 2s, Pp. 269-274, Dec 2018,
10. K. Kavitha, N.G. David, "Dominator Coloring of Central Graphs", International Journal of Computer Applications (0975-8887) Volume 51- No.12, August 2012
. K. Kavitha, N.G. David, "Dominator Chromatic number of Middle and Total graphs", International Journal of Computer Applications (0975-8887), Volume 49- No.20, July 2012
