A Fixed Point Theorem on complete Partially Ordered Cone 2-Metric Spaces using Generalized control Function

R. Aruna ${ }^{1}$, R. Hemavathi ${ }^{2}$
${ }^{1}$ Assistant professor, Dept.of Mathematics, Dr.M.G.R.Educational and Research Institute, Chennai-95. rmeena2602@gmail.com
${ }^{2}$ Assistant professor, Dept. of Mathematics, Queen Mary's College, University of Madras, Chennai - 04 hemaths@gmail.com

Article Info
Volume 82
Page Number: 6099-6105
Publication Issue:
January-February 2020
Article History
Article Received: 18 May 2019
Revised: 14 July 2019
Accepted: 22 December 2019
Publication: 29 January 2020

Abstract

: The aim of the Research article is to prove a theorem of unique fixed point using the concept of generalized control function in partial cone 2- metric spaces applying the scheme called c-sequences. We also establish that the fixed point is unique. The presented theorem extends and unifies various fixed point results. To justify the result, few lemmas are used.

Keywords: cone 2-metric spaces, altering distances (control function) and invertible element.

1. Introduction

Despite its simplicity, the theory functional Analysis achieves a healthy role due to its broad applications to nonlinear sciences. As far as we know the first significant result is Banach Contraction Principle. It is being served as a very popular tool for solving existence problems in many branches in Mathematical analysis. The term called cone metric spaces which is a generalization of the a particular type of metric spaces called as classical metric space was popularized by Huang and Zhang . 2-metric spaces were established by Gahler. Sharma et.al. Enquired about the occurence and uniqueness of the fixed points of a group of mappings in 2metric spaces. By joining both the concepts of 2-metric spaces and cone metric spaces, Singh et.al found a new space, called cone 2 - metric space and showed several fixed point theorems of a contractive mappings on cone 2-metric spaces. Altering Distance function, also known as control function was introduced by Khan et.al in 1984.

2. Preliminaries:

A multiplication operation is defined, in a real Banach space B obeying the following conditions. For all $x_{1}, x_{2}, x_{3} \in B, a \in R$:
(i) $\left(x_{1} x_{2}\right) x_{3}=x_{1}\left(x_{2} x_{3}\right)$
(ii) $x_{1}\left(x_{2}+x_{3}\right)=x_{1} x_{2}+x_{1} x_{3}$
(iii) $\alpha\left(x_{1} x_{2}\right)=\left(\alpha x_{1}\right) x_{2}=x_{1}\left(\alpha x_{2}\right)$
(iv) $\left\|x_{1} x_{2}\right\| \leq\left\|x_{1}\right\|\left\|x_{2}\right\|$

2.1 Definition: Invertible element: [20]

An element $x \in A$ is known to be an invertible if there is an inverse element $y \in A$ such that $\mathrm{xy}=\mathrm{yx}=\mathrm{e}$, the unit element. The inverse of x is denoted by x^{-1}.

2.2 Definition: cone metric spaces: [9]

Assume that X be a non-void set. Consider the mapping d: $\mathrm{XxX} \rightarrow E$ satisfies
i. $0 \leq d(x, y)$ for all $\mathrm{x}, \mathrm{y} \in X$ and $\mathrm{d}(\mathrm{x}, \mathrm{y})=0$ iff $\mathrm{x}=\mathrm{y}$
ii. $d(x, y)=d(y, x)$ for all $\mathrm{x}, \mathrm{y} \in X$.
iii. $d(x, y) \leq d(x, z)+d(z, y)$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in$ X.
then d is called cone metric on X and (X, d) is known as a cone metric space.

2.3 Definition: Altering Distances:[17]

Let ψ be a function for which, a mapping $\psi:[0,+\infty)^{n} \rightarrow[0,+\infty)$ is called to be a generalized altering distance or control function if:
(i) $\quad \psi$ is continuous
(ii) ψ increasesin each of its variables.
(iii) $\psi\left(t_{1}, t_{2}, \ldots . t_{n}\right)=0$ iff $t_{1=} t_{2}=\cdots=$ $t_{n}=0$

The following Lemmas are helpful in proving the main result.

2.4:Lemma: [20]

Let A be Banach Algebra along with an unit element e and assume $u \in A$. If the spectral Radius $\mathrm{r}(\mathrm{u})$ of $\mathrm{u}<1$,

$$
r(u)=\lim _{n \rightarrow \infty}\left\|u^{n}\right\|^{\frac{1}{n}}=\inf _{n \geq 1}\left\|u^{n}\right\|^{\frac{1}{n}}<1
$$

At that point e-u is invertible. In fact ($e-$ $u-1=i=0 \infty u i$

2.5:Lemma[20]

Let A be a Banach Algebra and let x_{1}, x_{2} be the vectors in A. If x_{1} and x_{2} commute, then the following conditions are true.
(i) $\mathrm{r}\left(x_{1} x_{2}\right) \leq r\left(x_{1}\right) r\left(x_{2}\right)$
(ii) $\mathrm{r}\left(x_{1}+x_{2}\right) \leq r\left(x_{1}\right)+r\left(x_{2}\right)$
(iii) $\left|r\left(x_{1}\right)-r\left(x_{2}\right)\right| \leq r\left(x_{1}-x_{2}\right)$.

2.6:Lemma:[20]

Let A be a Banach Algebra and let k be the vector in A. If $0 \leq r(k)<1$, then $\mathrm{r}\left((e-k)^{-1}\right) \leq$ $(1-r(k))^{-1}$

2.7:Definition: 2-Metric space:[5]

Let X be a set which is non-empty. Suppose that the mapping $\mathrm{p}: \mathrm{XxXxX} \rightarrow R^{+}$satisfies:
(i) for any two of distinct points $x_{1}, x_{2} \in X$, there is a point $x_{3} \in X$ such that $\mathrm{p}\left(x_{1}, x_{2}, x_{3}\right) \neq 0$
(ii) $\mathrm{p}\left(x_{1}, x_{2}, x_{3}\right)=0 \Leftrightarrow$ atleast two of x_{1}, x_{2}, x_{3} are equal.
(iii) $\mathrm{p}\left(x_{1}, x_{2}, x_{3}\right)=p\left(d\left(x_{1}, x_{2}, x_{3}\right)\right)$ for all, $x_{1}, x_{2}, x_{3} \in X$ and for all permutations and combinations $\mathrm{d}\left(x_{1}, x_{2}, x_{3}\right)$ of $\mathrm{x}, \mathrm{y}, \mathrm{z} x_{1}, x_{2}, x_{3}$
(iv) $\mathrm{p}\left(x_{1}, x_{2}, x_{3}\right) \leq \mathrm{p}\left(x_{1}, x_{2}, w\right)+\mathrm{p}\left(x_{1}, w, x_{3}\right)+$ $\mathrm{p}\left(w, x_{2}, x_{3}\right)$ for all $x_{1}, x_{2}, x_{3}, \mathrm{w} \in X$

Then p is called the 2 -metric on X and (X, p) is called a 2-metric space.

2.8:Definition: Cone 2-metric space:[21]

Assume X is a non-void set. Suppose that the mapping p: $\mathrm{XxXxX} \rightarrow A$ satisfies:
(i) for every pair of distinct points $x_{1}, x_{2} \in X$, there exists a point $x_{3} \in X$ such that $\mathrm{p}\left(x_{1}, x_{2}, x_{3}\right) \neq$ θ
(ii) $\theta \preccurlyeq \mathrm{p}\left(x_{1}, x_{2}, x_{3}\right)$ for all $x_{1}, x_{2}, x_{3} \in X$ and $\mathrm{p}\left(x_{1}, x_{2}, x_{3}\right)=\theta$ iff atleast two of x_{1}, x_{2}, x_{3} are equal. (iii) $p\left(x_{1}, x_{2}, x_{3}\right)=p\left(d\left(x_{1}, x_{2}, x_{3}\right)\right)$ for all $x_{1}, x_{2}, x_{3} \in X$ and for all permutations $\mathrm{d}\left(x_{1}, x_{2}, x_{3}\right)$ of x_{1}, x_{2}, x_{3}
(iv) $\mathrm{p}\left(x_{1}, x_{2}, x_{3}\right) \leq$
$\mathrm{p}\left(x_{1}, x_{2}, w\right)+\mathrm{p}\left(x_{1}, w, x_{3}\right)+$
$\mathrm{p}\left(w, x_{2}, x_{3}\right)$ for all $x_{1}, x_{2}, x_{3}, \mathrm{w} \in X$
Then p is called the cone 2 -metric on X and (X, p) is known to be a cone 2 -metric space over the A .

2.9:Definition:Solid Cone:[13]

A subset C of A is called a cone of A if:
(i) C is non-empty closed and $\{\theta, e\} \subset C$
(ii) $\alpha P+\beta P \subset C$ for all positive real numbers α, β
(iii) $C^{2}=C C \subset C$
(iv) $\mathrm{C} \cap(-C)=\{\theta\}$, where θ is the null element of the Banach algebra A .

For a given cone $\mathrm{C} \subset A$, we characterize a partial ordering \preccurlyeq concerning C by $x \preccurlyeq y$ iff y $\mathrm{x} \in C$.
$x _y$ implies $x \preccurlyeq y$ and $x \neq y$,
then $x \ll y$ valid for $y-x \in \operatorname{int} C$, where int C is the interior of C .

If int of $\mathrm{C} \neq \emptyset$, then C is called a solid cone.

2.10:Lemma:[20]

If E is a Banach space which is also real with Cas a solid cone and if $\theta \preccurlyeq u \ll c$ for each $\theta \ll c$, then $\mathrm{u}=\theta$.

2.11:Lemma:[20]

If A will be a real Banach space with a solid cone C and if $\left\|x_{n}\right\| \rightarrow 0(n \rightarrow \infty)$

At that point for any $\theta \ll c$, there existsN $\in \mathcal{N}$, to such an extent that, for any $\mathrm{n}>N$, we have $x_{n} \ll c$.

2.12:Definition: c-sequence:[4],[15]

Ler C be a solid cone in A which is a Banach space and a sequence $\left\{x_{n}\right\} \subset C$ is a c-sequence if for each there existsn $\in \mathcal{N}$, such that $x_{n} \ll c$ for all $\mathrm{n}>N$.

2.13:Lemma:[20]

Let C be a solid cone in a Banach space A. Two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be c- sequences in C. If $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be c-sequences and α and $\beta>0$ then $\left\{\alpha x_{n}+\beta y_{n}\right\}$ is a c - sequence.

2.14:Lemma:[20]

Let us have C be a solid cone in a Banach space A and let $\left\{x_{n}\right\}$ be sequence in C. Suppose that $\mathrm{a} \in C$ is an arbitrary vector and $\left\{x_{n}\right\}$ be any csequence in C . Then $\left\{a x_{n}\right\}$ is also a c-sequence.

2.15:Proposition [21]

Let us take (X, p) to be a cone 2- metric space which is complete over the Banach Algebra A and let C be the solid cone in A. Let $\left\{x_{n}\right\}$ be a sequence in X. If $\left\{x_{n}\right\}$ converges to $\mathrm{x} \in X$, then the following hold:
(i) $\left\{p\left(x_{n}, x, a\right)\right\}$ is a c- sequence for all $\mathrm{a} \in X$.
(ii) For any $\mathrm{d} \in \mathcal{N},\left\{p\left(x_{n}, x_{n+p}, a\right)\right\}$ is a csequence for all $\mathrm{a} \in X$.

2.16:Proposition:[21]

Let us consider a solid cone C in the Banach Algebra A and let x be a vector in A. Assume that $\mathrm{k} \in C$ is an arbitrarily given vector and $x \ll c$ for any $\theta \ll c$, at that point we have $k x \ll c$ for any $\theta \ll c$.

Proof:

Let us $\mathrm{c} \gg \theta$, then $\frac{c}{m} \gg \theta$ for all $\mathrm{m} \in \mathcal{N}$.It is clear that $x \leqslant \frac{c}{m}$ for all $\mathrm{m} \in \mathcal{N}$.So $\mathrm{kx} \leqslant \frac{k c}{m}$. Since $\frac{k c}{m} \rightarrow$ θ as $\mathrm{m} \rightarrow \infty$, there existsM $\in \mathcal{N}$ such that $\mathrm{kx} \preccurlyeq$ $\frac{k c}{m} \ll c$ when $\mathrm{m}>M$.

MAIN RESULT:

Let (X, p, \preccurlyeq) be a partially ordered complete Cone-2 Metric space over the B and C be any solid cone. Let $\left\{F_{i}\right\}, \mathrm{i}=1$ to ∞ be a family of mappings from X to itself. Suppose that there exists a positive integer sequence $\left\{m_{i}\right\}, \mathrm{i}=1$ to ∞ so that for all positive integer i, j and for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in X$, then ,

$$
\begin{aligned}
\psi_{1}\left(p \left({F_{i}}^{m_{i}} x,\right.\right. & \left.\left.F_{j}^{m_{j}} y, z\right)\right) \\
& \leqslant \psi_{1}\left[a\left(p\left(x, F_{i}^{m_{i}} x, z\right)\right)+b\left(p\left(y, F_{j}^{m_{j}} y, z\right)\right)+c(p(x, y, z))\right] \\
& -\psi_{2}\left[a\left(p\left(x, F_{i}^{m_{i}} x, z\right)\right), b\left(p\left(y, F_{j}{ }^{m_{j}} y, z\right)\right), c(p(x, y, z))\right]
\end{aligned}
$$

Where $\mathrm{a}, \mathrm{b}, \mathrm{c} \in C$ with $r(a)+r(b)+r(c)<1$ and ψ_{1}, ψ_{2} are generalized altering distance functions with $\psi_{1}(s)=\psi_{1}(s, s, s, s \ldots .$.$) , then the sequence \left\{F_{i}\right\}, \mathrm{i}=1$ to ∞ have a unique fixed point in X .

Proof:

Lett $t_{i}=\left\{F_{i}\right\}, \mathrm{i}=1$ to ∞. Then for all i and j , we have

$$
\begin{aligned}
\psi_{1}\left(p \left(t_{i}(x),\right.\right. & t_{j}
\end{aligned} \begin{aligned}
& (y), z)) \\
& \preccurlyeq \psi_{1}\left[a\left(p\left(x, t_{j}(x), z\right)\right)+b\left(p\left(y, t_{j}(y), z\right)\right)+c(p(x, y, z))\right] \\
& -\psi_{2}\left[a\left(p\left(x, t_{j}(x), z\right)\right), b\left(p\left(y, t_{j}(y), z\right)\right), c(p(x, y, z))\right]
\end{aligned}
$$

Let $x_{0} \in X$ and set a sequence $x_{n}=t_{n}\left(x_{n-1}\right), \mathrm{n} \geq 1$. Then

$$
\begin{aligned}
\psi_{1}\left[\left(p \left(x_{n+1},\right.\right.\right. & \left.\left.\left.x_{n}, z\right)\right)\right]=\psi_{1}\left[\left(p\left(t_{n+1}\left(x_{n}\right), t_{n}\left(x_{n-1}\right), z\right)\right)\right] \\
& \leqslant \psi_{1}\left[a\left(p\left(x_{n}, x_{n+1}, z\right)\right)+b\left(p\left(x_{n-1}, x_{n}, z\right)\right)\right. \\
& \left.+c\left(p\left(x_{n}, x_{n-1}, z\right)\right)\right]-\psi_{2}\left[a\left(p\left(x_{n}, x_{n+1}, z\right)\right), b\left(p\left(x_{n-1}, x_{n}, z\right)\right), c\left(p\left(x_{n}, x_{n-1}, z\right)\right)\right]
\end{aligned}
$$

From the lemma 2.4, we get

$$
\begin{array}{r}
\psi_{1}\left[\left(p\left(x_{n+1}, x_{n}, z\right)\right)(1-a)\right] \preccurlyeq \psi_{1}\left[b\left(p\left(x_{n-1}, x_{n}, z\right)\right)+c\left(p\left(x_{n}, x_{n-1}, z\right)\right)\right] \\
-\psi_{2}\left[a\left(p\left(x_{n}, x_{n+1}, z\right)\right), b\left(p\left(x_{n-1}, x_{n}, z\right)\right), c\left(p\left(x_{n}, x_{n-1}, z\right)\right)\right] \\
\psi_{1}\left[\left(p\left(x_{n+1}, x_{n}, z\right)\right)\right] \preccurlyeq \\
{\left[\psi_{1}\left(\frac{b+c}{e(1-a)}\right)\left(p\left(x_{n}, x_{n-1}, z\right)\right)\right]} \\
-\psi_{2}\left[\begin{array}{c}
\left.a\left(p\left(x_{n}, x_{n+1}, z\right)\right), b\left(p\left(x_{n-1}, x_{n}, z\right)\right), c\left(p\left(x_{n}, x_{n-1}, z\right)\right)\right] \\
\leqslant \psi_{1}\left[k\left(p\left(x_{n}, x_{n-1}, z\right)\right)\right]-\psi_{2}\left[\begin{array}{c}
a\left(p\left(x_{n}, x_{n+1}, z\right)\right), \\
b\left(p\left(x_{n-1}, x_{n}, z\right)\right), \\
c\left(p\left(x_{n}, x_{n-1}, z\right)\right)
\end{array}\right]
\end{array} \begin{array}{r}
\text { Where } \mathrm{k}=\left(\frac{b+c}{e(1-a)}\right) \\
\leqslant \psi_{1}\left[k\left(p\left(x_{n}, x_{n-1}, z\right)\right)\right]-\psi_{2}\left[\begin{array}{l}
a\left(p\left(x_{n}, x_{n+1}, z\right)\right), \\
b\left(p\left(x_{n-1}, x_{n}, z\right)\right), \\
c\left(p\left(x_{n}, x_{n-1}, z\right)\right)
\end{array}\right]
\end{array}\right.
\end{array}
$$

For the convergence, we have

$$
\begin{aligned}
& \leqslant \psi_{1}\left[k^{2}\left(p\left(x_{n}, x_{n-1}, z\right)\right)\right]-\psi_{2}\left[\begin{array}{l}
a\left(p\left(x_{n}, x_{n+1}, z\right)\right), \\
b\left(p\left(x_{n-1}, x_{n}, z\right)\right) \\
c\left(p\left(x_{n}, x_{n-1}, z\right)\right)
\end{array}\right] \\
& \leqslant \psi_{1}\left[k^{n}\left(p\left(x_{n}, x_{n-1}, z\right)\right)\right]-\psi_{2}\left[\begin{array}{l}
a\left(p\left(x_{n}, x_{n+1}, z\right)\right), \\
b\left(p\left(x_{n-1}, x_{n}, z\right)\right), \\
c\left(p\left(x_{n}, x_{n-1}, z\right)\right)
\end{array}\right]
\end{aligned}
$$

$\left[\left(p\left(x_{n}, x_{n-1}, x_{l}\right)\right)\right] \preccurlyeq\left(p\left(x_{n-1}, x_{n-2}, x_{l}\right)\right)$

$$
\leqslant k^{n-l-1}\left[\psi_{1}\left(p\left(x_{l+1}, x_{l}, x_{l}\right)\right)\right]
$$

$\Rightarrow p\left(x_{n}, x_{n-1}, x_{l}\right)=\theta$ for all $1<\mathrm{n}$. Then for $\mathrm{n}>\mathrm{m}$,
$\psi_{1}\left[\left(p\left(x_{n}, x_{m}, z\right)\right)\right] \leqslant \psi_{1}\left[\left(p\left(x_{n}, x_{m}, x_{n-1}\right)\right)+\left(p\left(x_{n}, x_{n-1}, z\right)\right)+\left(p\left(x_{n-1}, x_{m}, z\right)\right)\right]$
$-\psi_{2}\left[\left(p\left(x_{n}, x_{m}, x_{n-1}\right)\right)+\left(p\left(x_{n}, x_{n-1}, z\right)\right)+\left(p\left(x_{n-1}, x_{m}, z\right)\right),\right]$

$$
\begin{aligned}
& \leqslant k^{n-1}\left\{\psi _ { 1 } \left[\left(p\left(x_{1}, x_{0}, z\right)\right)+\left(p\left(x_{n-1}, x_{m}, x_{n-2}\right)\right)+\left(p\left(x_{n-1}, x_{n-2}, z\right)\right)\right.\right. \\
& \left.\quad+\left(p\left(x_{n-2}, x_{m}, z\right)\right)\right]-\psi_{2}\left[\left(\left(p\left(x_{1}, x_{0}, z\right)\right)+\left(p\left(x_{n-1}, x_{m}, x_{n-2}\right)\right)+\left(p\left(x_{n-1}, x_{n-2}, z\right)\right)\right.\right. \\
& \left.\left.\left.\quad+\left(p\left(x_{n-2}, x_{m}, z\right)\right)\right)\right]\right\} \\
& \quad \preccurlyeq\left(k^{n-1}+k^{n-2}\right)\left[\left(p\left(x_{1}, x_{0}, z\right)\right)+\left(p\left(x_{n-2}, x_{m}, z\right)\right)\right]
\end{aligned}
$$

Continuing like this we get,
$\preccurlyeq\left(k^{n-1}+k^{n-2}+\cdots k^{m+1}\right)\left[\left(p\left(x_{1}, x_{0}, z\right)\right)+\left(p\left(x_{m+1}, x_{m}, z\right)\right)\right]$
$\leqslant\left(k^{n-1}+k^{n-2}+\cdots k^{m+1}+k^{m}\right)\left(p\left(x_{1}, x_{0}, z\right)\right)$
$=\left(e+k+\cdots k^{n-m+1}\right) k^{m} p\left(x_{1}, x_{0}, z\right)$
From lemma $2.2 \& 2.3$, we have

$$
\begin{gathered}
r(k)=r\left[(e-a)^{-1}(b+c)\right] \preccurlyeq r\left((e-a)^{-1} r(b+c)\right. \\
\preccurlyeq \frac{r(b+c)}{1-r(a)} \preccurlyeq \frac{r(b)+r(c)}{1-r(a)}<1
\end{gathered}
$$

So from lemma 2.5 and from the concept of spectral radius, we have
$\left\|(e-r)^{-1} r^{m} p\left(x_{1}, x_{0}, a\right)\right\| \rightarrow 0$ as $n \rightarrow \infty$. It follows that for any $c \epsilon A$ with $\theta \ll c$
Therefore $\left\{x_{n}\right\}$ is a Cauchy sequence in X .
We know that X is complete. Then there exists $\mathrm{x} \in X$ such that $x_{n} \rightarrow x$ as $\mathrm{n} \rightarrow \infty$

To claim \mathbf{x} is the fixed point of F_{i} :

Have x be the fixed point, Say. i.e.to prove that $t_{n}(x)=x$. Actually

$$
\begin{aligned}
& \psi_{1}\left[\left(p\left(t_{n}(x), x, z\right)\right)\right] \leqslant \psi_{1}\left[\left(p\left(t_{n}(x), x, t_{m+1}\left(x_{m}\right)\right)+p\left(\left(t_{n}(x), t_{m+1}\left(x_{m}\right), z\right)+p\left(\left(t_{m+1}\left(x_{m}\right), x, z\right)\right]\right.\right.\right. \\
& -\psi_{2}\left[\left(p\left(t_{n}(x), x, t_{m+1}\left(x_{m}\right)\right)+p\left(\left(t_{n}(x), t_{m+1}\left(x_{m}\right), z\right)+p\left(\left(t_{m+1}\left(x_{m}\right), x, z\right)\right]\right.\right.\right. \\
& \leqslant \psi_{1}\left[\left(p\left(x_{m+1}, x, z\right)\right)+a\left(p\left(x, t_{n}(x), z\right)+b\left(p\left(x_{m}, t_{m+1}\left(x_{m}\right), x\right)+c\left(p\left(x, x_{m}, x\right)\right)\right.\right.\right. \\
& +a\left(p\left(x_{m}, t_{m+1}\left(x_{m}\right), z\right)+b\left(p\left(x, t_{n}(x), z\right)+c\left(p\left(x_{m}, x, z\right)\right)\right.\right. \\
& -\psi_{2}\left[\left(p\left(x_{m+1}, x, z\right)\right), a\left(p\left(x, t_{n}(x), z\right), b\left(p\left(x_{m}, t_{m+1}\left(x_{m}\right), x\right), c\left(p\left(x, x_{m}, x\right)\right)\right.\right.\right. \\
& +a\left(p\left(x_{m}, t_{m+1}\left(x_{m}\right), z\right), b p\left(x, t_{n}(x), z\right), c\left(p\left(x_{m}, x, z\right)\right)\right] \Rightarrow(e-b) \psi_{1}\left[\left(p\left(t_{n}(x), x, z\right)\right)\right] \\
& \leqslant \psi_{1}\left[\left(p\left(x_{m+1}, x, z\right)\right)+b\left(p\left(x_{m}, x_{m+1}, x\right)\right)+a\left(\left(p\left(x_{m}, x_{m+1}, z\right)\right)+c\left(p\left(\left(x_{m}, x, z\right)\right)\right]\right.\right.
\end{aligned}
$$

Therefore from lemma $2.13 \& 2.14$ and proposition 2.15 , then

$$
(e-b) \psi_{1}\left(p\left(t_{n}(x), x, z\right)\right) \leqslant q_{m}
$$

where $\left\{q_{m}\right\}$ is C -sequece $\in \mathrm{C}$.
Now we have $\left(e-k_{2}\right)\left(p\left(t_{n}(x), x, z\right)\right) \ll c$, for any $c \gg \theta$, with the usage of proposition3.2, $\theta \preccurlyeq\left(p\left(t_{n}(x), x, z\right)\right) \ll c \Rightarrow t_{n}(x)$ is a c-sequence as $e-k_{2}$ is invertible, > θ.

By lemma 2.11, $\left(p\left(t_{n}(x), x, z\right)\right)=\mathbf{c}$, for $\mathrm{n} \in N$. Therefore $t_{n}(x)=x$ for anyn $\in N$.

To Prove the Uniqueness:

Suppose there exists an alternate fixed point say, $y \in t_{n}(x) \in X$

Then,

$$
\begin{aligned}
& \quad \psi_{1}(p(x, y, z)) \\
& \preccurlyeq \psi_{1}[a(p(x, x, z))+b(p(y, y, z)) \\
& \quad+c(p(x, y, z))] \\
& \quad-\psi_{2}[p(x, x, z), p(y, y, z), p(x, y, z)] \\
& (e-b) \psi_{1}(p(x, y, z)) \preccurlyeq \theta, \Rightarrow p(x, y, z)=
\end{aligned}
$$ θ,for $\mathrm{z} \in \mathrm{X}$

$(e-b)$ is invertible, then we have $\mathrm{x}=\mathrm{y} \Rightarrow \mathrm{fixed}$ point is unique.

Conclusion:

This research article is mainly focused on cone 2 metric spaces and altering Distances alias control function. The applications of cone 2-metric is in multiple number of branches Mathematics, few of which are Integral equations, Initial Value Problems, Dynamic Programming etc.

References:

1. A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and application to matrix equations, Proc.Am. Math. Soc. 132 (2004) 1435-1443.
2. Berinde, V: A common fixed point theorem for compatible quasi contractive self mappings in metric spaces. Appl.Math. Comput. 213, 348-354 (2009).
3. Choudhury, BS: A common unique fixed point result in metric spaces involving generalized altering distances. Math.Commun. 10, 105-110 (2005).
4. Dordevic.M. Doric, D.Kadelburg, Z.Radenovi.S.Spasic.D. Fixed point results under C-Distance in tvs cone metric spaces, Fixed Point Theory Appl. 2011, 29(2011) doi10.1186/1687-1812-2011-29.
5. Gahler, S: 2-metrische Raume und ihretopologischestrukturen. Math. Nachr. 26, 115-148(1963).
6. Gahler, S: Uber die Uniformisierbarkeit 2metricsche Raume. Math. Nachr. 28, 235244 (1965).
7. Gahler, S: Zur geometric 2-metrische Raume. Rev. Roum. Math. Pures Appl.11, 665-667 (1966)
8. Gaji'c, L, Rako cevi'c, V: Quasicontractions on a non-normal cone metric space. Funct. Anal. Appl. 46(1), 75-79 (2012)
9. Huang, L, Zhang, X: Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl. 332,14681476 (2007)
10. Huang, H, Radenovi'c, S, Došenovi'c, T: Some common fixed point theorems on c distance in cone metric spaces over Banach algebras. Appl. Comput. Math. 14(2), 180-193 (2015)
11. Huang, H, Radenovi'c, S: Common fixed point theorems of generalized Lipschitz mappings in cone b-metric spaces over Banach algebras and applications. J. Nonlinear Sci. Appl. 8, 787-799 (2015)
12. K.P.R.Rao, G.R.Babu and D.V.Babu," Common fixed points theorems through Generalized altering distance functions, "Mathematical communications,vol.13,no.1,pp6773,2008.
13. Kadelburg, Z, Radenovi'c, S: Some common fixed point results in non-normal cone metric spaces. J. Nonlinear Sci.Appl. 3(3), 193-202 (2010)
14. Kadelburg, Z, Murthy, P, Radenovi'c, S: Common fixed points for expansive mappings in cone metric spaces. Int.J. Math. Anal. 5(27), 1309-1319 (2011)
15. Kadelburg, Z, Radenovi'c, S: A note on various types of cones and fixed point results in cone metric spaces. Asian J.Math. Appl. 2013, Article ID ama0104 (2013)
16. Liu, H, Xu, S: Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings ,Fixed Point Theory Appl. 2013, 320 (2013)
17. M.S. Khan, M. Swaleh and S. Sessa, Fixed point theorem by altering distance between the points, Bull. Aust. Math. Soc., 30(1984), 1-9.
18. Radenovi'c, S, Radojevi'c, S, Panteli'c, S, Pavlovi'c, M: ' Ciri'c type theorems in abstract metric spaces. Theor. Math. Appl.2(1), 89-102 (2012)
19. Rhoades, B: Contractive type mapping on a 2-metric space. Math. Nachr. 91, 151155 (1979)
20. Sharma, P, Sharma, B, Iseki, K: Contractive type mapping in 2-metric space. Math. Jpn. 21,67-70 (1976)
21. Tao Wang, Jilandong Yin and Qi Yan, Wang et.al. Fixed Point Theory and Applications (2015) 2015:204
22. Xu.s, Radenovic.S, Fixed Point theorems of generalized Lipschitz mappings on cone metric spaces over Banach Algebras without assumption of normality Fixed Point Theory Appl 2014, 102 (2014).
