

Functional Response and Predation Potential of Hyperaspis Campestris (Herbst 1783) (Coleoptera: Coccinellidae) on Opuntiae Cochineal Dactylopius Opuntiae (Hemiptera: Dactylopiidae) in Morocco

Mohamed El Aalaoui,^{1,4*}, Rachid Bouharroud,¹ Mohamed Sbaghi,² Mustapha El Bouhssini,³ and Lahoucine Hilali,⁴

¹Integrated Crop Production Unit, Regional Center of Agadir, National Institute of Agronomic Research, Morocco.

Emails: mohamedelaalaoui@gmail.com (Corresponding author) and bouharroud@yahoo.fr,

²National Institute of Agronomic Research, Plant Protection Department, Scientific Division, Rabat Morocco.

Emails: msbaghi@yahoo.fr 3 International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco.

Email: m.bohssini@cgiar.org

⁴Faculty of Science and Technology of Settat, Morocco.

Email: lahh1996@gmail.com

*Corresponding author: mohamedelaalaoui@gmail.com,

Article Info Volume 82 Page Number: 5976 - 5985 Publication Issue: January-February 2020

Article History Article Received: 18 May 2019 Revised: 14 July 2019 Accepted: 22 December 2019 Publication: 29 January 2020 Abstract: Functio

Functional response of the lady beetle *Hyperaspis campestris* (Herbst 1783) to varying densities (1, 5, 10, 15, 20 and 25) of *Dactylopius opuntiae* (Cockerell) young females (20 days old) were determined under controlled conditions at $26\pm2^{\circ}$ C, 60 ± 10 % RH and 12:12 h L:D regime. The searching efficiency of *H. campestris* considerably decreased as prey density increased. The significant linear coefficient (*P*₁) obtained by logistic regression had a negative indicating functional response type II. Attack rates (0.151, 0.101, 0.097, 0.122, 0.124 and 0.135) and handling times (3.848, 5.171, 5.417, 4.245, 4.356 and 3.940) for 1 to 25 density, respectively, were recorded using Holling's disc equation. Most of this handling time was spent in removing the wax covering and protecting the young females of the mealybug. *H. campestris* feeds on young females of *D. opuntiae* and could therefore be an effective predator to regulate to low-density populations of *D. opuntiae*.

Keywords: Biological control, Functional response, D. opuntiae, Hyperaspis campestris, Cactus

Introduction

Cactus is one of the most important economic crop worldwide (Kiesling 1999). It plays an critical role in the ecological system in semi-arid and arid areas, preventing desertification and preserving biodiversity, is also exploited as a vegetable source for human, and cladodes as cattle feed (Kiesling 1999; Bouharroud *et al.* 2016). It is cultivated in Africa, Europe, Asia, America, Africa, Canada, Peru, Cuba, and other Caribbean islands (Casas & Barbera 2002; Bravo Hollis & Scheinvar 1995; Griffith 2004). In Morocco, cactus was first introduced in 1770 from south Africa and the cactus area

has considerably evolved over the last two decades from 50 000 ha in 1998 to more than 150 000 ha at present as a result of drought (Bouharroud et al. 2016). Mann (1969) reported that there are 167 Arthropod species associated to cactus (Opuntiae ficus indica). Among these insects, Dactylopius opuntiae (Cockerell) is the most devastator pest of prickly pear cactus in Mexico (Githure et al. 1999; Portillo & Vigueras 2006), Brazil (Silva et al. 2013), Israel and Spain (Spodek et al. 2014) and recently Morocco and others Mediterranean areas (Bouharroud et al. 2016; El Aalaoui et al., 2019a; El Aalaoui et al., 2019b). This sap-sucking insect was first detected and identified in Morocco in 2014 (Bouharroud et al. 2016) and caused severe damage to prickly pear in many regions of kingdom. D. opuntiae feed cladodes, directly on and severe infestations inferior or equal to 75 % of the cladode surface can result a death of the host plant (Mann 1969; Vanegas-Rico et al. 2015). This hemipteran females have 3 life stages – egg, nymph or crawlers (2 instars), and adult, lived permanently attached to their host cladodes, and produce wax cottony that protects their bodies against predators, and reduces the potency of pesticides, the female survival time varies from 90 to 128 days, also each female can laid more then 130 eggs, which hatch almost simultaneously into crawlers (Badii & Flores 2001). whereas males have 5 life stages egg, nymph, pre-pupa, pupa and adult, male is short lived without feeding and moves predominantly by walking (Badii & Flores 2001). No informations are available today on economical and environmental losses caused by D. opuntiae, in Morocco, where it is not native, around 400 ha of cactus damaged by this insect at Sidi Bennour in Doukkala region have been reported. The cochineal is today present almost in all Morocco regions. In Brazil the degas caused by this scale pest were estimated at \$25 Million Dollar (Lopes et al. 2009).

The damage caused by this scale pest to fruit and cladodes in Mexico resulted higher production and economical costs (Badii & Flores 2001; Portillo & Vigueras 2006). Also in Lebanon and Israel a pest risk analysis of the insect was carried out to protect natural areas covered by O. ficus-indica (Spodek et al. 2014). D. opuntiae mostly controlled is by organophosphate insecticides such as cypermethrin and chlorpyrifos which can affect human health, the environment, and limit international commercial exchange (Vanegas-Rico et al. 2016). Many alternative strategies such as the use of predators have been used around the world to reduce pesticides use for D. opuntiae control (Vigueras et al. 2009; Borges et al. 2013; Vanegas-Rico et al. 2016). Natural enemies associated with Dactylopius species include much predators belonging to Lepidoptera, Coleoptera, Diptera and Neuroptera groups (Grissell 2004; El Aalaoui et al., 2019b). Coccinellidae Hyperaspis trifurcata and Chilocorus cacti are the most predators of D. opuntiae in USA and Mexico (Vanegas-Rico et al. 2016). After detection of D. opuntiae in Morocco, surveys were conducted in different cactus production areas with a view to find biological control agents with the potential to be used as a predators against this scale pest. In July 2017, Hyperaspis campestris was observed on cactus crop actively feeding on cactus mealy bug (D. opuntiae) in Sidi Bennour, region (Bouharroud et al. 2019). A few studies showed the utilization of H. campestris as biological control agent. Hyperaspis campestris Herbst was able to reduce the population of *pulvinaria* floccifera (Westwood) within two years of release (Bogdanova 1956). Also Hyperaspis spp. eggs are generally deposited near their prey, on the bark or growth rings of twigs, but not inside the scales (El-Ali 1972). However, in Hubbard and Potter's (2005) study in Kentucky, Hyperaspis spp. emerged only from under

adult females. The body length measured 2 to 5 mm (Van Goethem 1975; Gunst 1978). The head is yellow with black on upper side hidden by pronotum(Bouharroud *et al.* 2019). The anterior pronotum border was yellow and the sides are partially yellow(Bouharroud *et al.* 2019). The red spot is typically placed at three-quarter part of elytron. The humeral spots is absent (Van Goethem 1975).

The functional response is defined by the number of preys devoured by predator in well determined time and is a good indicator of the efficiency of a biological control agent as a predator of prey (Fernàndez-Arhex & Corley 2004). Most coccinellids showed type II response (Gunog & Donald 2011). Many models have adopted in the past to explain the interaction between predator and prey (Omkar 2004). Holling disc equation was the most model used to describe this interaction (Holling 1959, Fenlon & Malcolm 2006). This method is frequently used to calculate handling time parameters, the attack rate and maximum attack coefficient of predators (Omkar 2004).

The aim of this study was to determine the type of functional response of *H.campestris on D. opuntiae*, to estimate its predation parameters (handling time and attack rate), and to have an idea about the suitability of this ladybeetle as a predator of Opuntiae scale in Morocco.

Material and Methods

Mealybug source

Opuntia ficus-indica cladodes no infested were used for *Dactylopius opuntiae* rearing. The Opuntiae scale (*D. opuntiae*) colony was established from specimens collected from zemamra locality. This area is located at the following coordinates: longitude W8° 22, latitude N 32° 21 and altitude 168m. The estate is in the semiarid ecological zone. Rainfall varies between 112.6-607 mm/year respectively in (1980-81) and (1996-97). The rainfall annual average of 30 years is 330 mm. Temperature varies in -1°C (Dec-Jan) and from 40 to 45 (July-August). For soil there are two zones: Zone 1: Vertisol with an angular structure over the first 15 cm and with high moisture content, deep up to 1.5 m, difficult to work in dry conditions. Zone 2: Light soil with a clay-sand-silty hydromorphic structure with an alkaline Ph (Khattabi et al. 2004). A version modified of the 'cut cladode technique' of Aldama-Aguilera and LlanderalCazares (2003) described by Vanegas-Rico et al. (2016) was used to follow the age and to increase numbers of scale insect. The attacked cladodes were then maintained under controlled conditions at 26±2 °C. 60±10 % RH and 12:12 h L:D regime and the colony was allowed to develop for use in experiments.

Predator source

During surveys, the adults of Hyperaspis campestris were collected from cactus plantations in Zemamra locality, identified (Bouharroud et al. 2019; El Aalaoui et al. 2019b), and maintained on cladodes infested with D. opuntiae until there use under controlled conditions (26±2°C and 60±10% relative humidity) at the experimental station of INRA (National Institute of Agronomic Research, Morocco) in Zemamra. Adults were kept in entomological cages (80-80-80cm) comprised of a wooden frame with a mesh fabric to allow ventilation. Access to water was ensured via a white cotton inserted into a 25 ml glass vial of water. To provide food the cladodes attacked with D. opuntiae nymphs were introduced into the cages (Vanegas-Rico et al. 2016). During rearing a mixture diet with honey, brewer's yeast and water in a ratio of 40%:40%:20% was offered. Drever et al. (1997) reported that honey increase survival time of Hyperaspis notata Mulsant.

Experimental procedure

Each adult of H.campestris was placed individually in Petri dishes (9.5 cm diameter) and starved for three days in order to standardize their hunger. A fixed number of scale pest adults young females (20 days) were collected and added to each Petri dish to obtain a prey density of 1, 5, 10, 15, 20 or 25. D. opuntiae, young females are acceptable prey for H. campestris due to their smaller size (personal observation). For a given predator, there is a size of acceptable prey (Sabelis 1992). After 24 h, the adults predators were eliminated and young females consumed were recorded (Flores 2013). Completely randomized et al. block design with ten replicates were used for each predator-prey density combination and all experiment was replicated three times. To preserve prey density for each predator, prey replacement was done during the period of the study (24 hours) (Rogers 1972). All experiments of this study were done under controlled conditions (26±2 °C, 60±10 % RH and 12:12 h L:D regime).

Functional response

The functional response type was recorded by logistic regression fitted to the proportion of adult females devoured Ne/N_0 against the number of adult females offered (N_0) using the XLSTAT (XLSTAT 2017). This kind of regression provides more admirable results than the linear regression of Ne against N_0 (Pervez 2005). The equation reported by Juliano (2001) describes the relationship between Ne/N_0 and N_0 is as follows:

Ne $/N_0 = (exp(P_0 + P_1N_0 + P_2N_0^2 + P_3N_0^3))/(1 + exp(P_0 + P_1N_0 + P_2N_0^2 + P_3N_0^3))),$

Where P_0 , P_1 , P_2 and P_3 indicated the intercept coefficient, linear coefficient, quadratic coefficient and cubic coefficient

respectively. If P_1 is negative, that represent functional response type II and if P_1 is positive that indicates prey densitydependent predation and thus represent a functional response type III.

Both, random attack equation (Rogers 1972) and Holling disc equation (1959)— $Ne = aTN_0/(1+a N_0 Th)$ — were adopted to calculate the functional response parameters (handling time (*Th*) and attack rate (*a*)): *Ne* represent the number of scale pest consumed by each ladybeetle, *a* represent the attack rate of predator, N_0 the initial number of scale pest offered, *T* is the experiment duration (24 hours) and *Th* the prey handling time estimated.

The ladybeetle searching efficiency (*E*) was recorded using the equation $E = Ne/N_0$ (Flores *et al.* 2013). The high number of scale pest females consumed (*Nem*) and prey searching time (*Ts*) were recorded using the equations: $Nem = \frac{T}{Th}$ (Elliot 2003) and Ts = T - ThNe (Juliano & Williams 1987).

The significance difference in number of supping scale pest females consumed at different densities, in maximum attack rate, and in searching time was recorded using analysis of variance ANOVA (SPSS 2012). For searching efficiency, Fisher test was adopted for multi-comparisons between significant treatment effects where they appeared, using STATISTICA (ver. 6) software.

Results

The results showed a significant difference (F = 20.686, df = 5, p < 0.05) between the number of preys devoured by *H.campestris* at different prey densities. The maximum consumption was recorded at densities between 15 and 25 prey, and it was significantly higher (p<0.05) than that recorded at the lowest densities (1, 5, 10) (Fig 1; Fig 2).

Fig 1 Numbers of *D. opuntiae* young females consumed by *H. campestris* at different prey densities (T = 24 h).

Fig 2. Adults of *Hyperaspis campestris* from prickly pear plantations infested with *D. opuntiae* in Morocco, **A**. *Hyperaspis campestris* feed on *D. opuntiae* young females, **B**.

The highest coefficient of determination $(R^2 = 0.9765)$ indicated that cubic polynomial was the model that gave the best fit (p<0.05) to the observed data (*Ne*), with. Attack rates (0.151, 0.101, 0.097,

0.122, 0.124 and 0.135) and handling times (3.848, 5.171, 5.417, 4.245, 4.356 and 3.940) for 1 to 25 density, respectively, were determined using Holling's disc equation (Table1).

	Table 1	1 Effect	of density	upon the	instantaneous	rate of di	iscovery and	the handling time.
--	---------	----------	------------	----------	---------------	------------	--------------	--------------------

Density N_0	Inst. rate of discovery	Handling times (Th)		
	(<i>a</i>)			
1	0.151 ± 0.053	3.848±1.686		
5	0.101 ± 0.015	5.171±0.742		
10	0.097 ± 0.016	5.417±0.930		
15	0.122 ± 0.018	4.245±0.646		
20	0.124 ± 0.027	4.356±1.219		
25	0.135 ± 0.031	3.940±0.841		

The predator searching efficiency (E) significantly decreased as prey density increased from 1 to 15 and does not significantly change from 15 to 25 (Fig 3).

Fig 3 Searching efficiency of *H. campestris* at different *D. opuntiae* female densities. Bars with different letters are significantly different according to the Fisher test (alpha= 0.05).

In addition, a change in adult handling time indicates a change in the response level, which is determined by instantaneous rate of discovery (T/Th) or maximum attack rate. Maximum attack rate values were 3.961, 4.056, 4.260, 5.440, 5.701, and 6.214 for 1, 5, 10, 15, 20

and 25 densities, respectively (Table 2). It significantly increased as scale pest females density increased from 1 to 25 (f= 5.701, df= 5, p< 0.05). The total searching time decreased significantly and the total handling time increased (p<0.05) at different scale pest densities (Fig 4).

Table 2 Maximum attack rates (T/Th) estimated for all six densities of *D. opuntiae*. Mean values of *Th* estimated by non-linear least squares regression using Holling's "disc equation".

Densit	ty N_0	1	5	10	15	20	25
Max.		3.961	4.056	4.260	5.44	5.70	6.21
attack	rate	±1.75	±1.03bc	±1.14b	±0.59a	±1.40a	± 1.43
(T/Th	2)	с		с	bc	b	а

Bars with different letters are significantly different according to the Tukey's test (alpha=0.05).

Fig 4 Inverse relationship between the total handling time (Tht) and total searching time (Tst) of *H. campestris* preying on *D. opuntiae* young females, obtained by the estimated parameter *Th* and the equation Ts = T - ThNe.

Discussion

A negative value of linear coefficient (P_1 = -0.675) obtained by logistic regressions of proportion of scale pest females consumed (Ne / N_0) against number of females initially provided (N_0) to adults of ladybeetle H.campestris over 24 hours, indicated that the functional response exhibited by this predator was type II (Holling 1959). Many types of functional response are described for ladybird species (Hodek 1996). Among these types, type II and III considered most important (Murdoch et al. 2003), because most natural enemies show these types. Oaten & Murdoch (1975) reported that response type II may destabilize biological control agent-prey interactions and is theoretically less able to remove prey populations compared to response type III. Hassell et al. (1977) reported that in the response type II, consumed prey intensity does not increase with prey density. In same case Hodek & Honek (1996) recorded that hungry predators completely devour the limited preys they encounter and then utilize subsequent prey with progressively reduced voracity. The decrease of the proportion of prey consumed with increasing of prey density, may be due to the effect of various phenomena, such as the size of experimental arena, handling time and degree of hunger of the ladybeetle (O'Neil & Stimac 1985, 1988). Prey handling time of the predator was relatively higher (ranging 3.848±1.686-5.417±0.930 hours) at different densities of D. opuntiae females (1 to 25 females). Because of D. opuntiae females cover themselves with white waxy cottony and remain attached to the cladode. H.campestris spent most of the Th cleaning the waxy cotonny to access the adult females bodies (Flores et al. 2013). This "cleaning" process uses time not required by other predatory insects that have direct access to their uncovered prey (Flores et al. 2010; Flores et al. 2013). The experimental data on handling time at high D. opuntiae females density can be comparable with field conditions where the prey density is also high (Omkar 2004). due to heavy *D. opuntiae* infestation. Also Akhtaruzzaman & Ahmad (1998) recorded that handling time of each predator was higher at lower pest density. Variation in predator and prey size, predator voracity, predator satiation time, predator hunger levels, predator digestive ability, predator walking speed and accessibility to prey are the most factors that must be affected total handling time of each biological control agent (Pervez 2003, Omkar 2004). Although Th and *a* were generally constant at all densities of prey and consumed prey is density dependent, in practice this is not usually true even in a functional response type II (Flores et al. 2013). The highest Maximum attack rates recorded at hight prey density (25 females) may be explained by these suggestions: the engorgement of predator on the first prey thev encounter then become less competent to exploit the prey, the predator consumes more than the minimum required for growth when prey is abundant (Honek 1996), or the combination of these factors.

Feeding on *D. opuntiae* young females and shorter life cycle of H.campestris in comparison with *D.opuntiae* could be beneficial for its use as a predator for the control of this scale pest. The searching efficiency of H.campestris at different D.opuntiae voung female densities indicates that it may become less potent at high scale pest densities. Therefore, H.campestris would be an effective predator at the early stages of the invasion, this is the case today in many regions of Morocco. H.campestris adult consumes first and second instar crawlers of D. opuntiae but cannot consume gravid females (personal observation). A few studies the utilization showed of *H.campestris* biological in control.

(1956)Bogdanova reported that H.campestris Herbst was able to reduce the population of pulvinaria floccifera (Westwood). Scale populations were reduced below the economic injury level two years after release (Bogdanova 1956). H. campestris Herbst, a predator of scale insects on citrus, grapes and other subtropical crops, was release against Pulvinaria floccifera (Westwood) (Bogdanova 1956). Hyperaspis spp. were also able to reduce Eulecanium cerasorum (Cockerell) fecundity by 48% (Robayo Much previous research 2015). on biocontrol potential around the world reported that biological control agents predation could be modulated by other predators (Kratina et al. 2009), the density of the prey, the diversity and density of other non-prey species (Kratina et al. 2007). Abiotic factors can also modify the functional response of predators. So further studies under Morocco ecological system conditions need to be carried out to confirm the predation potential of H.campestris on D. opuntiae in Morocco.

References

- ALDAMA-AGUILERA C. & LLANDERAL-CÁZARES C. 2003. Cochineal: comparison of production methods in cut cladodes. *Agrociencia* 37: 11–19.
- 2. AKHTARUZZAMAN M. & AHMAD M. 1998. Handling time, interference constant, quest constant and area of discovery of coccinellid predators. *Journal of Agricultural Science (Thailand)* 31: 342–351.
- 3. BADII H.M. & FLORES E.A. 2001. Prickly pear cacti pests and their control in Mexico. *The Fla Entomol* 84: 503–505.
- 4. BOGDANOVA N.L. 1956. **Hyperaspis** (Coleoptera: campestris Herbst Coccinellidae) as the destroyer of chloropulvinaria floccifera west (Homoptera: coccidoidea). Entomologi cheskoeo bozreniz 35: 311-322.
- BOUHARROUD R., AMARRAQUE A. & QESSAOUI R. 2016. First Report of the Opuntia Cochineal Scale Dactylopius Opuntiae (Hemiptera: Dactylopiidae) in Morocco. EPPO Bulletin 46 (2): 308–10.

- 6. BOUHARROUD R., EL AALAOUI M., BOUJGHAGH М., HILALI EL L., BOUHSSINI M. & SBAGHI M. 2019. New Record and Predatory Activity of Hyperaspis campestris (Herbst 1783) (Coleoptera: Coccinellidae) on *Dactylopius* opuntiae Dactylopiidae) (Hemiptera: in Morocco. Entomological News 128 (2): 156-161.
- BORGES L.R., SANTOS D.C., FALCAÕ H.M. & DA SILVA D.M. 2013. Selection of cactus pear clones regarding resistance to carmine cochineal *Dactylopius opuntiae* (Dactylopiidae). *Acta Horticulurae* 995: 359– 366.
- BRAVO HOLLIS H. & SCHEINVAR L. 1995. El interesante Mundo de las cactäceas. Mexico, National Council of Science and Technology.
- CASAS A. & BARBERA G. 2002. Mesoamerican domestication and diffusion. In P.S. Nobel, ed. Cacti: Biology and uses, pp.143–162. Berkeley, CA, USA, University of California Press.
- DREYER B.S., NEUENSCHWANDER P., BAUMGÄRTHER J. & DORN S. 1997. Trophic influences on survival, development and reproduction of *Hyperaspis notata* (Coleoptera: Coccinellidae). *Journal of Applied Entomology* 121: 249–256.
- 11. EL AALAOUI M., BOUHARROUD R., SBAGHI M., EL BOUHSSINI M., HILALI L. & Dari K. 2019a. Comparative toxicity of different chemical and biological insecticides against the scale insect *Dactylopius opuntiae* and their side effects on the predator *Cryptolaemus montrouzieri*. Archives of *Phytopathology and Plant Protection* 52 (1-2): 155-169.
- EL AALAOUI M., BOUHARROUD R., SBAGHI M., EL BOUHSSINI M. & Hilali, L. 2019b. Predatory potential of eleven native Moroccan adult ladybird species on different stages of *Dactylopius opuntiae* (Cockerell)(Hemiptera: Dactylopiidae). *EPPO Bulletin* **49(2)**, 374-379.
- 13. EL-ALI A.A. 1972. A biosystematic study of Hyperaspini of California with emphasis on the immature stages. Ph.D. dissertation, University of California, Berkeley.
- 14. ELLIOT J.M. 2003. A comparative study of the functional response of four species of

carnivorous stoneflies. *Freshwater Biology* 48: 191–202

- 15. FENLON J.S. & MALCOLM J.F. 2006. Modelling predation in functional response. *Ecological Modelling* 198: 154–162.
- 16. FERNANDEZ-ARHEX V.Y. & CORLEY J.C. 2004. La respuesta funcional: una revision y guia experimental. *Austral Ecology* 14: 83–93.
- FLORES A., OLVERA H., RODRÍGUEZ S. & BARRANCO J. 2013. Predation Potential of *Chilocorus Cacti* (Coleoptera: Coccinellidae) to the Prickly Pear Cacti Pest *Dactylopius Opuntiae* (Hemiptera: Dactylopiidae). *Neotropical Entomology* 42 (4): 407–11.
- FLORES M.A., RODRÍGUEZ N.S., RAMOS E.M. & PAYAN Z.F. 2010. Estudio de *Harmonia axirydis* Pallas (Coleoptera: Coccinelidae) comobio agente de control de *Aphis gossypii* Glover (Hemiptera: Aphididae). *Interciencia* 35: 506–509.
- GITHURE C.W., ZIMMERMANN H.G. & HOFFMANN J.H. 1999. Host specificity of biotypes of *Dactylopius opuntiae* (Cockerell) (Hemiptera: Dactylopiidae): prospects for biological Control of *Opuntia stricta* (Haworth) Haworth (Cactaceae) in Africa. *African Entomology* 7: 43-48.
- GRIFFITH M.P. 2004. The origins of an important cactus crop, *Opuntia ficus-indica* (Cactaceae): new molecular evidence. *American Journal of Botany* 91(11): 1915– 1921.
- GRISSELL E.E. 2004. A new species of Torymus (Hymenoptera: Torymidae) associated with Dactylopius (Hemiptera: Dactylopiidae). Journal of the Kansas Entomological Society 77(4): 639-643.
- 22. GUNST J.H. 1978. De Nederlandse Lieveheersbeestjes (Coleoptera Coccinellidae). Wetenschappelijke Mededelingen Koninklijke Nederlandse Natuurhistorische Vereniging 125: 1-96.
- 23. GUNOG S. & DONALD L.D. 2011. A predator-prey model with a Holling type I functional response including a predator mutual interference. *Journal of Nonlinear Science* 21: 811–833.
- 24. HASSELL M.P., LAWTON J.H. & BEDDINGTON J. R. 1977. Sigmoid functional responses by invertebrate predators and parasitoids. *The Journal of Animal Ecology* pp. 249-262.

- 25. HODEK I. & HONEK A. 1996. Ecology of Coccinellidae. Dordrecht, Boston, London: *Kluwer Academic Publishers* pp. 464.
- 26. HOLLING C.S. 1959. Some characteristics of simple types of predation and parasitism. *Canadian Entomologist* 91: 385–398.
- 27. HOLLING C.S. 1965. The functional response of predators to prey density and its role in mimicry and population regulation. *Memoirs of Entomological Society of Canada* 45: 1–60.
- 28. Honek A. 1996. The relationship between thermal constants for insect development: a verification. *Acta Societatis Zoologicae Bohemicae* 60: 115-152.
- 29. HUBBARD J.L. & POTTER D.A. 2005. Life history and natural enemy associations of calico scale (Homoptera: Coccidae) in Kentucky. *Journal of Economic Entomology* 98: 1202-1212.
- JULIANO S.A. & WILLIAMS F.M. 1987. A comparison of methods for estimating the functional response parameters of the random predator equation. *Journal Animal Ecology* 56: 641–653.
- 31. JULIANO S.A. 2001. Non-linear curve fitting: predation and functional response curves. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments, 2nd edn. *Chapman and Hall*, *New York*, pp. 178–196.
- KHATTABI N., EZZAHIRI B., LOUALI L. & OIHABI A. 2004. Antagonistic activity of Trichoderma isolates against *Sclerotium rolfsii*: screening of efficient isolates from Morocco soils for biological control. *Phytopathologia Mediterranea* 43 (3): 332-340.
- 33. KRATINA P., VOS M., BATEMAN A. & ANHOLT B.R. 2007. Species diversity modulates predation. *Ecology* 88: 1917–23.
- 34. KRATINA P., VOS M., BATEMAN A. & ANHOLT B.R. 2009. Functional responses modified by predator density. *Oecologia* 159: 425–433.
- 35. KIESLING R. 1999. Origen, domesticación y distribución de *Opuntia ficus-indica. Journal Professional Association of Cactus Development* 3: 50–59.
- 36. LOPES E.B., BRITO C.H., ALBUQUERQUE I.C. & BATISTA J.L. 2009. Desempenho do óleo de laranja no controle da cochonilhado-carmim em palma gigante. Engenharia Ambiental 6: 252–258.

- 37. MANN J. 1969. Cactus-feeding insects and mites. *United Sates National Museum Bulletin* 256: 1–158.
- MURDOCH W.W., BRIGGS C.J. & NISBET R.M. 2003. Consumer-resource dynamics. Princeton, NJ: Princeton University Press.
- OATEN A. & MURDOCH W. W. 1975. Functional response and stability in predatorprey systems. The American Naturalist 109 (967): 289-298.
- 40. OMKAR. & PERVEZ A. 2004. Functional and numerical responses of *Propyleadissecta* (Mulsant) (Col., Coccinellidae). *Journal of Applied Entomology* 128: 140–146.
- 41. O'NEIL R.J. & STIMAC J.L. 1985. Developing sampling programs to characterize movement of biotic agents. In: Movement and Dispersal of Agriculturally Important Biotic Agents. Ed. by Mackenzie, D. R.;Barfield, C. S.; Kennedy, G. G.;Berger, R. D.; Taranto, D. J. Baton Rouge, LA: Claitor's Publishing Division 7: 249–258.
- 42. O'NEIL R.J. & STIMAC J.L. 1988. Model of arthropod predation on *velvetbean caterpillar* (Lepidoptera: Noctuidae) larvae in soybeans. *Environmental Entomology* 17: 983–987.
- PAOLO I., CANDELARIO M., JURIQUILLA Q, ALI N. & CARMEN. 2017. Crop Ecology, Cultivation and Uses of Cactus Pear. FAO pp.25.
- 44. PERVEZ A. & OMKAR. 2005. Functional responses of coccinellid predators: an illustration of a logistic approach. *Journal of Insects Sciences* 5(5): 1–6.
- 45. PERVEZ A. & OMKAR. 2003. Predation potential and handling time estimates of a generalist ladybird beetle, *Propylea dissecta*. *Biological Memoirs* 29: 91-97.
- 46. PORTILLO L. & VIGUERAS A.V. 2006. A review of the cochineal species in Mexico, host and natural enemies. *Acta Horticulurae* 728: 249–256.
- 47. ROBAYO, C.O. 2015. Life History and natural enemies of parthenolecanium spp. in four Southeastern States. *All Dissertations* pp.1525.
- 48. ROGERS D. 1972. Random search and insect population models. *Journal of Animal Ecology* 41: 369–383.
- 49. SABELIS M.W. 1992. Predatory Arthropods, Pages 225-264 in M.J. Crawley (réd.),

Natural enemies. Blackwel Scientific Pub., Boston, Massachusetts.

- 50. SILVA D.M.P., A.C. DO MERGULHãO ES., DE MEDEIROS L.V, FIGUEIREDO M.V.B. & BURITY H.A. 2013. Genetic variability of *Dactylopius opuntiae* (Hemiptera: Dactylopiidae) on forage cactus in northeast Brazil. *Genetics and Molecular Research* 12: 5236-5246.
- 51. SPODEK M., BEN-DOV Y., PROTASOV A., CARVALHO C.J. & MENDEL Z. 2014. First record of *Dactylopius opuntiae* (Cockerell) (Hemiptera: Coccoidea: Dactylopiidae) from Israel. *Phytoparasitica* 42: 377–379.
- 52. SPSS (2012) SPSS for Windows, release. version 21.0. SPSS, Chicago
- 53. VAN GOETHEM J.L. 1975. Coccinellidae van België, Lieveheersbeestjestabel. BJN, CJN, KJN, NJN, Zeist.
- 54. VANEGAS-RICO J.M., LOMELI-FLORES J.R., RODRÍGUEZ-LEYVA E., PÉREZ-PANDURO A., HERNÁNDEZ-GONZÁLEZ H. & MARÍN-JAR-AMILLO A. 2015. *Hyperaspis trifurcata* (Coleoptera: Coccinellidae) y sus parasitoides en el centro de México. *Revista Colombiana de Entomolía* 41: 194–199.
- 55. VANEGAS-RICO J.M., RODRÍGUEZ-LEYVA E., LOMELI-FLORES J.R., GONZÁLEZ-HERNÁNDEZ H., PEREZ-PANDURO A. & MORAAGUILERA G. 2016. Biology and life history of *Hyperaspis trifurcate* feeding on *Dactylopius opuntiae*. *BioControl* 61: 691-701.
- 56. VIGUERAS A.L., CIBRIAN-TOVAR J. & PELAYO-ORTIZ C. 2009. Use of botanical extracts to control wild cochineal (*Dactylopius opuntiae* Cockerell) on cactus pear. *Acta Horticulurae* 811: 229–234.