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        Abstract: 

This paper discusses the usage of basic ant colony optimization 
technique for solving an intractable problem. Ant colony 
optimization technique is inspired by the observation of natural 
ant colonies. Ant colonies are distributed systems and highly 
structured social organization that can accomplish complex tasks 
like solving TSP, an intractable problem where a polynomial time 
algorithms take a large amount of time to be of practical use. 
Although the paper is focused on intractable problem in general 
and its optimal or near optimal solution through ACO, but we 
restrict our self with a travelling sales man problem and their 
solution through ACO by illustrative example. 
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Introduction: In computational complexity 

theory, there are many problems, which are 

regarded as inherently different of its solution 

requires significant resources (e.g. time and 

storage) whatever the algorithm used. One 

such problem is Traveling salesman problem 

(TSP) which has been studied extensively in 

past decades with a considerable amount of 

research effort. [2, 3] 

 

Intuitively the TSP is the problem of a 

salesperson who, starting from his hometown, 

wants to find a shortest tour that takes him 

through a given set of customer cities and then 

back home, visiting each customer city exactly 

once. Graphically it can be represented by a 

complete weighted graph G=<V,E>, where V 

being the set of vertices representing cities, 

and E being the set of edges, each are 

associated with a value dij (length), which is 

the distance, between cities i and j , with 

(i,j) ∈ E . In asymmetric TSP, the distance 

between a pair of vertices i , j  is dependent in 

the direction of traversing the arc, that is, there 

is at least one arc (i,j) for which dij ≠ dji . In the 

symmetric TSP, dij = dji holds for all arcs in E. 

This article illustrates the usage of ACO on 

symmetric TSP. The goal in the TSP is to find 

a minimum length Hamiltonian circuit of the 

graph, where a Hamiltonian circuit is a closed 

path visiting each of the n vertices of G 

exactly once. Thus an optimal solution to the 

TSP is a permutation π of the node {1,2,---,n} 

such that the length f(π) is minimal where                                                                                                     

f(π) = 𝑑𝜋 𝑖 𝜋(𝑖+1)
𝑛=1
𝑖=1 + 𝑑𝜋 𝑛 𝜋(1).   

Let us realize how different this problem if n 

tends to a very very big number. For example, 

if n=4, then 6 possible tours needs to examine, 

similarly if n=10, then 91 number of tours 

need to examine, hence it is difficult for 

human being to enumerate and hence it is also 

difficult for computer to solve the same in a 

tolerable amount of time. One of the ways to 

overcome this problem by approximation 
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algorithm. In addition Meta heuristic approach 

are also approximate the solution and ACO is 

such an approach.[1] 

 

      The inspiring source of ACO algorithms 

are natural ant colonies [4, 5]. In specific, 

ACO is inspired by the ants forging behavior. 

At the core of this problem is the direct 

communication between the ants by means of 

chemical pheromone trails, which enables 

them to find optimal or near optimal paths 

between their nest and food sources. This 

characteristic of real ant colonies is exploited 

in ACO for solving the aforesaid symmetric 

TSP [6, 7, 8]. The rest of the sections are 

organized as follows. In section 2, the 

fundamentals of ant colony is described. In 

section 3 illustrative usage of ACO for solving 

the TSP is carried out through an easy to 

understand instance of TSP. Section 4 

concludes the article.  

 

2. Ant colony optimization: 

 Macro Dorigo and team mates have 

introduced the first ACO algorithm in the early 

1990s [1]. The development of this algorithm 

was inspired by the real ant colonies. The main 

ideas that the self organizing principles which 

allow three highly coordinated behaviors of 

real ants can be exploited to coordinate 

populations of artificial agents that collaborate 

to solve the intractable problems. Several 

different aspects of the behavior of ant 

colonies have inspired different kinds of ant 

algorithms. Examples are foraging, division of 

labor, brood sorting and cooperative transport. 

In all these examples, ants coordinate their 

activities via stigmergy, a form indirect 

communication mediated by modifications of 

the environment. For example, a foraging ant 

deposits a chemical on the ground which 

increases the probability that other ants will 

follow the same path.  

ACO algorithms are based on the following 

ideas. 

  

i)   Each path followed by an ant is associated 

with a candidate solution for a given problem. 

 ii)  When an ant follows a path, the amount of 

pheromone deposited on that path is 

proportional to the quality of the 

corresponding candidate solution for the target 

problem. 

iii) When an ant has to choose between two or 

more paths, the paths with a larger amount of 

pheromone have a greater probability of being 

chosen by the ant 

 

3. ACO for TSP: A step by step illustration.   

In essence, the design of an ACO algorithm 

involves the specification of: 

i)-An appropriate representation of the 

problem, which allows the ants to 

incrementally construct/modify solutions 

through the use of a probabilistic transition 

rule, based on the amount of pheromone in the 

trail ad local, problem dependent heuristic. 

ii)-A method to enforce the construction of 

valid solutions that is solutions that are legal in 

the real world situation corresponding to the 

problem definition. 

iii)-A problem dependent heuristic function 

(𝜂) that measures the quality of items that can 

be added to the current partial solution. 

iv)-A rule for pheromone updating, which 

specify how to modify the pheromone trail (τ). 

A probabilistic transition rule based on the 

value of the heuristic function (𝜂) and on the 

contents of the pheromone trail (τ) that is used 

to iteratively construct a solution. The 

algorithmic form of ACO is illustrated as 

follows: 

 

Ant Colony Optimization-TSP() 

1. Setting of parameters. 

2. Initialize pheromone trails. 

3. While (terminator condition not met)do 

4. Construct ant solutions 

5. Apply local research/*optional*/ 

6. Update pheromones 

7. End of the while 

8. End of the algorithm 

 

Let us solve the following instance of an 

asymmetric TSP. consider the complete graph 

of 4 vertices and associated edges representing 

TSP with the cost matrix 

 
In ACO, m (artificial) ants concurrently 

build a form of the TSP. Initially, ants are 
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put on randomly chosen cities. At each 

construction step, ant k applies a 

probability action choice rule, called 

randomly proportional rule, decide which 

city to visit next. In particular, the 

probability with which ant k, currently at 

city „i‟, chooses to go to city „j‟ is 

                                 Pij
(k)  

=   
        τ 𝑖𝑗     

𝛼   𝜂𝑖𝑗
𝛽

      τ 𝑖𝑗     
𝛼 𝜂𝑖𝑗

𝛽         

𝑙 ∈ 𝑁𝑖
𝑘   

,    if j ∈  𝑁𝑖
𝑘 ,---(1) 

Where 𝜂𝑖𝑗 = 
1

𝑑𝑖𝑗
 is a heuristic value that is 

available a prior. 𝛼 and 𝛽 are two 

parameters which determines the relative 

influence of the pheromone trail and the 

heuristic information, and   𝑁𝑖
𝑘  is the 

feasible neighborhood of ant k, when 

being at city „i‟, that is, the set of cities 

that ant k has not visited yet (the 

probability of choosing a city outside 

 𝑁𝑖
𝑘  𝑖𝑠 0). By this probabilistic rule, the 

probability of choosing a particular arc (i, 

j) increase with the value of the associated 

pheromone trail τ𝑖𝑗  and if the heuristic 

information value𝜂𝑖𝑗 . The role of the 

parameters 𝛼 and 𝛽   is the following. 

 

If  𝛼 = 0, the closest cities are more likely 

to be selected. If  𝛽 = 0, only pheromone 

amplification is at work, that is only 

pheromone is used, without any heuristic 

bias. This generally leads to rather poor 

results, and, in particular, for values of 

𝛼 > 1 it leads to the rapid emergence of a 

stagnation situation, which in general, is 

strongly suboptimal. 

 

Each ant k maintains a memory 𝑚𝑘  which 

contains the cities already visited in the 

order they are visited. This memory is 

used to define the feasible neighborhood 

 𝑁𝑖
𝑘  in the construction rule given by 

equation (1). 

 

Update of pheromone trail 

After all the ants have completed their 

turns, the pheromone trails are updated as 

follows 

     τ𝑖𝑗 = τ𝑖𝑗  +   ∆𝑚
𝑘=1 τ 𝑖𝑗   

𝑘    ∀ (𝑖, 𝑗) ∈  L ----

------ (2) 

Where   ∆τ 𝑖𝑗   
𝑘 is the amount of pheromone 

ant k deposits on the arcs it has visited? It 

is defined as follows  

∆τ 𝑖𝑗   
𝑘 = 

1

𝑐𝑘
  𝑖𝑓 𝑎𝑟𝑐(𝑖, 𝑗) ∈ 𝑇𝑘

0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

           ---------

-- (3) 

Where 𝑐𝑘 , the length of the tour 𝑇𝑘  built 

by the 𝑘𝑡ℎ  ant, is completed as the sum of 

the lengths of the arcs belonging to𝑇𝑘 . By 

means of the equation (3), the better an ant 

tour is, the more pheromone the arcs 

belonging to this tour receives 

                     Let us see the steps of 

solution to TSP. 

Initialization of parameters: 

 

Assume that 𝛼=𝛽=1. And m=4 (i.e. number of 

ants) and neighborhood size is complete graph. 

 

Initialization of pheromone: 

            τ𝑖𝑗 = 

  
   1     𝑖𝑓  𝑖, 𝑗 ∈ 𝐸

0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

 

τ 𝑖𝑗   
0 =  

0  1  1  1
1  0  1  1
1  1  0  1
1  1  1  0

  

 

 

Iteration 1 

 

   Initially put a single ant at each node of the 

graph, say ant 1 is placed in node 1 i.e. partial 

tour T
i
 decides to choose next city e.g. {2,3,4} 

based on the transition rule 

   

             P 12 
1 =  

(τ12 )(𝜂12 )

      (τ12 )(𝜂12 )+(τ13 )(𝜂13 )+(τ14 )(𝜂14 )
 

                =
1∗(

1

10
)

1∗ 
1

10
 +1∗ 

1

15
 +1∗(

1

20
)
 =0.46  

              P 13 
1 =

1∗(
1

15
)

1∗ 
1

10
 +1∗ 

1

15
 +1∗(

1

20
)
 =0.30 

              P 14 
1 =

1∗(
1

20
)

1∗ 
1

10
 +1∗ 

1

15
 +1∗(

1

20
)
 =0.23 

 

Based on highest probability value, the next 

city 2 is added in partial tour T  
1= {1, 2}. Now 

it decides next city from the unvisited list {3, 

4}, through the following transition rule. 
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                P 23 
1 =

1∗(
1

9
)

1∗ 
1

9
 +1∗ 

1

10
 
   = 0.52 

                P 24 
1 =

1∗(
1

10
)

1∗ 
1

9
 +1∗ 

1

10
 
   = 0.47 

 

Hence the next city 3 is added in the current 

partial list T  
1={1, 2, 3}. Finally, it includes 

only city 4 in the partial list T  
1 = {1, 2, 3, 4}. 

Therefore the length of the tour is 39. 

 

Tour of ant 2 

 Assume, for ant 2 from node 2, the tour 

includes cities in order as T  
2={2,1,3,4} with 

length 40. 

 

Tour of ant 3  

   

Assume that ant 3 is placed in node, then the 

complete tour from node 3 is T  
3={3,1,2,4} 

with length 35 

 

Tour of ant 4 

 

         Let us assume that, ant 4 is placed at 

node, the tour is numerated as {4,2,1,3,4}with 

length 40. 

     

 

 Now since all tour have been completed, 

update pheromone table by equation  (2)and( 

3). 

 

 

τ 12  
1 = τ 12  

0 + (∆τ 12  
1 + ∆τ 12  

2 + ∆τ 12  
3 +

∆τ 12  
4 ) = 1+ ( 

1

39
 + 0 + 

1

35
 + 0) = 1.054 

τ 13  
1 = τ 13  

0 + (∆τ 13  
1 + ∆τ 13  

2 + ∆τ 13  
3 +

∆τ 13  
4 ) =1+ (0 + 

1

40
 + 0 + 

1

40
 ) = 1.05 

τ 14  
1 = τ 14  

0 + (∆τ 14  
1 + ∆τ 14  

2 + ∆τ 14  
3 +

 ∆τ 14  
4 ) = 1+0   = 1.0 

 

τ 21 
1 = τ 21  

0 +  ∆τ 21  
1 + ∆τ 21  

2 + ∆τ 21  
3 +

∆τ 21  4 = 1.05 

τ 23 
1 = τ 23  

0 + (∆τ 23  
1 + ∆τ 23  

2 + ∆τ 23  
3 +

∆τ 23  
4 )=1+

1

39
=1.025 

τ 24 
1 = τ 24 

0 + (∆τ 24  
1 + ∆τ 24  

2 + ∆τ 24  
3 +

∆τ 24  
4 )=1+

1

35
=1.028 

 

τ 31 
1 = τ 31  

0 + (∆τ 31  
1 + ∆τ 31  

2 + ∆τ 31  
3 +

∆τ 31  
4 )=1+

1

35
=1.028 

τ 32 
1 = τ 32  

0 + (∆τ 32  
1 + ∆τ 32  

2 + ∆τ 32  
3 +

∆τ 32  
4 )=1+0 =1.00 

τ 34
1 = τ 34  

0 + (∆τ 34  
1 + ∆τ 34  

2 + ∆τ 34  
3 +

∆τ 34  
4 )=1+

1

39
+

1

40
+

1

40
 =1.075 

 

τ 41
1 = τ 41  

0 +  ∆τ 41  
1 + ∆τ 41  

2 + ∆τ 41  
3 +

∆τ 41  4 = 1+139 = 1.025 

τ 42
1 = τ 42  

0 +  ∆τ 42  
1 + ∆τ 42  

2 + ∆τ 42  
3 +

∆τ 42 4  = 1+240= 1.05  

 

 

τ 43
1 = τ 43  

0 + (∆τ 43  
1 + ∆τ 43  

2 + ∆τ 43  
3 +

∆τ 43  
4 )= 1.028 

 

Hence the updated pheromone table is shown 

bellow 

Table-1 

 

τ 𝑖𝑗   
1 =  

0               1.054    1.05        1        
1.05          0            1.025     1.028
1.028       1             0             1.075
1.025       1.05       1.028     0        

  

 

From the table-1 using pheromone values and starting from each node we have the following paths 

 

So the optimal path is 3-1-2-4-3 with length 35 

Iteration 2 

Similarly using above computations like 

iteation-1, the following updated pheromone 

table as well as table that ant covers path can 

be obtained. 

 

          Path covers         Total  length 

Ant1from node1 1-2-3-4-1 10+9+12+8 = 39 

Ant2 from node 2 2-1-3-4-2 5+15+12+8  = 40 

Ant3 from node 3 3-1-2-4-3 6+10+10+9 = 35 

Ant4 from node 4 4-2-1-3-4 8+5+15+12 = 40 
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τ 𝑖𝑗   
2

=  

      0             1.10           1.075      1.023    
1.075      0               1.07         1.076
1.07        1                 0           1.125
1.05      1.09           1.05             0   

  

 

 

So the optimal paths are. 1-2-4-3-1 and 2-4-3-1-2 with lengths 35 

Iteration 3 

Similarly using above computations in iteration-3, we can get the following pheromone table as well 

as table that ant covers path. 

 

 

τ 𝑖𝑗   
3 =  

      0             1.54           1.095      1.043    
1.1              0              1.181      1.189
1.121        1                 0           1.175

1.075      1.138           1.07             0   

  

 

 

So the optimal paths are. 1-2-4-3-1 and 2-4-3-

1-2 with lengths 35 

Iteration 4  

Finally in iteration-4, we have the following 

updated pheromone table that determines the 

optimal path of ants which is shown in last 

table 

 

τ 𝑖𝑗   
4

=  

      0             1.208           1.12      1.06    
  1.125           0               1.22    1.109

1.17             1                  0        1.22
   1.10         1.186           1.09          0   

  

 

 

 

Hence after a fixed number of iteration or 

some other termination criterion is satisfied, 

the following optimum paths are enumerated.   

from node 1: 1-2-4-3-1 , from node 2: 2-4-3-1-

2 and  from node-3: 3-1-2-4-3 each with 

length 35 which is shortest distace. However 

from node 4 till 4
th
 iteration, the optimum path 

is 4-2-1-3-4 with length 40. But after some 

more iteration from all nodes shortest distance 

will be covered. 

 The TSP is the oldest and most studied 

intractable problems in both operation research 

and computer science. Therefore, a large 

number of diversified algorithms have been 

          Path covers         Total  length 

Ant1from node1 1-2-4-3-1 10+10+9+6 = 35 

Ant2 from node 2 2-4-3-1-2 10+9+6+10  = 35 

Ant3 from node 3 3-4-2-1-3 12+8+5+15 = 40 

Ant4 from node 4 4-2-1-3-4 8+5+15+12 = 40 

          Path covers         Total  length 

Ant1from node1 1-2-4-3-1 10+10+9+6 = 35 

Ant2 from node 2 2-4-3-1-2 10+9+6+10  = 35 

Ant3 from node 3 3-4-2-1-3 12+8+5+15 = 40 

Ant4 from node 4 4-2-1-3-4 8+5+15+12 = 40 

          Path covers         Total  length 

Ant1from node1 1-2-4-3-1 10+10+9+6 = 35 

Ant2 from node 2 2-4-3-1-2 10+9+6+10  = 35 

Ant3 from node 3 3-1-2-4-3 6+10+10+9 = 35 

Ant4 from node 4 4-2-1-3-4 8+5+15+12 = 40 
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developed e.g. iterative improvement and 

exact method like branch and bound or cutting 

plane, etc. An in depth overview of these early 

approaches are given in [9] (Lawlen et.al, 

1985) since the beginning of the 80i, more and 

more Meta heuristic algorithms have been 

developed to solve TSP with a remarkable 

success 

      From the previous study, it has been 

concluded that, in real ant colonies the 

emergence of high level patterns like shortest 

paths is only possible through the interaction 

of a large member of individuals [10]. 

Additionally, pheromone updates based on 

solution quality are important for fast 

convergence, large values for parameters α 

lead to a strong emphasis of initial, random 

fluctuation, and to bad algorithm behaviors, 

the larger the member of ants, the better the 

convergence behaviors of the algorithms, 

although this comes at the cost of larger 

simulation times, and pheromone evaporation 

is important when trying to solve more 

complex problems. 

 

Conclusion: It is worth mentioning  that the 

available results obtained by ACO algorithms  

applied to the TSP are not competitive  with 

the exact approaches however, by adding more 

sophisticated local search algorithms like the 

implementation of Lin Kernighan heuristic or 

Helsgaun‟s variant  of the Lin Kernighan  

heuristic, ACO‟s computational results on TSP 

can certainly be strongly improved. In fact, the 

best performing variants of ACO algorithms 

on the TSP often reach world class 

performance on many other problems. Hence, 

we argue that, as an alternating optimization 

tool, ACO can be recommended to use more 

real life intractable problems without 

observing the algorithm behaviors by many 

technicalities. 

       It is further to highlight that, trail 

pheromone is a specific type of pheromone 

that some ant species, such as Lasius Nigo, on 

the Aagentine ant Iridimyrmex humities use 

for making paths on the ground. However in 

India, recently it has been studied that ant 

become “tandeon leaders”. Therefore, any 

future study includes exploration this idea for 

solving complex problems.   
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