

January - February 2020

ISSN: 0193 - 4120 Page No. 5485 - 5493

5485 Published by: The Mattingley Publishing Co., Inc.

Object Detection Techniques Using Deep

Learning: A Survey for Real-Time Applications

1
Nalini C. Iyer,

2
Tejas Arlimatti,

3
Raghavendra M. Shet,

4
Preeti P,

5
Bhagyashree K

1
Head of School,

2
Research Student,

3, 4, 5
 Assistant Professor

School of ECE, KLE Technological University

Emails: nalinic@bvb.edu, raghu@kletech.ac.in

Article Info

Volume 82

Page Number: 5485 - 5493

Publication Issue:

January-February 2020

Article History

Article Received: 18 May 2019

Revised: 14 July 2019

Accepted: 22 December 2019

Publication: 27 January 2020

Abstract:

Technologies in the field of autonomous vehicles (AV) has seen great

evolution in recent years. Many automakers are actively attempting to

embed advanced technologies into their products, and it‟s testing at real

world scenarios. This field of Autonomous Vehicles can arguably be said to

be one of the most daunting topics of today in the field of Intelligent

Transportation System (ITS), in particular the aspects like reliability,

security, etc and as well as pushing forward for the world‟s transition

towards a highly sustainable future. The sensor technologies of today,

however, have several drawbacks; wherein there are high levels of

complexity and set-up costs likewise. Thus, this paper aims to accomplish

the objective of object detection using only Computer Vision, and

specifically for real-time purposes. Thus, this paper aims to explore and

compare all the available deep learning based object detection algorithms

and arrive at the best model for real-time applications.

Keywords: Object detection, bounding boxes, image classification, real-

time detection.

I. INTRODUCTION

It can be argued that Computer Vision is one

of the hardest and most demanding fields in

the domain of Artificial Intelligence;it has

posed as a serious challenge to engineers and

researchers for decades together. The

elicitation of information from images and

videos finds application in numerous areas like

artificial intelligence, robotics, remote sensing,

virtual reality, automation in industries, home

etc.The fact that there are several accidents

taking place due to driver errors/negligence is

what has driven research into this field, and

has gained immense popularity for the

concepts of making cars that can drive by

themselves. RADAR, computer vision GPS

and LIDAR serve as popular techniques to

facilitate autonomy in vehicles by sensing

surrounding environment. This serves as the

first state of autonomous functionality,

wherein asensor array [1] work incoherence to

see, observe and analyze the surrounding

environment and thus constitute what is known

as the perception module of the vehicle [10].

The very next stage is localization, in which

the system knits together the several small,

incomplete and unconnected information

extracted from the different sensors that

helpthe vehicle to know its relative position,

velocity, andother physical states from the

obstacles (including thedynamic obstacles). In

January - February 2020

ISSN: 0193 - 4120 Page No. 5485 - 5493

5486 Published by: The Mattingley Publishing Co., Inc.

the end, system consists of a module which

contains the planning stage, wherein the

vehicle takes decisions in accordance to its

assessment of the situation. The state-of-the-

art prototypes currently built by major Industry

players employ a LIDAR andRADAR for

perception systems. Usually they provide

afairly precise360 degree view of the vehicle,

this makes it highly aware about the

environment around it; sometimes even more

than a humandriver. The main downside of

these systemsis the cost involved in deploying

[2] them. Thus, one cost effective solution

could be obtained by using cameras and

pairing it with computervision techniques to

substitute these systems.

II. ARCHITECTURE SURVEY RELATED WORK

The very first object detection models

started off with the slow and arduous process

of region search, and then later performed the

process of classification. One of the very first

techniques that paved the way for modern

deep learning models was the Region

Convolutional Neural Network (R-CNN)

model. In R-CNN, the developed selective

search method [3]was an option in contrast to

the more thorough search process in an image

used to identify the exact location of an object.

This model initializedand consolidated several

tiny regions of the image using hierarchical or

different leveled gathering. Here the last

gathering is a box that contains the whole

image.

Further, the identified regions are converged

by different color spaces and closeness

measurements. The yield comprised of some

region proposals, which could contain an

object by consolidating the smaller regions.

Fig 1: R-CNN architecture

The R-CNN architecture as shown in fig 1

combines the strategy of selective search for

detection of region proposals, and utilizes deep

learning technique to detect the objects in the

selected regions. Every region proposal is then

rescaled to coordinate with input dimensions

of CNN, from where a 4096-measurement

features vector is obtained. Several classifiers

are fed with this feature vector to create

probabilities that are paired with each class. A

SVM classifier is applied on each one of these

classifiers, which derive a probability to

identify this object for a specific features

vector. To minimize the effect of localization

error a feature vector that was selected is been

given as an input to a linear regressor block

which helps in adapting to the shape of the

bounding box for the proposed region.

The following improved strategy was called

the Fast R-CNN[4] technique, which was

intended to lessen the time expended due to

huge multiple models that were important to

properly investigate all region proposals. A

primary CNN with various convolutional

Layers acceptthe whole image as input,as

opposed toutilizing a CNN for every region of

proposals (R-CNN). The Selective Search

Method is connected to the produced feature

January - February 2020

ISSN: 0193 - 4120 Page No. 5485 - 5493

5487 Published by: The Mattingley Publishing Co., Inc.

maps to distinguish the RoI‟s. Basically, the

extent of the feature maps is diminished by

using a RoI pooling layer to acquire a

substantial RoI with a fixed height and width

as hyperparameters. Each RoI layer feeds each

fully-connected layer, making a feature vector.

This feature vector is utilized in predicting the

object being referred to by utilizing a softmax

classifier, and to adjust the bounding box

restrictions to it with a linear regressor.

Fig 2: Fast R-CNN

The Region Proposal Network (RPN) was

introduced in 2016 togenerate region

proposals, generate bounding boxes and to

detectobjects. The Faster Region-based

Convolutional Network (Faster R-CNN) is a

model that combines the RPN and the Fast R-

CNN models.

In Faster R-CNN, the model takes in the entire

image as input, and produces a set of feature

maps accordingly. A 3x3 window slides

through the entire feature maps, and then

outputs a feature vector that is linked to two

fully-connected layers; one for box-regression,

and the other for box-classification.

Fig 3: Faster R-CNN

So far, the models discussed above handled the

process of object detection as a classification

task by building a pipeline that first generated

the object proposals, and then send these to

classification/regression algorithms. However,

recent developments in the field have led to a

few methods that pose detection as a

regression problem and not classification as

such. Two of the most popular ones currently

are YOLO and SSD.

The R-CNN, Fast R-CNN, and Faster R-CNN

algorithms are two stage detectors, that is they

first generate the region proposals and then

apply classifiers to the generated region

proposals. This makes the models have very

high inference times which make them

unsuitable for real-time purposes.

The YOLO architecture is a one-stage model

that provides for directly predicting the class

probabilities and the bounding boxes in a

single evaluation, using only one network.

Real time predictions are thus made possible,

thanks to its simplicity.

A full image is taken as input by this model.

The image is further divided into an equally

spaced SxS grid. „B‟ number of bounding

boxes with a certain score is predicted by each

of the cells. The probability of detecting the

object, multiplied by the IoU(Intersection over

Union) between the predicted truth boxes and

the ground truth is called the confidence.

Fig 4. YOLO example

The CNN used in this model is inspired by the

GoogLe Net[7] model, which introduced the

January - February 2020

ISSN: 0193 - 4120 Page No. 5485 - 5493

5488 Published by: The Mattingley Publishing Co., Inc.

Inception module. The system has 24

convolutional layers which is trailed by 2

completely associated layers toward the end.

Reduction layers with 1x1 channels are trailed

by 3x3 convolutional layers, and replace the

underlying inception modules. The Fast

YOLO (Tiny YOLO) model is a lot lighter

variant of the YOLO and comprises of just 9

convolutional layers, and also lesser number of

channels. The greater part of the convolutional

layers in this model is pre-trained utilizing the

ImageNet dataset.

The last layer of the model (fully associated

layer) givesa S*S*(C+B*5) tensor which

relate to all predictions for all the cells of the

matrix. C is the generated number of

probabilities for each class. B refers to the

number of anchor boxes per cell, each of these

boxes beingrelated to 4 coordinates (center,

width, and height and the confidence value).

In the older models, the generated bounding

boxes generally contained a single object. The

YOLO model, fig 5 though, can predict a high

number of bounding boxes. Thus, there is the

Fig 5. YOLO architecture

Possibility of there being several

boundingboxes that contain no object. Thus,

the Non-Maximum Suppression (NMS)

method is used to counter this, and isapplied at

the very end of the network. It provides for

merging the highly-overlapping bounding

boxes of the same object into a single

bounding box.

Along the lines of the YOLO model, the

Single-Shot Detector[8] (SSD) was developed

in 2016 that can predict bounding boxes and

class probabilities, all at once, utilizing a

single end-to-end CNN architecture.

The SSD model, like the YOLO model,

accepts the entire image as input, which then

goes through numerous convolutional layers

having distinctive channel sizes (10x10, 5x5

and 3x3). Feature maps from the convolutional

layers at different positions of the system are

utilized in predicting the bounding boxes.

They are handled by a certain set of

convolutional layers that consist of 3x3

channels, which are called additional element

layers that assist in delivering a set of

January - February 2020

ISSN: 0193 - 4120 Page No. 5485 - 5493

5489 Published by: The Mattingley Publishing Co., Inc.

bounding boxes that are like the anchor boxes

of the Fast R-CNN model [11] [12].

Each of the produced boxes has 4 parameters;

the co-ords of the center, the width, and the

height. Additionally, in the meantime, it

alsodelivers a vector of probabilities that

correspond to the confidence over each class

of objects.

Figure 6. SSD Framework

The Non-Maximum Suppression strategy is

utilized at the end of the SSD model like the

YOLO, to preserve only the most relevant

bounding boxes. The Hard Negative Mining

(HNM) technique is then applied, on the

grounds that for this situation the NMS boxes

comprise additionally of a few negative boxes

that are predicted. It comprises of choosing

just a subpart of these boxes that were formed

during the training. The boxes are then ordered

by their confidence levels, and the best is

chosen based upon the negative/positive ratio,

which is generally at most 1/3.

A. Choosing the algorithm

The desired characteristics of a desired model

should be:

 Should have high MAP (Mean

Average Precision).

 Should have minimum inference time.

An ideal model that encompasses both of the

above-mentioned properties is not possible, so

one has to be chosen that has a judicious

mixture of both.

Due to the high FPS requirements of the

autonomous system, we have decided to

choose the Tiny YOLO algorithm because on

decent mid-tier GPU‟s, it can provide for

around 45 FPS, which is suitable for real-time

object detection purposes.

We‟ve implemented the entire YOLO model

using the PyTorch framework because it

provides for easy GPU implementation, by

utilizing the NVIDIA CUDA platform. The

Tiny YOLO is considerably faster than the

YOLO, with only around 10% decrease in

mAP. The YOLO model can also be used for

real-time applications, but it would require the

use of an extremely high-end GPU like the

NVIDIA Titan X, or Titan V, whereas the

Tiny YOLO can provide for reasonable output

FPS on a moderate GPU like the NVIDIA

1060. The architecture of Tiny YOLO is

similar to that of YOLO, but it consists of only

9 convolution layers and much fewer filters,

thus greatly decreasing the inference time.

This model has been trained on the Pascal

VOC dataset which consists of 80 objects. We

have used this pre-trained model, since it‟s

readily available and is license-free. The

output for the classes of objects that one

doesn‟t need for object detection can easily be

masked, at no loss or gain in performance.

Hence, we have left out only the classes of

objects that we can expect for the autonomous

car [13] to find in its path or around it, so that

no incorrect detections are made that can

disrupt the process.

January - February 2020

ISSN: 0193 - 4120 Page No. 5485 - 5493

5490 Published by: The Mattingley Publishing Co., Inc.

Fig 6 : Differences in architecture between

SSD and YOLO

We propose for architecture based on the Tiny

YOLO model, and implemented using the

PyTorch framework for the object detection

purpose. The live camera feed is fed to the

CPU which splits the feed into frames, filling a

frame buffer. This frame buffer is then used by

the GPU that takes one frame at a time, and

applies the convolutional network from the

model to it. The softmax layer at the end

predicts the class of the object, and if

background is detected, it does not report it.

Also, since YOLO model also runs regression

techniques for localizing the objects, the

bounding boxes for the object are obtained as

soon as the object is detected.

III. EXPERIMENTAL RESULTS

 The YOLO architecture was chosen

over the SSD because the SSD adds extra

feature maps from different layers on top of

YOLO, which makes it a little slower,

although it increases its accuracy by a small

margin. This also results in higher memory

usage of SSD over YOLO.

The other metric used in comparison was the

MAP (Mean Average Precision)[10]. This is a

useful metric in algorithms that predict the

location of objects along with the classes.

Hence, it can be used for evaluating

Localizationmodels, Object Detection Models,

and Segmentation Models.

Every image in an object detection problem

could have multiple objects of different

classes. As was mentioned before, the model

has to be assessed both for classification and

localization performance.

This is where MAP comes into the picture. It

is basicallythe maximum precisions average at

various recall values.

Thus, MAP for a collection of queries is mean

of average precision scores for each of the

queries.

where, Q is the number of queries.

The PASCAL (Pattern Analysis, Statistical

Modelling and Computational Leaning) VOC

(Visual Objects Classes) project is a standard

dataset that is used to compute the

standardized values for mAP by the various

object detection algorithms. This dataset has

also been used for training of objects by

certain models like SSD, etc.

The YOLO model‟s got around 63.7% mAP

score for around 2007 PASCAL VOC dataset

and an approximate of 57.9% mAP score for

2012 PASCAL VOC dataset. The Fast YOLO

(Tiny) model shows much lower scores, but

has much better performance in the form of

better FPS.

The SSD modelhas been proven to obtain

mAP scores of 83.2% for around 2007

January - February 2020

ISSN: 0193 - 4120 Page No. 5485 - 5493

5491 Published by: The Mattingley Publishing Co., Inc.

PASCAL VOC test dataset, and around 82.2%

over 2012 PASCAL VOC test dataset. For the

test-dev dataset of 2015 COCO (Common

Objects in Context) challenge, which is

another open-source dataset provided for

object detection purposes with over 330,000

images, they‟ve secured a score of 48.5% for

an IoU of 0.5, 30.3% for an IoU of 0.75 and

31.5% for the official mAP metric.

Model mAP FPS Real-time Speed

Fast-RCNN 70.0% 0.5 No

Faster-RCNN 73.2% 7 No

YOLO VGG-16 66.4% 12 No

YOLO 63.4% 21 No

Fast YOLO 52.7% 29 Yes

Fig 7.mAP and FPS differences

Thus, it is clear from the above discussion that

Fast YOLO (Tiny YOLO) has the highest FPS

amongst allmodern models, and is the best

suited for real-time applications like object

detection for autonomous vehicles.

The proposed object detection pipeline was

carried out on a laptop having a 2.2Ghz Intel

i5 processor with 8GB RAM, and a NVIDIA

Ge-Force 940M 2GB VRAM GPU. The

development was done entirely in Python,

though there also exist Java implementations

of YOLO, because NVIDIA

CUDA framework for accessing the GPU can

be easily implemented in Python using the

PyTorch framework. Frameworks that can

instead be used are Google‟s Tensorflow,

Caffe, among others, but they differ in their

ease of incorporating GPU access to their

code.

We obtained an output FPS of around 20 when

themodel was run on the i5 laptop with GTX

940M, and around 29 on a laptop running the

more advanced GTX 1050 Ti 4GB VRAM.

The major point being that the Tiny YOLO

model doesn‟t require as much memory as it

does GPU CUDA cores and computing power.

Model AverageFPS Inference time

YOLOv3 12.8 78ms

Tiny

YOLOv3

26.6 37ms

Figure 8.Observed FPS on GTX 940M

Figure 9. Multiple object detection

January - February 2020

ISSN: 0193 - 4120 Page No. 5485 - 5493

5492 Published by: The Mattingley Publishing Co., Inc.

Figure 10.Vehicles on a freeway

IV. INFERENCES AND DISCUSSION

In this paper, we have demonstrated the

evolution of object-detection algorithms, and

after evaluating their performance metrics,

have chosen the best method to implement the

real-time object detection. It is observed that

the YOLO models give better performance

when compared to SSD, since they are more

advanced and require lesser memory. The Tiny

YOLO model can be implemented on a fairly

medium-tier GPU, providing a good output

FPS of around 30-40, which is sufficiently

real-time for the object-detection systems of

autonomous vehicles. The full YOLO model

can also be used, provided they have the

higher-end GPU‟s like the NVIDIA GTX

1080, NVIDIA GTX 1080 Ti, which can result

in fairly reasonable FPS for detection

purposes.

V. REFERENCES

1. Appiah, Naveen and NitinBandaru. “Obstacle

detection using stereo vision for self-driving

cars.” (2015).

2. Häne, Christian & Sattler, Torsten&Pollefeys,

Marc. (2015). Obstacle Detection for Self-

Driving Cars Using Only Monocular Cameras

and Wheel Odometry.

10.1109/IROS.2015.7354095.

3. Dhanakshirur R.R., Pillai P., Tabib R.A., Patil

U., Mudenagudi U. (2019) A Framework for

Lane Prediction on Unstructured Roads. In:

Thampi S., Marques O., Krishnan S., Li KC.,

Ciuonzo D., Kolekar M. (eds) Advances in

Signal Processing and Intelligent Recognition

Systems. SIRS 2018. Communications in

Computer and Information Science, vol 968.

Springer, SingaporeR. Girshick, "Fast R-

CNN," 2015 IEEE International Conference on

Computer Vision (ICCV), Santiago, 2015, pp.

1440-1448.

doi: 10.1109/ICCV.2015.169

4. S. Ren, K. He, R. Girshick and J. Sun, "Faster

R-CNN: Towards Real-Time Object Detection

with Region Proposal Networks," in IEEE

Transactions on Pattern Analysis and Machine

Intelligence, vol. 39, no. 6, pp. 1137-1149, 1

June 2017.

5. J. Redmon, S. Divvala, R. Girshick and A.

Farhadi, "You Only Look Once: Unified, Real-

Time Object Detection," 2016 IEEE

Conference on Computer Vision and Pattern

Recognition (CVPR), Las Vegas, NV, 2016,

pp. 779-788.

6. M. Al-Qizwini, I. Barjasteh, H. Al-Qassab and

H. Radha, "Deep learning algorithm for

autonomous driving using GoogLeNet," 2017

IEEE Intelligent Vehicles Symposium (IV),

Los Angeles, CA, 2017, pp. 89-96.

7. Liu, Wei et al. “SSD: Single Shot MultiBox

Detector.” ECCV (2016).

8. J. Hosang, R. Benenson and B. Schiele,

"Learning Non-maximum Suppression," 2017

IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Honolulu, HI,

2017, pp. 6469-6477.

doi: 10.1109/CVPR.2017.685

9. K. Li, Z. Huang, Y. Cheng and C. Lee, "A

maximal figure-of-merit learning approach to

maximizing mean average precision with deep

neural network based classifiers," 2014 IEEE

International Conference on Acoustics, Speech

and Signal Processing (ICASSP), Florence,

2014, pp. 4503-4507.

10. PillaiPreeti et al. Digital Signal Processing: An

Abstract Mathematics to Real World

Experience. Journal of Engineering Education

Transformations, [S.l.], jan. 2016. ISSN 2394-

1707. Available at:

January - February 2020

ISSN: 0193 - 4120 Page No. 5485 - 5493

5493 Published by: The Mattingley Publishing Co., Inc.

<http://journaleet.org/index.php/jeet/article/vie

w/85546>. Date accessed: 25 Oct. 2019.

doi:10.16920/jeet/2016/v0i0/85546.

11. Maralappanavar S., Iyer N.C., Maralappanavar

M. (2019) Pedestrian Detection and Tracking:

A Driver Assistance System. In: Shetty N.,

Patnaik L., Nagaraj H., Hamsavath P., Nalini

N. (eds) Emerging Research in Computing,

Information, Communication and

Applications. Advances in Intelligent Systems

and Computing, vol 882. Springer, Singapore

12. JyotiPatil, SatishChikkamath,

JyothiHalaharavi, BasavrajHosur,

Sharadakabadagi, Nikita Kulkarni “RFID Loco

Tracking Using IOT”International Journal of

Engineering Research in Computer Science

and Engineering (IJERCSE)

13. Bhagyashree K., Ramakrishna S., Kumar P.

(2019) Analysis of PAPR for Performance

QPSK and BPSK Modulation Techniques. In:

Shetty N., Patnaik L., Nagaraj H., Hamsavath

P., Nalini N. (eds) Emerging Research in

Computing, Information, Communication and

Applications. Advances in Intelligent Systems

and Computing, vol 882. Springer, Singapore

http://journaleet.org/index.php/jeet/article/view/85546
http://journaleet.org/index.php/jeet/article/view/85546

