

Edge Vertex Prime Labeling of Union of Graphs

M. Simaringa¹, S. Muthukumaran²

¹Department of Mathematics, Thiru Kolanjiappar Govt. Arts College, Virudhachalam, Tamilnadu, India ²Department of Mathematics, Siga College of Management and Computer science, Villupuram, Tamilnadu, India

Article Info Volume 82 Page Number: 5302 - 5311 Publication Issue: January-February 2020

Article History

Article Received: 18 May 2019 Revised: 14 July 2019 Accepted: 22 December 2019 Publication: 26 January 2020

Abstract

A graph G(p,q) is said to be an *edge vertex prime labeling* if its vertices and edges are labeled with distinct positive numbers not exceeding p + q such that for any edge e = xy, f(x), f(y) and f(xy) are pairwise relatively prime. A graph which admits an edge vertex prime labeling is called an *edge vertex prime graph*. We prove that some class of union of graphs such as p + q is even for $G \cup K_{1,n}, G \cup P_n$ and $C_m \cup K_{1,n}, C_m \cup P_n, C_n \cup C_n$ when $n \equiv 0,2 \pmod{3}, K_{2,m} \cup C_n$ and one point union of wheel and cycle related graphs are edge vertex prime.

Keywords: edge vertex prime labeling, relatively prime, star, path, cycle, one point union of graphs

I. INTRODUCTION

Consider only finite, simple and undirected graphs. A graph G is an ordered pair G = (V, E), where V(G) stands for a finite set of elements called vertices, while E(G) is a finite set of unordered pairs of vertices called edges. The cardinality of the sets of vertices V(G) and edges E(G) is denoted by |V(G)| and |E(G)| respectively. For all standard notation and terminology in graph theory, we follow Balakrishnan and Ranganathan [1]. A graph of order *n* is *prime* if one can bijectively label its vertices with positive numbers 1, 2, 3, ..., n, so that any two adjacent vertices are relatively prime. Prime labeling is a kind of graph labeling which was first introduced by Tout, Dobboucy, Howalla [10] and later developed by Roger Entriger. There are several types of labeling for a dynamic survey of various graph labeling problems with extensive bibliography we refer to Gallian [2]. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two simple graphs. The graph G = (V(G), E(G)), where $V = V_1 \cup V_2$ and E = $E_1 \cup E_2$, is called the union of G_1 and G_2 is denoted by $G_1 \cup G_2$. For $n \ge 2$, an n - path or simply path is denoted P_n , is a connected graph consisting of two

vertices, with degree 1 and n-2 vertices of degree 2. For $n \ge 3$, an *n*-Cycle or Simply cycle, denoted C_n , is a connected graph consisting of *n* vertices, each of degree 2. Note that both P_n and C_n have n vertices while P_n has n-1 edges and C_n has n edges. An n - star or simply star, denoted S_n , is a graph consisting of one vertex of degree n, called the *centre* and *n* vertices of degree 1. Note that S_n consists of n + 1 vertices and n edges. The graph W_n^m obtained from *m* copies of W_n by identifying their center. Prime labeling is a variant of an edge vertex prime labeling. We begin with definition of an edge vertex prime labeling. A bijective function $f: V(G) \cup E(G) \rightarrow \{1, 2, 3, \dots, |V(G) \cup E(G)|\}$ is an edge vertex prime labeling if for any edge $uv \in$ E(G), we have

gcd(f(u), f(v)) = gcd(f(u), f(uv)) =

gcd(f(v), f(uv)) = 1. A graph *G* which admits an edge vertex prime labeling is called an *edge vertex prime graph*. The concept of an edge vertex prime labeling has been originated by Jagadesh and BaskarBabujee [3] and they proved the existence of the same paths, cycles and star $K_{1,n}$. In [4], they also proved that an edge vertex prime graph for some

class of graphs such as generalized star, generalized cycle star, p + q is even for $G\hat{O}K_{1,n}, G\hat{O}P_n, G\hat{O}C_n$. Parmer [5] investigated an edge vertex prime graph of wheel graph, fan graph, friendship graph. Also, they have [6] further determined that $K_{2,n}$, for every n and $K_{3,n}$ for $n = \{3, 4, ..., 29\}$ are an edge vertex prime graph.

In [7], we proved that triangular and rectangular book, butterfly graph with shell, Drums D_n , Jahangir $J_{n,3}$, and $J_{n,4}$ are an edge vertex prime graphs. Also in [8], we determined that double star $B_{m,n}$, subdivision of $B_{m,n}$ and $K_{1,n}$, comb graph, spider, Hgraph of path P_n and coconut tree are an edge vertex prime graph. We [9] have obtained some class of graphs such as p + q is odd for $G \hat{O} W_n$, $G \hat{O} f_n$, $G \hat{O} F_n$, p + q is even for $G \hat{O} P_n$, $C_l \hat{O} K_{1,m} \hat{O} P_n$, Umbrella graph U(m,n), crown graph, union of cycles for $C_n \cup C_n \cup C_n n \equiv 0 \pmod{3}$, $C_n \cup C_n \cup$ $C_n \cup ... \cup C_n$, $n \equiv 0 \pmod{5}$ are an edge vertex prime graph.

In section 2, we investigate union of some graphs p + q is even for $G \cup K_{1,n}, G \cup P_n$, and $C_m \cup K_{1,n}, C_m \cup P_n, C_n \cup C_n$ when $n \equiv 0, 2 \pmod{3}, K_{2,m} \cup C_n$

when *m* is even, $n \equiv 0 \pmod{3}$ and *m* is odd $n \equiv 0, 1 \pmod{3}$ are an edge vertex prime.

In section 3, we prove that one point union of graphs such as W_n^m , *n* is even and n = 3, 5, 7, 9 and cycle C_n^m , n = 3, 4, 5, 6, 7, 9, 11 are an edge vertex prime.

II. UNION OF GRAPHS

In this section, we now give some union of graphs are edge vertex prime.

Theorem 2.1. If G(p,q) has an edge vertex prime graph with p + q is even, then there exists a graph from the class $G \cup K_{1,n}$, $n \ge 1$ that admits an edge vertex prime graph.

Proof. Let G(p,q) be an edge vertex prime graph when p + q is even, with bijective function

 $f: V(G) \cup E(G) \rightarrow \{1, 2, \dots, p+q\}$ with property that given any edge $uv \in E(G)$, the numbers f(u), f(v)and f(uv) are pairwise relatively prime. Consider the graph $K_{1,n}$ with vertex set $\{u, v_i : 1 \le i \le n\}$ and edge set $\{uv_i: 1 \le i \le n\}$. We define a new graph $G_1 = G \cup K_{1,n}$ with vertex set $V_1 = V(G) \cup \{u, v_i : 1 \le i \le n\}$ $i \leq n$ and edge set $E_1 = E \cup \{uv_i : 1 \leq i \leq n\}$. function $g: V_1 \cup E_1 \rightarrow$ Define bijective а $\{1, 2, 3, \dots, p+q, p+q+1, \dots, p+q+2n+1\}$ by g(v) = f(v), for all $v \in V(G)$ and g(uv) = f(uv)for all $uv \in E(G)$, g(u) = p, where p is choose the largest prime number in the set { p + q + 1, p + q +2, ..., p + q + 2n + 1 and label the edge set $\{uv_i: 1 \le i \le n\}$ by remaining even labels and label the vertex set $\{v_i: 1 \le i \le n\}$ by the remaining odd labels. To show that G_1 is an edge vertex prime graph. Already, G is an edge vertex prime graph, it is enough to prove that for any $edgeuv \in E_1$, which is not in G, the numbers g(u), g(v) and g(uv) are pairwise relatively prime. It is easily verified that, for any edge $uv \in E_1, gcd(g(u), g(v)) = 1,$ $gcd(g(u),g(uv)) = 1, \quad gcd(g(v),g(uv)) = 1.$ Hence $G_1 = G \cup K_{1,n}$, $n \ge 1$ is an edge vertex prime graph.

Theorem 2.2. If G(p,q) has an edge vertex prime graph with p + q is even, then there exists a graph from the class $G \cup P_n$ that admits an edge vertex prime graph.

Proof. Let G(p,q) be an edge vertex prime labeling graph when p + q is even, with bijective function $f:V(G)\cup E(G) \rightarrow \{1, 2, ..., p + q\}$ with property that given any edge $uv \in E(G)$, the numbers f(u), f(v) and f(uv) are pairwise relatively prime. Consider the graph P_n with vertex set $\{u_i: 1 \le i \le$ $n\}$ and edge set $\{u_i u_{i+1}: 1 \le i \le n - 1\}$. We define a new graph $G_1 = G \cup P_n$ with vertex set $V_1 =$ $V \cup \{u_i: 1 \le i \le n\}$ and $E_1 = E \cup \{u_i u_{i+1}: 1 \le i \le$ $n - 1\}$. Define a bijective function $g: V_1 \cup E_1 \rightarrow$ $\{1,2,3,..., p + q, p + q + 1,..., p + q + 2n - 1\}$ by g(v) = f(v) for all $v \in V(G)$ and g(uv) = f(uv)for all $uv \in E(G), g(u_i) = p + q - 1 + 2i$ for

 $1 \le i \le n, g(u_i u_{i+1}) = p + q + 2i$ for $1 \le i \le n - 1$. We have to prove that G_1 is an edge vertex prime labeling. Already, G is an edge vertex prime labeling, it is enough to prove that for any edge $uv \in E_1$, which is not in G, the numbers g(u), g(v) and g(uv) are pairwise relatively prime. Label the vertices and edges of path P_n is consecutive positive numbers. It is easily verified that, for any edge $\in E_1, gcd(g(u), g(v)) = 1, gcd(g(u), g(uv)) = 1$, gcd(g(u), g(uv)) = 1. Hence $G_1 = G \cup P_n$ is an edge vertex prime graph. **heorem 2.3.** The disconnected graph $C_m \cup K_{1,n}, m \ge 3$ is an edge vertex prime graph.

Proof. Consider the disconnected graph G = $C_m \cup K_{1,n}$. Let $V(C_m) = \{v_i : 1 \le i \le m\}$ and $V(K_{1,n}) = \{u, u_i : 1 \le i \le n\}$, where u is the centre $K_{1,n}, E(C_m) = \{v_1 v_m, v_i v_{i+1} : 1 \le i \le m - 1\}$ of 1,EK1, $n=uui:1 \le i \le n$, Also, V(G)=m+n+1 and |E(G)| = m + n. Define a bijective function $f: V(G) \cup E(G) \rightarrow \{1, 2, \dots, 2m + 2n + 1\},\$ by $f(u) = 1, f(u_i) = 2i + 1$ for $1 \le i \le n, f(uu_i) =$ 2*i* for $1 \le i \le n, f(v_1) = 2m + 2n + 1, f(v_i) =$ 2n + 2i - 1 for $2 \le i \le m, f(v_i v_{i+1}) = 2n + 2i$ for $1 \le i \le m - 1$, $f(v_1 v_m) = 2m + 2n$.

Next, we show that the property of an edge vertex prime graph.

For any
$$1 \le i \le n$$
,
 $gcd(f(u), f(u_i)) = gcd(1, 2i + 1) = 1$,
 $gcd(f(u), f(uu_i)) = gcd(1, 2i) = 1$,

 $gcd(f(u_i), f(uu_i)) = gcd(2i + 1, 2i) = 1$,since they are consecutive positive numbers. For any $2 \le i \le n$,

$$gcd(f(v_i), f(v_{i+1})) = gcd(2n + 2i - 1, 2n + 2i + 1) = 1,$$

$$gcd(f(v_i), f(v_iv_{i+1})) = gcd(2n + 2i - 1, 2n + 2i) = 1,$$

$$gcd(f(v_{i+1}), f(v_i v_{i+1})) = gcd(2n + 2i + 1, 2n + 2i) = 1,$$

$$gcd(f(v_1), f(v_2)) = gcd(2m + 2n + 1, 2n + 3) = 1,$$

$$gcd(f(v_1), f(v_1 v_2)) = gcd(2m + 2n + 1, 2n + 2) = 1,$$

$$gcd(f(v_2), f(v_1 v_2)) = gcd(2n + 3, 2n + 2) = 1,$$

$$gcd(f(v_1), f(v_m)) = gcd(2m + 2n + 1, 2m + 2n - 1) = 1,$$

$$gcd(f(v_1), f(v_1 v_m)) = gcd(2m + 2n + 1, 2m + 2n) = 1.$$

$$gcd(f(v_m), f(v_1v_m))$$

= $gcd(2m + 2n - 1, 2m + 2n) = 1.$

Therefore, for any edge $uv \in E(G)$, the numbers f(u), f(v) and f(uv) are pairwise relatively prime. Hence $G = C_m \cup K_{1,n}, m \ge 3$ admits an edge vertex prime graph.

Theorem 2.4. The disconnected graph $C_m \cup P_n$, $m \ge 3$ is an edge vertex prime graph.

Proof. Let $u_1, u_2, ..., u_m$ be the vertices of cycle C_m and $v_1, v_2, ..., v_n$ be the vertices of path P_n . Consider $G = C_m \cup P_n$ be a graph. Then $V(G) = (u_i, v_j: 1 \le i \le m, 1 \le j \le n)$ and $E(G) = \{u_1 u_m, u_i u_{i+1}: 1 \le i \le m - 1 \cup v_j v_j + 1: 1 \le i \le n - 1$. Here, V(G) = m + n and |E(G)| = m + n - 1. Define a bijective function $f: V(G) \cup E(G) \rightarrow \{1, 2, ..., 2m + 2n - 1\}$ by $f(u_i) = 2i - 1$ for $1 \le i \le m, f(u_i u_{i+1}) = 2i$ for $1 \le i \le m - 1, f(u_1 u_m) = 2m, f(v_j) = 2m + 2j - 1$ for $1 \le j \le n, f(v_j v_{j+1}) = 2m + 2j$ for $1 \le j \le n - 1$.

Next, we prove the property of an edge vertex prime graph.

For any edge $u_i u_{i+1} \in E(G)$, $gcd(f(u_i), f(u_{i+1})) = gcd(2i - 1, 2i + 1) = 1$,

 $gcd(f(u_i), f(u_iu_{i+1})) = gcd(2i - 1, 2i) = 1,$ $gcd(f(u_{i+1}), f(u_iu_{i+1})) = gcd(2i + 1, 2i) = 1.$ For any $u_1u_m \in E(G),$ $gcd(f(u_1), f(u_m)) = gcd(1, 2m - 1) = 1,$ $gcd(f(u_1), f(u_1u_m)) = gcd(1, 2m) = 1,$ $gcd(f(u_m), f(u_1u_m)) = gcd(2m - 1, 2m) = 1.$

Similarly, the other edges are pairwise relatively prime. Therefore, for any edge $uv \in E(G), gcd(f(u), f(v)) = 1$,

gcd(f(u), f(uv)) = 1, gcd(f(v), f(uv)) = 1. Hence $C_m \cup P_n, m \ge 3$ has an edge vertex prime graph.

Theorem 2.5.The disconnected graph $C_n \cup C_n$, $n \ge 3$ admits an edge vertex prime graph, where $n \equiv 0, 2 \pmod{3}$.

Proof. Let $G = C_n \cup C_n$ be a graph. Then $V(G) = \{v_i: 1 \le i \le 2n\}$ and $E(G) = \{v_iv_{i+1}: 1 \le i \le n - 1 \cup v1vn \cup viv_i+1:n+1 \le i \le 2n-1 \cup vn+1v2n$. Also, |V(G)| = 2n and |E(G)| = 2n. Define a bijective function $f: V(G) \cup E(G) \rightarrow \{1, 2, \dots, 4n\}$ by $f(v_i) = 2i - 1$ for $1 \le i \le 2n$, $f(v_iv_{i+1}) = 2i$ for $1 \le i \le n-1$, $f(v_1v_n) = 2n$, $f(v_{n+1}v_{2n}) = 2i = 2i - 1$.

 $\begin{array}{ll} 4n, f(v_i v_{i+1}) = 2i & \text{for} & n+1 \leq i \leq 2n-1.\\ \text{Clearly,} & \text{for} & \text{any} & \text{edge} \\ uv \in E(G), gcd(f(u), f(v)) = 1, \end{array}$

gcd(f(u), f(uv)) = 1, gcd(f(v), f(uv)) = 1.Hence $G = C_n \cup C_n, n \ge 3$ is an edge vertex prime graph, where $n \equiv 0, 2 \pmod{3}.$

Theorem 2.6. The graph obtained by the duplication of vertex v_2 in path P_n or cycle C_n is an edge vertex prime graph.

Proof. Let G' be the graph obtained by duplicating a vertex v_2 of degree 2 in P_n . Let v'_2 be the duplication of v_2 in G'. Then $V(G') = \{v'_2, v_i : 1 \le i \le n\}$ and

 $E(G') = \{v_i v_{i+1} : 1 \le i \le n-1\} \cup \{v_1 v_2'\} \cup \{v_3 v_2'\}.$ Here, |V(G')| = n+1 and |E(G')| = n+1. Define a bijective labeling $f: V(G') \cup E(G') \rightarrow \{1, 2, ..., 2n + 2\}$ by $f(v_i) = 2i - 1$ for $1 \le i \le n, f(v_i v_{i+1}) = 2i$ for $1 \le i \le n - 1, f(v_2) = 2n + 1, f(v_1 v_2) = 2n, f(v_3 v_2) = 2n + 2.$

Next, we show that the property of an edge vertex prime graph.

For any $1 \le i \le n - 1$, $gcd(f(v_i), f(v_{i+1})) = gcd(2i - 1, 2i + 1) = 1$, $gcd(f(v_i), f(v_iv_{i+1})) = gcd(2i - 1, 2i) = 1$, $gcd(f(v_{i+1}), f(v_iv_{i+1})) = gcd(2i + 1, 2i) = 1$, $gcd(f(v_1), f(v_2)) = gcd(1, 2n + 1) = 1$, $gcd(f(v_1), f(v_1v_2)) = gcd(1, 2n) = 1$, $gcd(f(v_2), f(v_1v_2)) = gcd(2n + 1, 2n) = 1$, $gcd(f(v_3), f(v_2)) = gcd(5, 2n + 1) = 1$, $gcd(f(v_3), f(v_3v_2)) = gcd(5, 2n + 2) = 1$, $gcd(f(v_2), f(v_3v_2)) = gcd(2n + 1, 2n + 2) = 1$. Therefore, for any edge $\in E(G), gcd(f(u), f(v)) = 1$, gcd(f(u), f(uv)) = 1, gcd(f(v), f(uv)) = 1.

has an edge vertex prime labeling. Let G'' be the graph obtained by duplication of v_2 in G''. Then $V(G'') = \{v_2'', v_i: 1 \le i \le n\}$, and $E(G'') = \{v_i v_{i+1}: 1 \le i \le$ $n-1\} \cup \{v_1 v_n\} \cup \{v_1 v_2''\} \cup \{v_3 v_2''\}$. Here, V(G'') = n+1 and E(G'') = n+2. Define a bijective labeling $f: V(G'') \cup E(G'') \rightarrow \{1, 2, ..., 2n+3\}$ by $f(v_i) = 2i - 1$ for $1 \le i \le n, f(v_i v_{i+1}) = 2i$ for $1 \le i \le n-1, f(v_1 v_n) = 2n, f(v_2'') = 2n +$ $2, f(v_1 v_2'') = 2n + 1, f(v_3 v_2'') = 2n + 3$. Clearly, for any edge $uv \in E(G), gcd(f(u), f(v)) = 1$, gcd(f(u), f(uv)) = 1, gcd(f(v), f(uv)) = 1. Hence the graph G'' is duplication of v_2 in C_n has an edge vertex prime graph.

Hence the graph G' is duplicating a vertex v_2 in P_n

Theorem 2.7 The disconnected graph $K_{2,m} \cup C_n$, $(n \ge 3, n \equiv 0 \pmod{3}, m \text{ is even})$ is an edge vertex prime graph.

Proof. Consider the disconnected graph $G = K_{2,m} \cup C_n$, $(n \ge 3, n \equiv 0 \pmod{3}, m \text{ is even})$. Let $V(K_{2,m}) = \{u_1, u_2\} \cup \{v_i: 1 \le i \le m\}, V(C_n) = \{w_i: 1 \le i \le n\}$ and $E(K_{2,m}) = \{u_1v_i, u_2v_i: 1 \le i \le m\}, E(C_n) = \{w_1w_n, w_iw_{i+1}: 1 \le i \le n-1\}.$ Also, |V(G)| = m + n + 2 and |E(G)| = 2m + n.

Define a bijective function $f: V(G) \cup E(G) \rightarrow \{1,2,...,3m + 2n + 2\}$ as follows. First, consider $K_{2,m}$, we use (Parmer [6] proved that the same technique $K_{2,m}$ is an edge vertex prime graph for all m in theorem 2.1). Next, consider C_n , $f(w_i) = 3m + 2i + 1$ for $1 \le i \le nf(w_iw_{i+1}) = 3m + 2i + 2$ for $1 \le i \le n - 1$.

Clearly, for any edge $uv \in E(G)$, the numbers f(u), f(v) and f(uv) are pairwise relatively prime. Hence $G = K_{2,m} \cup C_n$,

 $(n \ge 3, n \equiv 0 \pmod{3}, m \text{ is even})$ admits an edge vertex prime graph.

Theorem 2.8 The disconnected graph $K_{2,m} \cup C_n$, $(n \ge 3, n \equiv 0, 1 \pmod{3}, m \text{ is odd})$ is an edge vertex prime graph.

Proof. Similar to the even case, above theorem 2.7, only changes in first cycle, we stated the lowest label by an edge. $f(w_i) = 3m + 2i$ for $2 \le i \le n$,

 $f(w_1) = 3m + 2n + 2, \quad f(w_i w_{i+1}) = 3m + 2i + 1$ for $1 \le i \le n - 1$,

 $f(w_1w_n) = 3m + 2i + 1$. It is easily verified that, for any edge $uv \in E(G)$, the numbers f(u), f(v)and f(uv) are pairwise relatively prime.

Hence $G = K_{2,m} \cup C_n$, $(n \ge 3, n \equiv 0,1 \pmod{3}, m \text{ is even})$ admits an edge vertex prime graph.

III. ONE POINT UNION OF GRAPHS

In this section, we investigate one point union of some graphs are an edge vertex prime.

Theorem 3.1 One point union of *m* copies W_n , that is, W_n^m (*n* is even, except $n = 10n - 6, 10n - 2, m \ge 1$ and $n \ge 1$) is an edge vertex prime graph.

Proof. Let $G = W_n^m$ be a graph. Then $V(G) = \{v, v_{ij} : 1 \le i \le m, 1 \le j \le n\}$ and

$$E(G) = \{vv_{ij} : 1 \le i \le m, 1 \le j \le n\}$$

$$\cup \{v_{ij} v_{ij+1} : 1 \le i \le m, 1 \le j \le n-1\} \cup$$

 $\{v_{i1}v_{in}: 1 \le i \le m\}$. Also, |V(G)| = mn + 1 and |E(G)| = 2mn. Define a

bijective function

$$f:V(G) \cup E(G) \rightarrow \{1,2,...,3mn+1\} \text{ by } f(v) = 1,$$

$$f(v_{ij})$$

$$= \begin{cases} 3n(i-1)+3j; & j = 1,3,5,...,n-1 \\ 3n(i-1)+3j-1; & j = 2,4,6,...,n \end{cases}$$

$$f(vv_{ij})$$

$$= \begin{cases} 3n(i-1)+3j-1; & j = 1,3,5,...,n-1 \\ 3n(i-1)+3j; & j = 2,4,6,...,n \end{cases}$$

$$f(v_{ij}v_{ij})$$

$$= \begin{cases} 3n(i-1)+3j-1; & j = 1,3,5,...,n-1 \\ 3n(i-1)+3j; & j = 2,4,6,...,n \end{cases}$$

$$f(v_{ij}v_{ij+1}) = 3n(i-1)+3j+1, j = 1,3,5,...,n-1,$$

$$f(v_{i1}v_{ij}) = 3n(i-1) + 3j + 1, \ j = n$$

It is easily verified that, for any edge $uv \in E(G)$, gcd(f(u), f(v)) = 1, gcd(f(u), f(uv)) = 1, gcd(f(v), f(uv)) = 1. Hence $G = W_n^m$ (*n* is even, except $n = 10n - 6, 10n - 2, m \ge 1$ and $n \ge 1$) admits an edge vertex prime graph.

Theorem 3.2 One point union of W_{10n-6}^m , $m \ge 1$ and $n \ge 1$ is an edge vertex prime graph.

Proof. Let
$$G = W_{10n-6}^m$$
 be a graph. Then $V(G) = \{v, v_{ij} : 1 \le i \le m, 1 \le j \le 10n-6\}$ and $E(G) = \{vv_{ij} : 1 \le i \le m, 1 \le j \le 10n-6\} \cup \{v_{ij}, v_{ij+1} : 1 \le i \le m, 1 \le j \le 10n-6\}$

7} $\cup \{v_{i1}v_{i(10n-6)}: 1 \le i \le m\}.$ Also, |V(G)| = $f(v_{ii})$ $=\begin{cases}3(10n-2)(i-1)+3j; & j=1,3,5,\dots,10n-3\\3(10n-2)(i-1)+3j-1; & j=2,4,6,\dots,10n-4\end{cases}$ m(10n-6) +|E(G)| =1and 2m(10n-6). Define a bijective function $\{1, 2, \dots, 3m(10n$ $f: V(G) \cup E(G) \rightarrow$ $f(vv_{ii})$ 6) + 1}by f(v) = 1. $=\begin{cases}3(10n-2)(i-1)+3j-1; & j=1,3,5,\dots,10n-3\\3(10n-2)(i-1)+3j; & j=2,4,6,\dots,10n-2\end{cases}$ $f(v_{ii})$ $=\begin{cases}3(10n-6)(i-1)+3j; & j=1,3,5,\dots,10n-7\\3(10n-6)(i-1)+3j-1; & j=2,4,6,\dots,10n-6\end{cases}$ $f(v_{i(10n-2)}) = 3(10n-2)(i-1) + 3j + 1, j =$ 10n - 2. $f(vv_{ii})$ Consider the following cases. $=\begin{cases}3(10n-6)(i-1)+3j-1; & j=1,3,5,\dots,10n-7\\3(10n-6)(i-1)+3j; & j=2,4,6,\dots,10n-Ca^{3}\end{cases}$ $j = 2,4,6,...,10n - Case 1.m \neq 4 \pmod{5}$ $f(v_{ij}v_{ij+1}) = 3(10n-2)(i-1) + 3j + 1, j =$ Consider the following cases. 1.2.3.....10n - 3.Case 1. $m \not\equiv 2 \pmod{5}$ $f(v_{i1}v_{ij}) = 3(10n-2)(i-1) + 3j + 1, \ j = 10n-2$ $f(v_{ii}, v_{ii+1}) = 3(10n - 6)(i - 1) + 3j + 1, j =$ Case 2. $m \equiv 4 \pmod{5}$ $1,2,3,\ldots,10n-7,$ $f(v_{ii} v_{ii+1}) =$ $f(v_{i1}v_{ji}) = 3(10n-6)(i-1) + 3j + 1, \ j = 10n-6$ $\begin{cases} 3(10n-2)(i-1) + 3j + 1; & j = 1,2,3,...,10n - 4 \\ 3(10n-2)(i-1) + 3(j+1) - 1; & j = 2,4,6,...,10n - 3^{j} \end{cases}$ Case $2.m \equiv 2 \pmod{5}$ 3(10n-2)(i-1) + 3(j-1) + 1, j = 10n - 2. $f(v_{ii}v_{ii+1})$ $=\begin{cases}3(10n-6)(i-1)+3j+1; & j=1,2,3,\dots,10 \text{ treading, for any edge } uv \in E(G), gcd(f(u), f(v)) = 1,\\3(10n-6)(i-1)+3(j+1)+1; & j=10nd(f(u)) = 1, gcd(f(u)) = 1, \\ gcd(f(u)) = 1, gcd(f(u)) = 1, \\ g$ $j = 10n_{gcd}(f(u), f(uv)) = 1, gcd(f(v), f(uv)) = 1.$ Hence $G = W_{10n-2}^m m \ge 1$ and $n \ge 1$ admits an edge vertex $f(v_{i1}v_{ji}) = 3(10n-6)(i-1) + 3(j-1) + 1, j =$ prime graph. 10*n* − 6. **Theorem 3.4** One point union of m copies W_3 is an Clearly, for any edge $uv \in E(G)$, gcd(f(u), f(v)) = 1, edge vertex prime graph. gcd(f(u), f(uv)) = 1, gcd(f(v), f(uv)) = 1. Hence $G = W_{10n-6}^m$, $m \ge 1$ and $n \ge 1$ admits an edge vertex **Proof.** Let $G = W_3^m$ be a graph. Then V(G) =prime. $\{v, v_{ij} : 1 \le i \le m, 1 \le j \le 3\}$ and E(G) = $\{vv_{ii}: 1 \le i \le m, 1 \le j \le 3\} \cup \{v_{ii}, v_{ii+1}: 1 \le i \le j \le 3\}$ **Theorem 3.3** One point union of $W_{10n-2}^m, m \ge m$ 1 and $n \ge 1$ is an edge vertex prime graph. m, 1≤j≤2∪ *{ vi1vi3:1≤i≤m}*. Also, |V(G)| = 3m + 1 and |E(G)| = 6m. **Proof.** Let $G = W_{10n-2}^m$ be a graph. Then

Define a bijective function $f: V(G) \cup E(G) \rightarrow \{1,2,...,3m(10n-2)+1\}$ by f(v) = 1,

Define a bijective function $f:V(G) \cup E(G) \rightarrow \{1,2,...,9m+1\}$ by f(v) = 1.

Consider i^{th} copy of the following cases.

Case 1. Even number of copies, that is, i = 2,4,6,...

$$f(v_{ij}) = \begin{cases} 9(i-1) + 3j - 1; & j = 1,3\\ 9(i-1) + 3j & j = 2 \end{cases}$$

$$f(vv_{ij}) = \begin{cases} 9(i-1) + 3j; & j = 1,3\\ 9(i-1) + 3j - 1; & j = 2 \end{cases}$$
$$f(v_{ij}v_{ij+1}) = 9(i-1) + 3j + 1, \quad j = 1,2$$
$$f(v_{i1}v_{ij}) = 9(i-1) + 3j + 1, \quad j = 3.$$

Case 2.Odd number of copies, that is, i = 1,3,5,...

$$f(v_{ij}) = \begin{cases} 9(i-1+3j;); & j=1\\ 9(i-1)+3j-1; & j=2\\ 9(i-1)+3j-2; & j=3 \end{cases}$$

$$f(vv_{ij}) = \begin{cases} 9(i-1) + 3j - 1; & j = 1,3\\ 9(i-1) + 3j & j = 2 \end{cases}$$

$$\begin{split} &f(v_{ij}\,v_{ij+1}) \\ &= \begin{cases} 9(i-1)+3j+1; & j=1,2, \\ 9(i-1)+3(j+1); & j=2 \end{cases} \end{split}$$

$$f(v_{i1}v_{ij}) = 9(i-1) + 3j + 1, \ j = 3.$$

It is easily verified, for any edge $uv \in E(G)$, the numbers f(u), f(v) and f(uv) are pairwise relatively prime. Hence $G = W_3^m$ admits an edge vertex prime graph.

Theorem 3.5 One point union of m copies W_5 is an edge vertex prime graph.

Proof. Let $G = W_5^m$ be a graph. Then $V(G) = \{v, v_{ij} : 1 \le i \le m, 1 \le j \le 5\}$ and $E(G) = \{vv_{ij} : 1 \le i \le m, 1 \le j \le 5\} \cup \{v_{ij} v_{ij+1} : 1 \le i \le m, 1 \le j \le 4\} \cup \{v_{i1} v_{i5} : 1 \le i \le m\}.$ Also, |V(G)| = 5m + 1 and |E(G)| = 10m.

Define a bijective function $f:V(G) \cup E(G) \rightarrow \{1,2,...,15m+1\}$ by f(v) = 1. Consider i^{th} copy of the following cases.

Case 1. Even number of copies, that is, i = 2,4,6,...

$$f(v_{ij}) = \begin{cases} 15(i-1) + 3j - 1; & j = 1,3,5\\ 15(i-1) + 3j & j = 2,4 \end{cases}$$

$$f(vv_{ij}) = \begin{cases} 15(i-1) + 3j; & j = 1,3,5\\ 15(i-1) + 3j - 1; & j = 2,4 \end{cases}$$
$$f(v_{ij}v_{ij+1}) = 15(i-1) + 3j + 1, \ j = 1,2,3,4.$$
$$f(v_{i1}v_{ij}) = 15(i-1) + 3j + 1, \ j = 5.$$

Case 2.Odd number of copies, that is, i = 1,3,5,...

$$f(v_{ij}) = \begin{cases} 15(i-1+3j;) & j = 1,3\\ 15(i-1)+3j-1; & j = 2,4\\ 15(i-1)+3j-2; & j = 5 \end{cases}$$

$$f(vv_{ij}) = \begin{cases} 15(i-1) + 3j - 1; & j = 1,3,5\\ 15(i-1) + 3j & j = 2,4 \end{cases}$$
$$f(v_{ij}v_{ij+1})$$
$$= \begin{cases} 15(i-1) + 3j + 1; & j = 1,2,3\\ 15(i-1) + 3j + 3; & j = 4 \end{cases}$$

$$f(v_{i1}v_{ij}) = 15(i-1) + 3j + 1, \ j = 5.$$

Therefore, for any edge $uv \in E(G)$, gcd(f(u), f(v)) = 1, gcd(f(u), f(uv)) = 1, gcd(f(v), f(uv)) = 1. Hence $G = W_5^m$ admits an edge vertex prime graph.

Theorem 3.6 One point union of m copies W_7 is an edge vertex prime graph.

Proof. Let $G = W_7^m$ be a graph. Then $V(G) = \{v, v_{ij} : 1 \le i \le m, 1 \le j \le 7\}$ and

$$E(G) = \{vv_{ij} : 1 \le i \le m, 1 \le j \le 7\} \cup \{v_{ij} v_{ij+1} : 1 \le i \le m, 1 \le j \le 6\} \cup \{v_{i1} v_{i7} : 1 \le i \le m\}. \text{ Also, } |V(G)| = 7m + 1 \text{ and } |E(G)| = 14m.$$

Define a bijective function $f: V(G) \cup E(G) \rightarrow \{1, 2, ..., 21m + 1\}$ by f(v) = 1. Consider i^{th} copy of the following cases.

Case 1. Even number of copies, that is, i = 2,4,6,...

$$f(v_{ij}) = \begin{cases} 21(i-1) + 3j - 1; & j = 1,3,5,7 \\ 21(i-1) + 3j & j = 2,4,6 \end{cases}$$

$$f(vv_{ij}) = \begin{cases} 21(i-1) + 3j; & j = 1,3,5,7\\ 21(i-1) + 3j - 1; & j = 2,4,6 \end{cases}$$

Subcase $1a.m \not\equiv 4 \pmod{10}$

$$f(v_{ij}v_{ij+1}) = 21(i-1) + 3j + 1, \ j = 1,2,3,4,5,6$$
$$f(v_{i1}v_{ij}) = 21(i-1) + 3(j+1) + 1, \ j = 7.$$

Subcase 1b. $m \equiv 4 \pmod{10}$

$$f(v_{ij}v_{ij+1}) = 21(i-1) + 3j + 1, \ j = 1,2,3,4,5$$
$$f(v_{ij}v_{ij+1}) = 21(i-1) + 3(j+1) + 1, \ j = 6$$
$$f(v_{i1}v_{ij}) = 21(i-1) + 3j - 2, \ j = 7.$$

Case 2.Odd number of copies, that is, i = 1,3,5,...

$$f(v_{ij}) = \begin{cases} 21(i-1) + 3j; & j = 1,3,5\\ 21(i-1) + 3j - 1; & j = 2,4,6\\ 21(i-1) + 3j - 2; & j = 7 \end{cases}$$

$$f(vv_{ij}) = \begin{cases} 21(i-1) + 3j - 1; & j = 1,3,5,7\\ 21(i-1) + 3j & j = 2,4,6 \end{cases}$$
$$f(v_{ij}v_{ij+1}) = 21(i-1) + 3j + 1, \quad j = 1,2,3,4,5$$
$$f(v_{i1}v_{ij}) = 21(i-1) + 3j + 3, \quad j = 6.$$
$$f(v_{i1}v_{i7}) = 21(i-1) + 3j + 1, \quad j = 7 \end{cases}$$

Clearly, for any edge $uv \in E(G)$, the numbers f(u), f(v) and f(uv) are pairwise relatively prime. Hence $G = W_7^m$ admits an edge vertex prime graph.

Theorem 3.7 One point union of m copies W_9 is an edge vertex prime graph.

Proof. Let $G = W_9^m$ be a graph. Then $V(G) = \{v, v_{ij} : 1 \le i \le m, 1 \le j \le 9\}$ and

$$E(G) = \{vv_{ij} : 1 \le i \le m, 1 \le j \le 9\} \cup \{v_{ij} v_{ij+1} : 1 \le i \le m, 1 \le j \le 8\} \cup$$

 $\{v_{i1}v_{i9}: 1 \le i \le m\}$. Also, |V(G)| = 9m + 1 and |E(G)| = 18m.

Define a bijective function $f: V(G) \cup E(G) \rightarrow \{1, 2, ..., 27m + 1\}$ by f(v) = 1. Consider i^{th} copy of the following cases.

Case 1. Even number of copies, that is, i = 2,4,6, ...

$$f(v_{ij}) = \begin{cases} 27(i-1) + 3j - 1; & j = 1,3,5,7,9 \\ 27(i-1) + 3j & j = 2,4,6,8 \end{cases}$$

$$f(vv_{ij}) = \begin{cases} 27(i-1) + 3j; & j = 1,3,5,7,9\\ 27(i-1) + 3j - 1; & j = 2,4,6,8 \end{cases}$$

$$f(v_{ij}v_{ij+1}) = 27(i-1) + 3j + 1, j$$

= 1,2,3,4,5,6,7,8

$$f(v_{i1}v_{ij}) = 27(i-1) + 3j + 1, \ j = 9.$$

Case 2.Odd number of copies, that is, i = 1,3,5,...

$$f(v_{ij}) = \begin{cases} 27(i-1) + 3j; & j = 1,3,5,7 \\ 27(i-1) + 3j - 1; & j = 2,4,6,8 \\ 27(i-1) + 3j - 2; & j = 9 \end{cases}$$
$$f(vv_{ij}) = \begin{cases} 27(i-1) + 3j - 1; & j = 1,3,5,7 \\ 27(i-1) + 3j & j = 2,4,6,8 \end{cases}$$

$$f(v_{ij}v_{ij+1}) = 27(i-1) + 3j + 1, \ j$$

= 1,2,3,4,5,6,7

Subcase $2a.m \neq 7 \pmod{10}$

$$f(vv_{ij}) = 27(i-1) + 3j - 1, \ j = 9,$$

$$f(v_{ij}v_{ij+1}) = 27(i-1) + 3j + 1, \ j = 8,$$

 $f(v_{i1}v_{ij}) = 27(i-1) + 3j - 2, \ j = 9.$

Subcase $2b.m \equiv 7 \pmod{10}$

$$f(vv_{ij+1}) = 27(i-1) + 3j + 1, \ j = 9$$
$$f(v_{ij}v_{ij+1}) = 27(i-1) + 3(j+1), \ j = 8$$
$$f(v_{i1}v_{ij}) = 27(i-1) + 3j - 1, \ j = 9.$$

Clearly, for any edge $uv \in E(G)$, the numbers f(u), f(v) and f(uv) are pairwise relatively prime. Hence $G = W_9^m$ admits an edge vertex prime graph.

Theorem 3.8 One point union of *m* copies of C_n^m , n = 3, 5, 7, 9, 11 is an edge vertex prime graph.

Proof.Let $G = C_n^m$, (n = 3, 5, 7, 9, 11) be a graph. Then $V(G) = \{v, v_{ij} : 1 \le i \le m, 1 \le j \le n - 1\}$ and $E(G) = \{vv_{i1}, vv_{i(n-1)} : 1 \le i \le m\} \cup$ $\{v_{ij}v_{ij+1} : 1 \le i \le m, 1 \le j \le n - 2\}$. Also, |V(G)| = m(n-1) + 1 and |E(G)| = mn.

Define a bijective function $f:V(G) \cup E(G) \rightarrow \{1,2,...,2mn - m + 1\}$ by f(v) = 1. Consider i^{th} copy of the following cases.

Case 1.Odd number of copies, that is, i = 1, 3, 5, ...

$$f(v_{ij}) = 2n(i-1) + 2(j+1) - i, j$$

= 1,2,3,...,n-1.
$$f(v_{ij}v_{ij+1}) = 2n(i-1) + 2(j+2) - (i+1), j$$

= 1,2,3,...,n-2.
$$f(vv_{i1}) = (2n-1)i - (2n-3), f(vv_{i(n-1)})$$

= (2n-1)i + 1.

Case 2. Even number of copies, that is i = 2,4,6,...

$$f(v_{ij}) = 2n(i-1) + 2(j+1) - (i+1), j$$

= 1,2,3, ..., n - 1.
$$f(v_{ij}v_{ij+1}) = 2n(i-1) + 2(j+2) - (i+2), j$$

= 1,2,3, ... n - 2.

Consider the following subcases.

Subcase 2a. Consider n = 3, 5, 9, if we take n = 7, then $m \not\equiv 2 \pmod{6}$ and if we take n = 11, then $m \not\equiv 4 \pmod{10}$.

$$f(vv_{i1}) = (2n-1)i + 1, f(vv_{i(n-1)}) = (2n-1)i.$$

Subcase 2b. If we take n = 7, then $m \equiv 2 \pmod{6}$ and if we take n = 11, then $m \equiv 4 \pmod{10}$.

$$f(vv_{i1}) = (2n-1)i, f(vv_{i(n-1)}) = (2n-1)i + 1.$$

Clearly, for any edge $uv \in E(G)$, gcd(f(u), f(v)) = 1, gcd(f(u), f(uv)) = 1, gcd(f(v), f(uv)) = 1. Hence $G = C_n^m$ admits an edge vertex prime graph.

Theorem 3.9 One point union of m copies of C_4 is an edge vertex prime graph.

Proof. Let $G = C_4^m$ be a graph. Then $V(G) = \{v, v_{ij} : 1 \le i \le m, 1 \le j \le 3\}$ and

$$E(G) = \{vv_{i1}, vv_{i3}: 1 \le i \le m\} \cup \{v_{ij}v_{ij+1}: 1 \le i \le m, 1 \le j \le 2\}$$

Also, |V(G)| = 3m + 1 and |E(G)| = 4m.

Define a bijective function $f: V(G) \cup E(G) \rightarrow \{1, 2, ..., 7m + 1\}$ by f(v) = 1

Consider i^{th} copy of the following cases.

Case 1.Odd number of copies, that is, i = 1,3,5,...

$$f(v_{ij}) = 8(i-1) + 2(j+1) - i, \ j = 1,2,3$$
$$f(v_{ij}v_{ij+1}) = 8(i-1) + 2(j+2) - (i+1), \ j$$
$$= 1,2$$

$$f(vv_{i1}) = 7i - 5, f(vv_{i3}) = 7(i + 1) + 1.$$

Case 2. Even number of copies, that is, i = 2,4,6, ...

 $f(v_{ij}) = 8(i-1) + 2(j+1) - (i+1), \ j = 1,2,3$ $f(v_{ij}v_{ij+1}) = 8(i-1) + 2(j+2) - (i+2), \ j = 1,2$ 1,2

$$f(vv_{i1}) = 7(i-1) + 1, f(vv_{i3}) = 7i.$$

Therefore, for any edge $uv \in E(G)$, the numbers f(u), f(v) and f(uv) are pairwise relatively prime. Hence $G = C_4^m$ admits an edge vertex prime graph.

Theorem 3.10 One point union of *m* copies of C_6 is an edge vertex prime graph.

Proof. Let $G = C_6^m$ be a graph. Then $V(G) = \{v, v_{ij} : 1 \le i \le m, 1 \le j \le 5\}$ and

$$E(G) = \{vv_{i1}, vv_{i5}: 1 \le i \le m\} \cup \{v_{ij}, v_{ij+1}: 1 \le i \le m, 1 \le j \le 4\}$$

Also, |V(G)| = 5m + 1 and |E(G)| = 6m.

Define a bijective function $f:V(G) \cup E(G) \rightarrow \{1,2,...,11m+1\}$ by f(v) = 1. Consider i^{th} copy of the following cases.

Case 1.Odd number of copies, that is, i = 1,3,5,...

$$f(v_{ij}) = 12(i-1) + 2(j+1) - i, \ j = 1,2,3,4,5$$

$$f(v_{ij}v_{ij+1}) = 12(i-1) + 2(j+2) - (i+1), j$$

= 1,2,3,4

$$f(vv_{i1}) = 11i - 9, f(vv_{i5}) = 11i + 1.$$

Case 2. Even number of copies, that is, i = 2,4,6,...

$$f(v_{ij}) = 12(i-1) + 2(j+1) - (i+1), \ j$$

= 1,2,3,4,5

 $f(v_{ij}v_{ij+1}) = 12(i-1) + 2(j+2) - (i+2), \ j = 1,2,3,4$

Subcase $2a.m \not\equiv 4 \pmod{10}$

$$f(vv_{i1}) = 11i + 1, f(vv_{i5}) = 11i.$$

Subcase $2b.m \equiv 4 \pmod{10}$

$$f(vv_{i1}) = 11i, f(vv_{i5}) = 11i + 1.$$

Therefore, for any edge $uv \in E(G)$, gcd(f(u), f(v)) = 1, gcd(f(u), f(uv)) = 1, gcd(f(v), f(uv)) = 1. Hence $G = C_6^m$ admits an edge vertex prime graph.

REFERENCES

- Balakrishnan. R and Ranganathan. K, A Text Book of Graph Theory, Second Edition, Springer. New York 2012.
- [2] Gallian. J. A, A Dynamic Survey of Graph Labeling, Electronic Journal of Combinatorics, DS6, 2015.
- [3] Jagadesh. R, Baskar Babujee. J, Edge Vertex Prime Labeling for some class of Graphs, National Conference on Recent Trends in Mathematics and its Applications, 24-25 February 2017, SRM University, Vadapalani, Chennai, India.
- [4] Jagadesh. R, Baskar Babujee. J, On Edge Vertex Prime Labeling, International Journal of Pure and Applied Mathematics, Vol.114 No.6, 2017, 209-218.
- [5] Parmar. Y, Edge Vertex Prime Labeling for Wheel, Fan and Friendship Graph, International

Journal of Mathematics and Statistics Invention, Vol.5 Issue 8, October 2017, 23-29.

- [6] Parmar. Y, Vertex Prime Labeling for K_(2,m) and K_(3,m) Graphs, Mathematical Journal of Interdisciplinary Sciences Vol.6 No.2, March 2018, 167-180.
- [7] Simaringa. M, Muthukumaran. S, Edge Vertex Prime Labeling of Some Graphs, Malaya Journal of Mathematik, Vol.7, No.2, 264-268, 2019.
- [8] Simaringa. M, Muthukumaran. S, Subhasri.S, Edge Vertex Prime Labeling of Trees,JETIR,Vol.6, Issue.5, 282-287, May-2019.
- [9] Simaringa. M, Muthukumaran. S, Edge Vertex Prime Labeling of Graphs, Malaya Journal of Mathematik, Vol.7, No.3, 572-578, 2019.
- [10] Tout. A, Dabboucy. A. N, Howalla. K, Prime Labeling of Graphs, National Academy Science, Letters, 11,1982, 365-368.