Edge Vertex Prime Labeling of Union of Graphs

M. Simaringa ${ }^{1}$, S. Muthukumaran ${ }^{2}$
${ }^{1}$ Department of Mathematics, Thiru Kolanjiappar Govt. Arts College, Virudhachalam, Tamilnadu, India
${ }^{2}$ Department of Mathematics, Siga College of Management and Computer science, Villupuram, Tamilnadu, India

Article Info

Volume 82
Page Number: 5302-5311
Publication Issue:
January-February 2020

Article History

Article Received: 18 May 2019
Revised: 14 July 2019
Accepted: 22 December 2019
Publication: 26 January 2020

Abstract

A graph $G(p, q)$ is said to be an edge vertex prime labeling if its vertices and edges are labeled with distinct positive numbers not exceeding $p+q$ such that for any edge $e=x y, f(x), f(y)$ and $f(x y)$ are pairwise relatively prime. A graph which admits an edge vertex prime labeling is called an edge vertex prime graph. We prove that some class of union of graphs such as $p+q$ is even for $G \cup K_{1, n}, G \cup P_{n}$ and $C_{m} \cup K_{1, n}, C_{m} \cup P_{n}, C_{n} \cup C_{n}$ when $n \equiv 0,2(\bmod 3), K_{2, m} \cup C_{n}$ and one point union of wheel and cycle related graphs are edge vertex prime.

Keywords: edge vertex prime labeling, relatively prime, star, path, cycle, one point union of graphs

I. INTRODUCTION

Consider only finite, simple and undirected graphs. A graph G is an ordered pair $G=(V, E)$, where $V(G)$ stands for a finite set of elements called vertices, while $E(G)$ is a finite set of unordered pairs of vertices called edges. The cardinality of the sets of vertices $V(G)$ and edges $E(G)$ is denoted by $|V(G)|$ and $|E(G)|$ respectively. For all standard notation and terminology in graph theory, we follow Balakrishnan and Ranganathan [1]. A graph of order n is prime if one can bijectively label its vertices with positive numbers $1,2,3, \ldots, n$, so that any two adjacent vertices are relatively prime. Prime labeling is a kind of graph labeling which was first introduced by Tout, Dobboucy, Howalla [10] and later developed by Roger Entriger. There are several types of labeling for a dynamic survey of various graph labeling problems with extensive bibliography we refer to Gallian [2]. Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two simple graphs. The graph $G=(V(G), E(G))$, where $V=V_{1} U V_{2}$ and $E=$ $E_{1} \cup E_{2}$, is called the union of G_{1} and G_{2} is denoted by $G_{1} \cup G_{2}$. For $n \geq 2$, an n-path or simply path is denoted P_{n}, is a connected graph consisting of two
vertices, with degree 1 and $n-2$ vertices of degree 2 . For $n \geq 3$, an n-Cycle or Simply cycle, denoted C_{n}, is a connected graphconsisting of n vertices, each of degree 2 . Note that both P_{n} and C_{n} have n vertices while P_{n} has $n-1$ edges and C_{n} has n edges. An $n-$ star or simply star, denoted S_{n}, is a graph consisting of one vertex of degree n, called the centre and n vertices of degree 1 . Note that S_{n} consists of $n+1$ vertices and n edges. The graph W_{n}^{m} obtained from m copies of W_{n} by identifying their center. Prime labeling is a variant of an edge vertex prime labeling. We begin with definition of an edge vertex prime labeling. A bijective function $f: V(G) \cup E(G) \rightarrow\{1,2,3, \ldots,|V(G) \cup E(G)|\} \quad$ is an edge vertex prime labeling if for any edge $u v \in$ $E(G)$, we have $\operatorname{gcd}(f(u), f(v))=\operatorname{gcd}(f(u), f(u v))=$ $\operatorname{gcd}(f(v), f(u v))=1$. A graph G which admits an edge vertex prime labeling is called an edge vertex prime graph. The concept of an edge vertex prime labeling has been originated by Jagadesh and BaskarBabujee [3] and they proved the existence of the same paths, cycles and star $K_{1, n}$. In [4], they also proved that an edge vertex prime graph for some
class of graphs such as generalized star, generalized cycle star, $p+q$ is even for $G \hat{O} K_{1, n}, G \widehat{O} P_{n}, G \widehat{O} C_{n}$. Parmer [5] investigated an edge vertex prime graph of wheel graph, fan graph, friendship graph. Also, they have [6] further determined that $K_{2, n}$, for every n and $K_{3, n}$ for $n=\{3,4, \ldots, 29\}$ are an edge vertex prime graph.

In [7], we proved that triangular and rectangular book, butterfly graph with shell, Drums D_{n}, Jahangir $J_{n, 3}$, and $J_{n, 4}$ are an edge vertex prime graphs. Also in [8], we determined that double star $B_{m, n}$, subdivision of $B_{m, n}$ and $K_{1, n}$, comb graph, spider, Hgraph of path P_{n} and coconut tree are an edge vertex prime graph. We [9] have obtained some class of graphs such as $p+q$ is odd for $G \hat{O} W_{n}, G \widehat{O} f_{n}$, $G \widehat{O} F_{n}, \quad p+q$ is even for $G \hat{O} P_{n}, C_{l} \widehat{O} K_{1, m} \widehat{O} P_{n}$, Umbrella graph $U(m, n)$, crown graph, union of cycles for $C_{n} \cup C_{n} \cup C_{n} n \equiv 0(\bmod 3), C_{n} \cup C_{n} \cup$ $C_{n} \cup \ldots \cup C_{n}, n \equiv 0(\bmod 5)$ are an edge vertex prime graph.

In section 2, we investigate union of some graphs $p+q \quad$ is even for $G \cup K_{1, n}, G \cup P_{n}$, and $C_{m} \cup K_{1, n}, C_{m} \cup P_{n}, C_{n} \cup C_{n}$ when $\quad n \equiv 0,2(\bmod 3)$, $K_{2, m} \cup C_{n}$
w hen m is even, $n \equiv 0(\bmod 3)$ and $m \quad$ is odd $n \equiv 0,1(\bmod 3)$ are an edge vertex prime.

In section 3, we prove that one point union of graphs such as W_{n}^{m}, n is even and $n=3,5,7,9$ and cycle $C_{n}^{m}, n=3,4,5,6,7,9,11$ are an edge vertex prime.

II. UNION OF GRAPHS

In this section, we now give some union of graphs are edge vertex prime.

Theorem 2.1. If $G(p, q)$ has an edge vertex prime graph with $p+q$ is even, then there exists a graph from the class $G \cup K_{1, n}, n \geq 1$ that admits an edge vertex prime graph.

Proof. Let $G(p, q)$ be an edge vertex prime graph when $p+q$ is even, with bijective function
$f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ with property that given any edge $u v \in E(G)$, the numbers $f(u), f(v)$ and $f(u v)$ are pairwise relatively prime. Consider the graph $K_{1, n}$ with vertex set $\left\{u, v_{i}: 1 \leq i \leq n\right\}$ and edge set $\left\{u v_{i}: 1 \leq i \leq n\right\}$. We define a new graph $G_{1}=G \cup K_{1, n}$ with vertex set $V_{1}=V(G) \cup\left\{u, v_{i}: 1 \leq\right.$ $i \leq n\}$ and edge set $E_{1}=E \cup\left\{u v_{i}: 1 \leq i \leq n\right\}$. Define a bijective function $g: V_{1} \cup E_{1} \rightarrow$ $\{1,2,3, \ldots, p+q, p+q+1, \ldots, p+q+2 n+1\}$ by $g(v)=f(v)$, for all $v \in V(G)$ and $g(u v)=f(u v)$ for all $u v \in E(G), g(u)=p$, where p is choose the largest prime number in the set $\{p+q+1, p+q+$ $2, \ldots, p+q+2 n+1\}$ and label the edge set $\left\{u v_{i}: 1 \leq i \leq n\right\}$ by remaining even labels and label the vertex set $\left\{v_{i}: 1 \leq i \leq n\right\}$ by the remaining odd labels. To show that G_{1} is an edge vertex prime graph. Already, G is an edge vertex prime graph, it is enough to prove that for any edge $u v \in E_{1}$, which is not in G, the numbers $g(u), g(v)$ and $g(u v)$ are pairwise relatively prime. It is easily verified that, for any edge $u v \in E_{1}, \operatorname{gcd}(g(u), g(v))=1$, $\operatorname{gcd}(g(u), g(u v))=1, \quad \operatorname{gcd}(g(v), g(u v))=1$. Hence $G_{1}=G \cup K_{1, n}, n \geq 1$ is an edge vertex prime graph.

Theorem 2.2. If $G(p, q)$ has an edge vertex prime graph with $p+q$ is even, then there exists a graph from the class $G \cup P_{n}$ that admits an edge vertex prime graph.

Proof. Let $G(p, q)$ be an edge vertex prime labeling graph when $p+q$ is even, with bijective function $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ with property that given any edge $u v \in E(G)$, the numbers $f(u), f(v)$ and $f(u v)$ are pairwise relatively prime. Consider the graph P_{n} with vertex set $\left\{u_{i}: 1 \leq i \leq\right.$ $n\}$ and edge set $\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\}$. We define a new graph $G_{1}=G \cup P_{n}$ with vertex set $V_{1}=$ $V \bigcup\left\{u_{i}: 1 \leq i \leq n\right\}$ and $E_{1}=E \cup\left\{u_{i} u_{i+1}: 1 \leq i \leq\right.$ $n-1\}$. Define a bijective function $g: V_{1} \cup E_{1} \rightarrow$ $\{1,2,3, \ldots, p+q, p+q+1, \ldots, p+q+2 n-1\}$ by $g(v)=f(v)$ for all $v \in V(G)$ and $g(u v)=f(u v)$ for all $u v \in E(G), g\left(u_{i}\right)=p+q-1+2 i$ for
$1 \leq i \leq n, g\left(u_{i} u_{i+1}\right)=p+q+2 i$ for $1 \leq i \leq n-$ 1. We have to prove that G_{1} is an edge vertex prime labeling. Already, G is an edge vertex prime labeling, it is enough to prove that for any edge $u v \in E_{1}$, which is not in G, the numbers $g(u), g(v)$ and $g(u v)$ are pairwise relatively prime. Label the vertices and edges of path P_{n} is consecutive positive numbers. It is easily verified that, for any edge $\in E_{1}, \operatorname{gcd}(g(u), g(v))=1, \quad \operatorname{gcd}(g(u), g(u v))=$ $1, \operatorname{gcd}(g(v), g(u v))=1$. Hence $G_{1}=G \cup P_{n}$ is an edge vertex prime graph.heorem 2.3. The disconnected graph $C_{m} \cup K_{1, n}, m \geq 3$ is an edge vertex prime graph.

Proof. Consider the disconnected graph $G=$ $C_{m} \cup K_{1, n}$. Let $V\left(C_{m}\right)=\left\{v_{i}: 1 \leq i \leq m\right\} \quad$ and $V\left(K_{1, n}\right)=\left\{u, u_{i}: 1 \leq i \leq n\right\}$, where u is the centre of $\quad K_{1, n}, E\left(C_{m}\right)=\left\{v_{1} v_{m}, v_{i} v_{i+1}: 1 \leq i \leq m-\right.$ 1,EK1, $n=u u i: 1 \leq i \leq n$, Also, $V(G)=m+n+1$ and $|E(G)|=m+n$. Define a bijective function $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, 2 m+2 n+1\}$, by $f(u)=1, f\left(u_{i}\right)=2 i+1$ for $1 \leq i \leq n, f\left(u u_{i}\right)=$ $2 i$ for $1 \leq i \leq n, f\left(v_{1}\right)=2 m+2 n+1, f\left(v_{i}\right)=$ $2 n+2 i-1$ for $2 \leq i \leq m, f\left(v_{i} v_{i+1}\right)=2 n+2 i$ for $1 \leq i \leq m-1, f\left(v_{1} v_{m}\right)=2 m+2 n$.

Next, we show that the property of an edge vertex prime graph.

For any $1 \leq i \leq n$,

$$
\begin{gathered}
\operatorname{gcd}\left(f(u), f\left(u_{i}\right)\right)=\operatorname{gcd}(1,2 i+1)=1 \\
\operatorname{gcd}\left(f(u), f\left(u u_{i}\right)\right)=\operatorname{gcd}(1,2 i)=1
\end{gathered}
$$

$\operatorname{gcd}\left(f\left(u_{i}\right), f\left(u u_{i}\right)\right)=\operatorname{gcd}(2 i+1,2 i)=1$,since
they are consecutive positive numbers. For any $2 \leq i \leq n$,

$$
\begin{aligned}
& \operatorname{gcd}\left(f\left(v_{i}\right), f\left(v_{i+1}\right)\right) \\
& \quad=\operatorname{gcd}(2 n+2 i-1,2 n+2 i+1) \\
& \quad=1
\end{aligned} \begin{aligned}
\operatorname{gcd}\left(f\left(v_{i}\right), f\right. & \left.\left(v_{i} v_{i+1}\right)\right) \\
& =\operatorname{gcd}(2 n+2 i-1,2 n+2 i)=1
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{gcd}\left(f\left(v_{i+1}\right), f\left(v_{i} v_{i+1}\right)\right) \\
& =\operatorname{gcd}(2 n+2 i+1,2 n+2 i)=1 \\
& \operatorname{gcd}\left(f\left(v_{1}\right), f\left(v_{2}\right)\right)=\operatorname{gcd}(2 m+2 n+1,2 n+3) \\
& =1 \\
& \operatorname{gcd}\left(f\left(v_{1}\right), f\left(v_{1} v_{2}\right)\right) \\
& =\operatorname{gcd}(2 m+2 n+1,2 n+2)=1
\end{aligned}
$$

$$
\operatorname{gcd}\left(f\left(v_{2}\right), f\left(v_{1} v_{2}\right)\right)=\operatorname{gcd}(2 n+3,2 n+2)=1
$$

$$
g c d!f\left(v_{1}\right), f\left(v_{m}\right)
$$

$$
=\operatorname{gcd}(2 m+2 n+1,2 m+2 n-1)
$$

$$
=1
$$

$\operatorname{gcd}\left(f\left(v_{1}\right), f\left(v_{1} v_{m}\right)\right)$

$$
=\operatorname{gcd}(2 m+2 n+1,2 m+2 n)=1
$$

$$
\begin{aligned}
\operatorname{gcd}\left(f\left(v_{m}\right), f\right. & \left.\left(v_{1} v_{m}\right)\right) \\
& =\operatorname{gcd}(2 m+2 n-1,2 m+2 n)=1
\end{aligned}
$$

Therefore, for any edge $u v \in E(G)$, the numbers $f(u), f(v)$ and $f(u v)$ are pairwise relatively prime. Hence $G=C_{m} \cup K_{1, n}, m \geq 3$ admits an edge vertex prime graph.

Theorem 2.4. The disconnected graph $C_{m} \cup P_{n}, m \geq$ 3 is an edge vertex prime graph.

Proof. Let $u_{1}, u_{2}, \ldots, u_{m}$ be the vertices of cycle C_{m} and $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of path P_{n}. Consider $G=C_{m} \cup P_{n}$ be a graph. Then $V(G)=\left(u_{i}, v_{j}: 1 \leq\right.$ $i \leq m, 1 \leq j \leq n\}$ and $E(G)=\left\{u_{1} u_{m}, u_{i} u_{i+1}: 1 \leq\right.$ $i \leq m-1 \cup v j v j+1: 1 \leq i \leq n-1$. Here, $V(G)=m+n$ and $|E(G)|=m+n-1$. Define a bijective function $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, 2 m+2 n-1\} \quad$ by $f\left(u_{i}\right)=2 i-1$ for $1 \leq i \leq m, f\left(u_{i} u_{i+1}\right)=2 i$ for $1 \leq i \leq m-1, f\left(u_{1} u_{m}\right)=2 m, f\left(v_{j}\right)=2 m+$
$2 j-1$ for $1 \leq j \leq n, f\left(v_{j} v_{j+1}\right)=2 m+2 j$ for $1 \leq j \leq n-1$.

Next, we prove the property of an edge vertex prime graph.

For any edge $u_{i} u_{i+1} \in E(G)$,
$\operatorname{gcd}\left(f\left(u_{i}\right), f\left(u_{i+1}\right)\right)=\operatorname{gcd}(2 i-1,2 i+1)=1$,
$\operatorname{gcd}\left(f\left(u_{i}\right), f\left(u_{i} u_{i+1}\right)\right)=\operatorname{gcd}(2 i-1,2 i)=1$,
$\operatorname{gcd}\left(f\left(u_{i+1}\right), f\left(u_{i} u_{i+1}\right)\right)=\operatorname{gcd}(2 i+1,2 i)=1$.
For any $u_{1} u_{m} \in E(G)$,

$$
\begin{aligned}
& \operatorname{gcd}\left(f\left(u_{1}\right), f\left(u_{m}\right)\right)=\operatorname{gcd}(1,2 m-1)=1 \\
& \operatorname{gcd}\left(f\left(u_{1}\right), f\left(u_{1} u_{m}\right)\right)=\operatorname{gcd}(1,2 m)=1 \\
& \operatorname{gcd}\left(f\left(u_{m}\right), f\left(u_{1} u_{m}\right)\right)=\operatorname{gcd}(2 m-1,2 m)=1 .
\end{aligned}
$$

Similarly, the other edges are pairwise relatively prime. Therefore, for any edge $u v \in E(G), \operatorname{gcd}(f(u), f(v))=1$,
$\operatorname{gcd}(f(u), f(u v))=1, \quad \operatorname{gcd}(f(v), f(u v))=1$. Hence $C_{m} \cup P_{n}, m \geq 3$ has an edge vertex prime graph.

Theorem 2.5.The disconnected graph $C_{n} \cup C_{n}, n \geq 3$ admits an edge vertex prime graph, where $n \equiv$ $0,2(\bmod 3)$.

Proof. Let $G=C_{n} \cup C_{n}$ be a graph. Then $V(G)=$ $\left\{v_{i}: 1 \leq i \leq 2 n\right\}$ and $E(G)=\left\{v_{i} v_{i+1}: 1 \leq i \leq n-\right.$ 1Uv1vnUvivi $+1: n+1 \leq i \leq 2 n-1 U v n+1 v 2 n$. Also, $|V(G)|=2 n$ and $|E(G)|=2 n$. Define a bijective function $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, 4 n\}$ by $f\left(v_{i}\right)=$ $2 i-1$ for $1 \leq i \leq 2 n, f\left(v_{i} v_{i+1}\right)=2 i$ for $1 \leq i \leq$ $n-1, f\left(v_{1} v_{n}\right)=2 n, f\left(v_{n+1} v_{2 n}\right)=$
$4 n, f\left(v_{i} v_{i+1}\right)=2 i \quad$ for $\quad n+1 \leq i \leq 2 n-1$. Clearly, for any edge $u v \in E(G), \operatorname{gcd}(f(u), f(v))=1$, $\operatorname{gcd}(f(u), f(u v))=1, \quad \operatorname{gcd}(f(v), f(u v))=1$. Hence $G=C_{n} \cup C_{n}, n \geq 3$ is an edge vertex prime graph, where $n \equiv 0,2(\bmod 3)$.

Theorem 2.6. The graph obtained by the duplication of vertex v_{2} in path P_{n} or cycle C_{n} is an edge vertex prime graph.

Proof. Let G^{\prime} be the graph obtained by duplicating a vertex v_{2} of degree 2 in P_{n}. Let v_{2} be the duplication of v_{2} in G^{\prime}. Then $V\left(G^{\prime}\right)=\left\{v_{2}^{\prime}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(G^{\prime}\right)=\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{v_{1} v_{2}^{\prime}\right\} \cup\left\{v_{3} v_{2}^{\prime}\right\}$. Here, $\left|V\left(G^{\prime}\right)\right|=n+1$ and $\left|E\left(G^{\prime}\right)\right|=n+1$. Define
a bijective labeling $f: V\left(G^{\prime}\right) \cup E\left(G^{\prime}\right) \rightarrow$ $\{1,2, \ldots, 2 n+2\}$ by $f\left(v_{i}\right)=2 i-1$ for $1 \leq i \leq$ $n, f\left(v_{i} v_{i+1}\right)=2 i$ for $1 \leq i \leq n-1, f\left(v_{2}^{\prime}\right)=2 n+$ $1, f\left(v_{1} v_{2}^{\prime}\right)=2 n, f\left(v_{3} v_{2}^{\prime}\right)=2 n+2$.

Next, we show that the property of an edge vertex prime graph.

For any $1 \leq i \leq n-1$,
$\operatorname{gcd}\left(f\left(v_{i}\right), f\left(v_{i+1}\right)\right)=\operatorname{gcd}(2 i-1,2 i+1)=1$,
$\operatorname{gcd}\left(f\left(v_{i}\right), f\left(v_{i} v_{i+1}\right)\right)=\operatorname{gcd}(2 i-1,2 i)=1$,
$\operatorname{gcd}\left(f\left(v_{i+1}\right), f\left(v_{i} v_{i+1}\right)\right)=\operatorname{gcd}(2 i+1,2 i)=1$,
$\operatorname{gcd}\left(f\left(v_{1}\right), f\left(v_{2}^{\prime}\right)\right)=\operatorname{gcd}(1,2 n+1)=1$,
$\operatorname{gcd}\left(f\left(v_{1}\right), f\left(v_{1} v_{2}^{\prime}\right)\right)=\operatorname{gcd}(1,2 n)=1$,
$\operatorname{gcd}\left(f\left(v_{2}^{\prime}\right), f\left(v_{1} v_{2}^{\prime}\right)\right)=\operatorname{gcd}(2 n+1,2 n)=1$,
$\operatorname{gcd}\left(f\left(v_{3}\right), f\left(v_{2}^{\prime}\right)\right)=\operatorname{gcd}(5,2 n+1)=1$,
$\operatorname{gcd}\left(f\left(v_{3}\right), f\left(v_{3} v_{2}^{\prime}\right)\right)=\operatorname{gcd}(5,2 n+2)=1$,
$\operatorname{gcd}\left(f\left(v_{2}^{\prime}\right), f\left(v_{3} v_{2}^{\prime}\right)\right)=\operatorname{gcd}(2 n+1,2 n+2)=1$.
Therefore, for any edge $\in E(G), \operatorname{gcd}(f(u), f(v))=$ $1, \operatorname{gcd}(f(u), f(u v))=1, \operatorname{gcd}(f(v), f(u v))=1$. Hence the graph G^{\prime} is duplicating a vertex v_{2} in P_{n} has an edge vertex prime labeling.

Let $G^{\prime \prime}$ be the graph obtained by duplication of v_{2} of degree 2 in C_{n}. Let $v_{2}^{\prime \prime}$ be the duplication of v_{2} in $G^{\prime \prime}$. Then $V\left(G^{\prime \prime}\right)=\left\{v_{2}^{\prime \prime}, v_{i}: 1 \leq i \leq n\right\}$, and $E\left(G^{\prime \prime}\right)=\left\{v_{i} v_{i+1}: 1 \leq i \leq\right.$ $n-1\} \cup\left\{v_{1} v_{n}\right\} \cup\left\{v_{1} v_{2}^{\prime \prime}\right\} \cup\left\{v_{3} v_{2}^{\prime \prime}\right\}$. Here, $V\left(G^{\prime \prime}\right)=$ $n+1$ and $E\left(G^{\prime \prime}\right)=n+2$. Define a bijective labeling $f: V\left(G^{\prime \prime}\right) \cup E\left(G^{\prime \prime}\right) \rightarrow\{1,2, \ldots, 2 n+3\}$ by $f\left(v_{i}\right)=2 i-1$ for $1 \leq i \leq n, f\left(v_{i} v_{i+1}\right)=2 i$ for $1 \leq i \leq n-1, f\left(v_{1} v_{n}\right)=2 n, f\left(v_{2}^{\prime \prime}\right)=2 n+$
$2, f\left(v_{1} v_{2}^{\prime \prime}\right)=2 n+1, f\left(v_{3} v_{2}^{\prime \prime}\right)=2 n+3$. Clearly, for any edge $u v \in E(G), \operatorname{gcd}(f(u), f(v))=1$, $\operatorname{gcd}(f(u), f(u v))=1, \quad \operatorname{gcd}(f(v), f(u v))=1$. Hence the graph $G^{\prime \prime}$ is duplication of v_{2} in C_{n} has an edge vertex prime graph.

III. ONE POINT UNION OF GRAPHS

In this section, we investigate one point union of some graphs are an edge vertex prime.

Theorem 3.1 One point union of m copies W_{n}, that is, W_{n}^{m} (n is even, except $n=10 n-6,10 n-$ $2, m \geq 1$ and $n \geq 1$) is an edge vertex prime graph.

Proof. Let $G=W_{n}^{m}$ be a graph. Then $V(G)=$ $\left\{v, v_{i j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and

$$
\begin{aligned}
E(G)=\left\{v v_{i j}:\right. & 1 \leq i \leq m, 1 \leq j \leq n\} \\
& \cup\left\{v_{i j} v_{i j+1}: 1 \leq i \leq m, 1 \leq j\right. \\
& \leq n-1\} \cup
\end{aligned}
$$

$\left\{v_{i 1} v_{i n}: 1 \leq i \leq m\right\} . \quad$ Also, $|V(G)|=m n+1$ and $|E(G)|=2 m n$. Define a
bijective
function
$f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, 3 m n+1\}$ by $f(v)=1$,
$f\left(v_{i j}\right)$
$=\left\{\begin{array}{cc}3 n(i-1)+3 j ; & j=1,3,5, \ldots, n-1 \\ 3 n(i-1)+3 j-1 ; & j=2,4,6, \ldots, n\end{array}\right.$
$f\left(v v_{i j}\right)$
$=\left\{\begin{array}{lr}3 n(i-1)+3 j-1 ; & j=1,3,5, \ldots, n-1 \\ 3 n(i-1)+3 j ; & j=2,4,6, \ldots, n\end{array}\right.$
$f\left(v_{i j} v_{i j+1}\right)=3 n(i-1)+3 j+1, \quad j=$ $1,3,5, \ldots, n-1$,
$f\left(v_{i 1} v_{i j}\right)=3 n(i-1)+3 j+1, j=n$.
It is easily verified that, for any edge $u v \in E(G)$, $\operatorname{gcd}(f(u), f(v))=1, \quad \operatorname{gcd}(f(u), f(u v))=1$, $\operatorname{gcd}(f(v), f(u v))=1$. Hence $G=W_{n}^{m}(n$ is even, except $n=10 n-6,10 n-2, m \geq 1$ and $n \geq 1$) admits an edge vertex prime graph.

Theorem 3.2 One point union of $W_{10 n-6}^{m}, m \geq$ 1 and $n \geq 1$ is an edge vertex prime graph.

Proof. Let $G=W_{10 n-6}^{m}$ be a graph. Then $V(G)=$ $\left\{v, v_{i j}: 1 \leq i \leq m, 1 \leq j \leq \quad 10 n-6\right\}$ and $E(G)=\left\{v v_{i j}: 1 \leq i \leq m, 1 \leq j \leq 10 n-6\right\} \cup$ $\left\{v_{i j} v_{i j+1}: 1 \leq i \leq \quad m, 1 \leq j \leq 10 n-\right.$
$7\} \cup\left\{v_{i 1} v_{i(10 n-6)}: 1 \leq i \leq m\right\} . \quad$ Also, $\quad|V(G)|=f\left(v_{i j}\right)$
$m(10 n-6)+\quad$ 1and
$2 m(10 n-6)$. Define a bijective function
$f: V(G) \cup E(G) \rightarrow$
$\{1,2, \ldots, 3 m(10 n-$
6) +1$\}$ by $f(v)=1$,
$f\left(v_{i j}\right)$
$= \begin{cases}3(10 n-6)(i-1)+3 j ; & j=1,3,5, \ldots, 10 n-7 \\ 3(10 n-6)(i-1)+3 j-1 ; & j=2,4,6, \ldots, 10 n-6\end{cases}$
$= \begin{cases}3(10 n-2)(i-1)+3 j ; & j=1,3,5, \ldots, 10 n-3 \\ 3(10 n-2)(i-1)+3 j-1 ; & j=2,4,6, \ldots, 10 n-4\end{cases}$
$f\left(v v_{i j}\right)$
$= \begin{cases}3(10 n-2)(i-1)+3 j-1 ; & j=1,3,5, \ldots, 10 n-3 \\ 3(10 n-2)(i-1)+3 j ; & j=2,4,6, \ldots, 10 n-2\end{cases}$
$f\left(v v_{i j}\right)$
$f\left(v_{i(10 n-2)}\right)=3(10 n-2)(i-1)+3 j+1, j=$ $10 n-2$.
$=\left\{\begin{array}{l}3(10 n-6)(i-1)+3 j-1 ; \\ 3(10 n-6)(i-1)+3 j ;\end{array}\right.$

$$
\begin{aligned}
& j=1,3,5, \ldots, 10 n-7 \\
& j=2,4,6, \ldots, 10 n-\text { Case } 1 . m \not \equiv 4(\bmod 5)
\end{aligned}
$$

Consider the following cases.
Case 1.m $\not \equiv 2(\bmod 5)$
$f\left(v_{i j} v_{i j+1}\right)=3(10 n-6)(i-1)+3 j+1, j=$
$1,2,3, \ldots, 10 n-7$,
$f\left(v_{i 1} v_{i j}\right)=3(10 n-6)(i-1)+3 j+1, j=10 n-6$
Case $2 . m \equiv 2(\bmod 5)$
$f\left(v_{i j} v_{i j+1}\right)=3(10 n-2)(i-1)+3 j+1, j=$ $1,2,3, \ldots, 10 n-3$,
$f\left(v_{i 1} v_{i j}\right)=3(10 n-2)(i-1)+3 j+1, j=10 n-2$
Case $2 . m \equiv 4(\bmod 5)$
$f\left(v_{i j} v_{i j+1}\right)$
$f\left(v_{i j} v_{i j+1}\right)=$
$\begin{cases}3(10 n-2)(i-1)+3 j+1 ; & j=1,2,3, \ldots, 10 n-4 \\ 3(10 n-2)(i-1)+3(j+1)-1 ; & j=2,4,6, \ldots, 10 n-3\end{cases}$
$=\left\{\begin{array}{l}3(10 n-6)(i-1)+3 j+1 ; \\ 3(10 n-6)(i-1)+3(j+1)+1 ;\end{array}\right.$
$j=1,2,3, \ldots, 10$ Cleafly, for any edge $u v \in E(G), \operatorname{gcd}(f(u), f(v))=1$,
$j=10 n c \bar{d}(f(u), f(u v))=1, \operatorname{gcd}(f(v), f(u v))=1$. Hence
$f\left(v_{i 1} v_{i j}\right)=3(10 n-6)(i-1)+3(j-1)+1, j=$ $10 n-6$.

Clearly, for any edge $u v \in E(G), \operatorname{gcd}(f(u), f(v))=1$, $\operatorname{gcd}(f(u), f(u v))=1, \operatorname{gcd}(f(v), f(u v))=1$. Hence $G=W_{10 n-6}^{m}, m \geq 1$ and $n \geq 1$ admits an edge vertex prime.

Theorem 3.3 One point union of $W_{10 n-2}^{m}, m \geq$ 1 and $n \geq 1$ is an edge vertex prime graph.

Proof. Let $G=W_{10 n-2}^{m}$ be a graph. Then
$V(G)=\left\{v, v_{i j}: 1 \leq i \leq m, 1 \leq j \leq 10 n-2\right\}$ and
$E(G)=\left\{v v_{i j}: 1 \leq i \leq m, 1 \leq \quad j \leq 10 n-\right.$ $G=W_{10 n-2}^{m} m \geq 1$ and $n \geq 1$ admits an edge vertex prime graph.

Theorem 3.4 One point union of m copies W_{3} is an edge vertex prime graph.

Proof. Let $G=W_{3}^{m}$ be a graph. Then $V(G)=$ $\left\{v, v_{i j}: 1 \leq i \leq m, 1 \leq j \leq 3\right\}$ and $\quad E(G)=$ $\left\{v v_{i j}: 1 \leq i \leq m, 1 \leq j \leq 3\right\} \cup\left\{v_{i j} v_{i j+1}: 1 \leq i \leq\right.$ $m, 1 \leq j \leq 2 u$
\{ vi1vi3:1 $\leq i \leq m$ \}. Also,
$|V(G)|=3 m+1$ and $|E(G)|=6 m$.
Define a bijective function $f: V(G) \cup E(G) \rightarrow$ $\{1,2, \ldots, 9 m+1\}$ by $f(v)=1$.
2Uvijvij+1:1 $i \leq m, \quad 1 \leq$ $j \leq 10 n-3 \cup\{v i 1 v i 10 n-2: 1 \leq i \leq \quad m\}$. Also, $|V(G)|=m(10 n-2)+1$ and $|E(G)|=2 m(10 n-2)$.

Consider $i^{\text {th }}$ copy of the following cases.
Case 1. Even number of copies, that is, $i=2,4,6, \ldots$

$$
f\left(v_{i j}\right)=\left\{\begin{array}{lr}
9(i-1)+3 j-1 ; & j=1,3 \\
9(i-1)+3 j & j=2
\end{array}\right.
$$ $\{1,2, \ldots, 3 m(10 n-2)+1\}$ by $f(v)=1$,

$$
\left.\begin{array}{c}
f\left(v v_{i j}\right)=\left\{\begin{array}{lr}
9(i-1)+3 j ; & j=1,3 \\
9(i-1)+3 j-1 ; & j=2
\end{array}\right. \\
f\left(v_{i j} v_{i j+1}\right)=9(i-1)+3 j+1, \quad j=1,2
\end{array}\right\} \begin{aligned}
& f\left(v_{i 1} v_{i j}\right)=9(i-1)+3 j+1, j=3 .
\end{aligned}
$$

Case 2.Odd number of copies, that is, $i=1,3,5, \ldots$

$$
\begin{aligned}
& f\left(v_{i j}\right)=\left\{\begin{array}{lc}
9(i-1+3 j ;) ; & j=1 \\
9(i-1)+3 j-1 ; & j=2 \\
9(i-1)+3 j-2 ; & j=3
\end{array}\right. \\
& f\left(v v_{i j}\right)=\left\{\begin{array}{lr}
9(i-1)+3 j-1 ; & j=1,3 \\
9(i-1)+3 j & j=2
\end{array}\right. \\
& f\left(v_{i j} v_{i j+1}\right) \\
& = \begin{cases}9(i-1)+3 j+1 ; & j=1,2, \\
9(i-1)+3(j+1) ; & j=2\end{cases}
\end{aligned}
$$

$f\left(v_{i 1} v_{i j}\right)=9(i-1)+3 j+1, j=3$.
It is easily verified, for any edge $u v \in E(G)$, the numbers $f(u), f(v)$ and $f(u v)$ are pairwise relatively prime. Hence $G=W_{3}^{m}$ admits an edge vertex prime graph.

Theorem 3.5 One point union of m copies W_{5} is an edge vertex prime graph.
Proof. Let $G=W_{5}^{m}$ be a graph. Then $V(G)=$ $\left\{v, v_{i j}: 1 \leq i \leq m, 1 \leq j \leq 5\right\}$ and

$$
E(G)=\left\{v v_{i j}: 1 \leq i \leq m, 1 \leq j \leq 5\right\} \cup
$$

$\left\{v_{i j} v_{i j+1}: 1 \leq i \leq m, 1 \leq j \leq 4\right\} \cup$

$$
\left\{v_{i 1} v_{i 5}: 1 \leq i \leq m\right\} . \quad \text { Also, } \quad|V(G)|=
$$

$5 m+1$ and $|E(G)|=10 \mathrm{~m}$.
Define a bijective function $f: V(G) \cup E(G) \rightarrow$ $\{1,2, \ldots, 15 m+1\}$ by $f(v)=1$. Consider $i^{\text {th }}$ copy of the following cases.

Case 1. Even number of copies, that is, $i=2,4,6, \ldots$

$$
f\left(v_{i j}\right)=\left\{\begin{array}{lr}
15(i-1)+3 j-1 ; & j=1,3,5 \\
15(i-1)+3 j & j=2,4
\end{array}\right.
$$

$$
\begin{gathered}
f\left(v v_{i j}\right)= \begin{cases}15(i-1)+3 j ; & j=1,3,5 \\
15(i-1)+3 j-1 ; & j=2,4\end{cases} \\
f\left(v_{i j} v_{i j+1}\right)=15(i-1)+3 j+1, \quad j=1,2,3,4 . \\
f\left(v_{i 1} v_{i j}\right)=15(i-1)+3 j+1, \quad j=5 .
\end{gathered}
$$

Case 2.Odd number of copies, that is, $i=1,3,5, \ldots$

$$
\begin{gathered}
f\left(v_{i j}\right)=\left\{\begin{array}{lr}
15(i-1+3 j ;) & j=1,3 \\
15(i-1)+3 j-1 ; & j=2,4 \\
15(i-1)+3 j-2 ; & j=5
\end{array}\right. \\
f\left(v v_{i j}\right)=\left\{\begin{array}{lr}
15(i-1)+3 j-1 ; & j=1,3,5 \\
15(i-1)+3 j & j=2,4
\end{array}\right. \\
f\left(v_{i j} v_{i j+1}\right) \\
= \begin{cases}15(i-1)+3 j+1 ; & j=1,2,3 \\
15(i-1)+3 j+3 ; & j=4\end{cases} \\
f\left(v_{i 1} v_{i j}\right)=15(i-1)+3 j+1, \quad j=5 .
\end{gathered}
$$

Therefore, for any edge $u v \in E(G)$, $\operatorname{gcd}(f(u), f(v))=1, \quad \operatorname{gcd}(f(u), f(u v))=1$, $\operatorname{gcd}(f(v), f(u v))=1$. Hence $G=W_{5}^{m}$ admits an edge vertex prime graph.

Theorem 3.6 One point union of m copies W_{7} is an edge vertex prime graph.

Proof. Let $G=W_{7}^{m}$ be a graph. Then $V(G)=$ $\left\{v, v_{i j}: 1 \leq i \leq m, 1 \leq j \leq 7\right\}$ and
$E(G)=\left\{v v_{i j}: 1 \leq i \leq m, 1 \leq j \leq 7\right\} \cup$
$\left\{v_{i j} v_{i j+1}: 1 \leq i \leq m, 1 \leq j \leq 6\right\} \cup$

$$
\left\{v_{i 1} v_{i 7}: 1 \leq i \leq m\right\} \text {. Also, }|V(G)|=7 m+
$$ 1and $|E(G)|=14 \mathrm{~m}$.

Define a bijective function $f: V(G) \cup E(G) \rightarrow$ $\{1,2, \ldots, 21 m+1\}$ by $f(v)=1$. Consider $i^{\text {th }}$ copy of the following cases.

Case 1. Even number of copies, that is, $i=2,4,6, \ldots$

$$
f\left(v_{i j}\right)=\left\{\begin{array}{lr}
21(i-1)+3 j-1 ; & j=1,3,5,7 \\
21(i-1)+3 j & j=2,4,6
\end{array}\right.
$$

$$
f\left(v v_{i j}\right)=\left\{\begin{array}{lr}
21(i-1)+3 j ; & j=1,3,5,7 \\
21(i-1)+3 j-1 ; & j=2,4,6
\end{array}\right.
$$

Subcase 1a.m $\not \equiv 4(\bmod 10)$

$$
f\left(v_{i j} v_{i j+1}\right)=21(i-1)+3 j+1, \quad j=1,2,3,4,5,6
$$

$$
f\left(v_{i 1} v_{i j}\right)=21(i-1)+3(j+1)+1, j=7
$$

Subcase $1 \mathrm{~b} . \mathrm{m} \equiv 4(\bmod 10)$

$$
\begin{aligned}
& f\left(v_{i j} v_{i j+1}\right)=21(i-1)+3 j+1, j=1,2,3,4,5 \\
& f\left(v_{i j} v_{i j+1}\right)=21(i-1)+3(j+1)+1, j=6 \\
& f\left(v_{i 1} v_{i j}\right)=21(i-1)+3 j-2, j=7
\end{aligned}
$$

Case 2.Odd number of copies, that is, $i=1,3,5, \ldots$

$$
\left.\begin{array}{l}
f\left(v_{i j}\right)=\left\{\begin{array}{lr}
21(i-1)+3 j ; & j=1,3,5 \\
21(i-1)+3 j-1 ; & j=2,4,6 \\
21(i-1)+3 j-2 ; & j=7
\end{array}\right. \\
f\left(v v_{i j}\right)=\left\{\begin{array}{lr}
21(i-1)+3 j-1 ; & j=1,3,5,7 \\
21(i-1)+3 j & j=2,4,6
\end{array}\right. \\
f\left(v_{i j} v_{i j+1}\right)=21(i-1)+3 j+1, j=1,2,3,4,5
\end{array}\right\} \begin{aligned}
& f\left(v_{i 1} v_{i j}\right)=21(i-1)+3 j+3, j=6 . \\
& f\left(v_{i 1} v_{i 7}\right)=21(i-1)+3 j+1, j=7
\end{aligned}
$$

Clearly, for any edge $u v \in E(G)$, the numbers $f(u), f(v)$ and $f(u v)$ are pairwise relatively prime. Hence $G=W_{7}^{m}$ admits an edge vertex prime graph.

Theorem 3.7 One point union of m copies W_{9} is an edge vertex prime graph.

Proof. Let $G=W_{9}^{m}$ be a graph. Then $V(G)=$ $\left\{v, v_{i j}: 1 \leq i \leq m, 1 \leq j \leq 9\right\}$ and
$E(G)=\left\{v v_{i j}: 1 \leq i \leq m, 1 \leq j \leq 9\right\} \cup$
$\left\{v_{i j} v_{i j+1}: 1 \leq i \leq m, 1 \leq j \leq 8\right\} \cup$
$\left\{v_{i 1} v_{i 9}: 1 \leq i \leq m\right\}$. Also, $|V(G)|=9 m+$ 1and $|E(G)|=18 \mathrm{~m}$.

Define a bijective function $f: V(G) \cup E(G) \rightarrow$ $\{1,2, \ldots, 27 m+1\}$ by $f(v)=1$. Consider $i^{\text {th }}$ copy of the following cases.

Case 1. Even number of copies, that is, $i=2,4,6, \ldots$

$$
\left.\begin{array}{c}
f\left(v_{i j}\right)=\left\{\begin{array}{lr}
27(i-1)+3 j-1 ; & j=1,3,5,7,9 \\
27(i-1)+3 j & j=2,4,6,8
\end{array}\right. \\
f\left(v v_{i j}\right)=\left\{\begin{array}{lr}
27(i-1)+3 j ; & j=1,3,5,7,9 \\
27(i-1)+3 j-1 ; & j=2,4,6,8
\end{array}\right. \\
f\left(v_{i j} v_{i j+1}\right)=27(i-1)+3 j+1, j \\
=1,2,3,4,5,6,7,8
\end{array}\right\} \begin{aligned}
& f\left(v_{i 1} v_{i j}\right)=27(i-1)+3 j+1, j=9 .
\end{aligned}
$$

Case 2.Odd number of copies, that is, $i=1,3,5, \ldots$

$$
\begin{gathered}
f\left(v_{i j}\right)=\left\{\begin{array}{lr}
27(i-1)+3 j ; & j=1,3,5,7 \\
27(i-1)+3 j-1 ; & j=2,4,6,8 \\
27(i-1)+3 j-2 ; & j=9
\end{array}\right. \\
f\left(v v_{i j}\right)= \begin{cases}27(i-1)+3 j-1 ; & j=1,3,5,7 \\
27(i-1)+3 j & j=2,4,6,8\end{cases} \\
f\left(v_{i j} v_{i j+1}\right)=27(i-1)+3 j+1, j \\
=1,2,3,4,5,6,7
\end{gathered}
$$

Subcase $2 \mathrm{a} \cdot \mathrm{m} \not \equiv \mathrm{F}(\bmod 10)$
$f\left(v v_{i j}\right)=27(i-1)+3 j-1, j=9$,

$$
f\left(v_{i j} v_{i j+1}\right)=27(i-1)+3 j+1, \quad j=8
$$

$f\left(v_{i 1} v_{i j}\right)=27(i-1)+3 j-2, j=9$.
Subcase $2 \mathrm{~b} . \mathrm{m} \equiv 7(\bmod 10)$

$$
\begin{gathered}
f\left(v v_{i j+1}\right)=27(i-1)+3 j+1, j=9 \\
f\left(v_{i j} v_{i j+1}\right)=27(i-1)+3(j+1), j=8 \\
f\left(v_{i 1} v_{i j}\right)=27(i-1)+3 j-1, j=9 .
\end{gathered}
$$

Clearly, for any edge $u v \in E(G)$, the numbers $f(u), f(v)$ and $f(u v)$ are pairwise relatively prime. Hence $G=W_{9}^{m}$ admits an edge vertex prime graph.

Theorem 3.8 One point union of m copies of C_{n}^{m}, $n=3,5,7,9,11$ is an edge vertex prime graph.

Proof.Let $G=C_{n}^{m}$, $(n=3,5,7,9,11)$ be a graph. Then $\quad V(G)=\left\{v, v_{i j}: 1 \leq i \leq m, 1 \leq j \leq n-1\right\}$ and $\quad E(G)=\left\{v v_{i 1}, v v_{i(n-1)}: 1 \leq i \leq m\right\} \cup$ $\left\{v_{i j} v_{i j+1}: 1 \leq i \leq m, 1 \leq j \leq n-2\right\}$.
$|V(G)|=m(n-1)+1$ and $|E(G)|=m n$.
Define a bijective function $f: V(G) \cup E(G) \rightarrow$ $\{1,2, \ldots, 2 m n-m+1\}$ by $f(v)=1$. Consider $i^{\text {th }}$ copy of the following cases.

Case 1.Odd number of copies, that is, $i=1,3,5, \ldots$

$$
\begin{gathered}
f\left(v_{i j}\right)=2 n(i-1)+2(j+1)-i, j \\
=1,2,3, \ldots, n-1 . \\
\begin{aligned}
f\left(v_{i j} v_{i j+1}\right)= & 2 n(i-1)+2(j+2)-(i+1), j \\
& =1,2,3, \ldots, n-2 . \\
f\left(v v_{i 1}\right)= & (2 n-1) i-(2 n-3), f\left(v v_{i(n-1)}\right) \\
& =(2 n-1) i+1 .
\end{aligned}
\end{gathered}
$$

Case 2. Even number of copies, that is $i=2,4,6, \ldots$

$$
\begin{aligned}
& f\left(v_{i j}\right)=2 n(i-1)+2(j+1)-(i+1), j \\
&=1,2,3, \ldots, n-1 . \\
& f\left(v_{i j} v_{i j+1}\right)= 2 n(i-1)+2(j+2)-(i+2), j \\
&= 1,2,3, \ldots n-2
\end{aligned}
$$

Consider the following subcases.
Subcase 2a. Consider $n=3,5,9$, if we take $n=7$, then $m \not \equiv 2(\bmod 6)$ and if we take $n=11$, then $m \not \equiv 4(\bmod 10)$.
$f\left(v v_{i 1}\right)=(2 n-1) i+1, f\left(v v_{i(n-1)}\right)=(2 n-1) i$.
Subcase 2 b. If we take $n=7$, then $m \equiv 2(\bmod 6)$ and if we take $n=11$, then $m \equiv 4(\bmod 10)$.
$f\left(v v_{i 1}\right)=(2 n-1) i, f\left(v v_{i(n-1)}\right)=(2 n-1) i+1$.
Clearly, for any edge $u v \in E(G)$, $\operatorname{gcd}(f(u), f(v))=1, \quad \operatorname{gcd}(f(u), f(u v))=1$, $\operatorname{gcd}(f(v), f(u v))=1$. Hence $G=C_{n}^{m}$ admits an edge vertex prime graph.

Theorem 3.9 One point union of m copies of C_{4} is an edge vertex prime graph.

Proof. Let $G=C_{4}^{m}$ be a graph. Then $V(G)=$ $\left\{v, v_{i j}: 1 \leq i \leq m, 1 \leq j \leq 3\right\}$ and

$$
\begin{gathered}
E(G)=\left\{v v_{i 1}, v v_{i 3}: 1 \leq i \leq m\right\} \cup\left\{v_{i j} v_{i j+1}: 1 \leq i\right. \\
\leq m, 1 \leq j \leq 2\}
\end{gathered}
$$

Also, $|V(G)|=3 m+1$ and $|E(G)|=4 m$.
Define a bijective function $f: V(G) \cup E(G) \rightarrow$ $\{1,2, \ldots, 7 m+1\}$ by $f(v)=1$

Consider $i^{\text {th }}$ copy of the following cases.
Case 1. Odd number of copies, that is, $i=1,3,5, \ldots$
$f\left(v_{i j}\right)=8(i-1)+2(j+1)-i, j=1,2,3$
$f\left(v_{i j} v_{i j+1}\right)=8(i-1)+2(j+2)-(i+1), j$ $=1,2$

$$
f\left(v v_{i 1}\right)=7 i-5, f\left(v v_{i 3}\right)=7(i+1)+1 .
$$

Case 2. Even number of copies, that is, $i=2,4,6, \ldots$
$f\left(v_{i j}\right)=8(i-1)+2(j+1)-(i+1), j=1,2,3$
$f\left(v_{i j} v_{i j+1}\right)=8(i-1)+2(j+2)-(i+2), \quad j=$ 1,2

$$
f\left(v v_{i 1}\right)=7(i-1)+1, f\left(v v_{i 3}\right)=7 i .
$$

Therefore, for any edge $u v \in E(G)$, the numbers $f(u), f(v)$ and $f(u v)$ are pairwise relatively prime. Hence $G=C_{4}^{m}$ admits an edge vertex prime graph.

Theorem 3.10 One point union of m copies of C_{6} is an edge vertex prime graph.

Proof. Let $G=C_{6}^{m}$ be a graph. Then $V(G)=$ $\left\{v, v_{i j}: 1 \leq i \leq m, 1 \leq j \leq 5\right\}$ and

$$
\begin{gathered}
E(G)=\left\{v v_{i 1}, v v_{i 5}: 1 \leq i \leq m\right\} \cup\left\{v_{i j} v_{i j+1}: 1 \leq i\right. \\
\leq m, 1 \leq j \leq 4\}
\end{gathered}
$$

Also, $|V(G)|=5 m+1$ and $|E(G)|=6 m$.
Define a bijective function $f: V(G) \cup E(G) \rightarrow$ $\{1,2, \ldots, 11 m+1\}$ by $f(v)=1$. Consider $i^{\text {th }}$ copy of the following cases.

Case 1. Odd number of copies, that is, $i=1,3,5, \ldots$

$$
\begin{gathered}
f\left(v_{i j}\right)=12(i-1)+2(j+1)-i, j=1,2,3,4,5 \\
f\left(v_{i j} v_{i j+1}\right)=12(i-1)+2(j+2)-(i+1), j \\
=1,2,3,4 \\
f\left(v v_{i 1}\right)=11 i-9, f\left(v v_{i 5}\right)=11 i+1 .
\end{gathered}
$$

Case 2. Even number of copies, that is, $i=2,4,6, \ldots$

$$
\begin{gathered}
f\left(v_{i j}\right)=12(i-1)+2(j+1)-(i+1), j \\
=1,2,3,4,5
\end{gathered}
$$

$f\left(v_{i j} v_{i j+1}\right)=12(i-1)+2(j+2)-(i+2), \quad j=$ 1,2,3,4

Subcase 2a.m $\not \equiv 4(\bmod 10)$

$$
f\left(v v_{i 1}\right)=11 i+1, f\left(v v_{i 5}\right)=11 i .
$$

Subcase $2 \mathrm{~b} . \mathrm{m} \equiv 4(\bmod 10)$

$$
f\left(v v_{i 1}\right)=11 i, f\left(v v_{i 5}\right)=11 i+1 .
$$

Therefore, for any edge $u v \in E(G)$, $\operatorname{gcd}(f(u), f(v))=1, \quad \operatorname{gcd}(f(u), f(u v))=1$, $\operatorname{gcd}(f(v), f(u v))=1$. Hence $G=C_{6}^{m}$ admits an edge vertex prime graph.

REFERENCES

[1] Balakrishnan. R and Ranganathan. K, A Text Book of Graph Theory, Second Edition, Springer. New York 2012.
[2] Gallian. J. A, A Dynamic Survey of Graph Labeling, Electronic Journal of Combinatorics, DS6, 2015.
[3] Jagadesh. R, Baskar Babujee. J, Edge Vertex Prime Labeling for some class of Graphs, National Conference on Recent Trends in Mathematics and its Applications, 24-25 February 2017, SRM University, Vadapalani, Chennai, India.
[4] Jagadesh. R, Baskar Babujee. J, On Edge Vertex Prime Labeling, International Journal of Pure and Applied Mathematics, Vol. 114 No.6, 2017, 209-218.
[5] Parmar. Y, Edge Vertex Prime Labeling for Wheel, Fan and Friendship Graph, International

Journal of Mathematics and Statistics Invention,Vol. 5 Issue 8, October 2017, 23-29.
[6] Parmar. Y, Vertex Prime Labeling for K_(2,m) and K_(3,m) Graphs, Mathematical Journal of Interdisciplinary Sciences Vol. 6 No.2, March 2018, 167-180.
[7] Simaringa. M, Muthukumaran. S, Edge Vertex Prime Labeling of Some Graphs, Malaya Journal of Mathematik, Vol.7, No.2, 264-268, 2019.
[8] Simaringa. M, Muthukumaran. S, Subhasri.S, Edge Vertex Prime Labeling of Trees,JETIR,Vol.6, Issue.5, 282-287, May2019.
[9] Simaringa. M, Muthukumaran. S, Edge Vertex Prime Labeling of Graphs, Malaya Journal of Mathematik, Vol.7, No.3, 572-578, 2019.
[10] Tout. A, Dabboucy. A. N, Howalla. K, Prime Labeling of Graphs, National Academy Science, Letters, 11,1982, 365-368.

