

January - February 2020
ISSN: 0193 - 4120 Page No. 4989 - 4997

4989 Published by: The Mattingley Publishing Co., Inc.

Comparative Review of Code Clone Detection Tools

and Techniques

Neha Saini*, Sukhdip Singh
**

*Assistant Professor, Computer Science Department , Government College Chhachhrauli, Yamunanagar, Haryana.

** Associate Professor, Computer Science & Engineering Department , DeenbandhuChhotu Ram University of

Science & Technology, Murthal , Sonipat, Haryana.

Article Info

Volume 82

Page Number: 4989 - 4997

Publication Issue:

January-February 2020

Article History

Article Received: 18 May 2019

Revised: 14 July 2019

Accepted: 22 December 2019

Publication: 25 January 2020

Abstract:

Code reuse is a typical movement in programming improvement and is one

of the primary reasonsbehind code clones and programming advancement.

A codeclone is a part of the source code that is identicalor highly similarto

another part (clone) as with reference to structure and semantics. There have

been various correlation and assessment concentrates to relate those which

gave noteworthy commitments to the clone detectionresearch. These also

exposed how challenging it is to compare different tools for certain reasons.

There is no examination that comprehends which device or system works

better in various sorts of code clones. In this exploration venture, an

exhaustive examination is given on the exhibitions of as of now accessible

clone detectiontools and techniques.

Keywords: Code Fragment,Code Clone, Clone Detection

1. Introduction

Code cloning or the act of copying code sections

and making minor, non–practical adjustments, is a

notable issue for developing programming

frameworks prompting duplicated code fragments

or code clones [1]. Obviously, the typical working

of the framework isn't influenced, yet without

countermeasures by the upkeep group, further

advancement may turn out to be restrictively

costly. Luckily, the issue has been contemplated

seriously and a few methods to both distinguish

and remove duplicated code have been proposed

in the writing [2].

Code cloning is observed to be a progressively

difficult issue in mechanical programming

frameworks. In nearness ofclones, the typical

usefulness of the framework may not be

influenced, yet without countermeasures by the

upkeep group, further advancement may turn

outto be restrictively costly. Code clones may

antagonistically influence the product frameworks'

quality, particularly their viability and

understandability [3]. For instance, if a bug is

found ina codefragment, all of its similar cloned

sections ought to be distinguished to fix the bug

being referred to. In addition, to an

extremecloning builds the framework size and

regularly demonstrates structure issues, for

example, missing legacy or missing procedural

deliberation. In spite of the fact that the expense

of keeping up clones over a framework's lifetime

has not been evaluated at this point, it is at any

rate concurred that the budgetary effect on support

is high [4]. Grubb gauges the expenses of changes

January - February 2020
ISSN: 0193 - 4120 Page No. 4989 - 4997

4990 Published by: The Mattingley Publishing Co., Inc.

did after conveyance at 40% - 70% of the all-out

expenses during a framework's lifetime. Existing

exploration demonstrates that a lot of code of a

product framework is cloned code also, this sum

may shift contingent upon the space and source of

the product framework [5].

2. Software Clones

2.1. Clone Types

Code can be cloned in a few different ways. There

are four primary sorts of likeness between code

parts. Parts can be comparative dependent on the

similitude of their program content, or they can be

comparable dependent on their usefulness

(autonomous of their content). The primary sort of

clone is frequently the consequence of replicating

a code part and sticking into another area. In the

accompanying the kinds of clones are given

dependent on both the printed (Types 1 to 3) and

practical (Type 4) similitudes [6]:

Type-1: Identical code parts aside from varieties

in whitespace design and remarks. Fig 1.1(b)

demonstrates this kind of code clone.

Type-2:Grammatically indistinguishable

sections aside from varieties in identifiers, literals,

types, whitespace, design and remarks. Fig 1.1(c)

demonstrates this sort of Replicated sections with

further adjustments, for example, changed,

included or evacuated code clone.

Type-3:proclamations, notwithstanding varieties

in identifiers, literals, types, whitespace, design

and remarks. Fig 1.1(d) demonstrates this kind of

code clone.

Type-4: Two or more code actualized by various

syntactic variations. Fig 1.1(e) demonstrates this

kind of code clone.

Void abc(int n) {

Float sum = 0.0; //C1

Float proud = 1.0;

For (int i=1; i<=n; i++)

 {sum=sum + i;

 Prod = prod * I;

Foo(sum, prod); } }

(a)

Void abc(int n) {

Float sum = 0.0; //C1

Float proud = 1.0;

For (int i=1; i<=n; i++)

 {sum=sum + i;

 Prod = prod * I;

Foo(sum, prod); } }

(b)

Void abc(int n) {

Float sum = 0.0; //C1

Float proud = 1.0;

For (int j=1; j<=n; j++)

 {s=s + j;

 P = p * j;

Foo(s, p); } }

(c)

Void abc(int n) {

Float sum = 0.0; //C1

Float proud = 1.0;

For (int i=1; i<=n; i++)

 {sum=sum + i;

 Prod = prod * I;

Foo(sum, prod); } }

(d)

Figure 1.1: Clone types

Void abc(int n) {

Float sum = 0.0; //C1

Float proud = 1.0;

int i=0;

While (i<=n)

 {sum=sum + i;

 Prod = prod * I;

Foo(sum, prod);

i++;} }

(e)

January - February 2020
ISSN: 0193 - 4120 Page No. 4989 - 4997

4991 Published by: The Mattingley Publishing Co., Inc.

2.2. Clone Terminology

All clones are recognizing as Clone

Classes and ClonePairs. Clone classes and clone

sets tell about the likeness between different code

clone sections. On the off chance that they have

some comparable successions in the code, clone-

relation exists betweenthe code parts. For instance

character strings, strings without void area,

changed token arrangements and groupings of

token kind so on [4].

A. Code Fragment:

A Code Fragment (CF) is any sequence of

code lines (with or without comments). Clone

isdetected utilizing correlation between the

sections in a source code. It tends to be of any

sorts ofcode, for instance work definition, start

end square, or arrangement of articulations. A CF

is recognized by its record name and start end line

numbers in the first code base.

Let CF1 and CF2 are two code pieces. CF2 is a

clone of CF1 on the off chance that they are

comparable by some given meaning of likeness,

that is, f(CF1) = f(CF2) where f is the closeness

work. A similitude capacity can be characterized

in different ways, for example, precise match

between parts, coordinate pieces in the wake of

evacuating the remarks or normalizing identifiers.

Two parts that are like each other structure a clone

pair (CF1, CF2), and when numerous sections are

comparable, those structure a clone class or clone

group.

B. Clone Pair:

If there is any clone connection exists in the pair

ofcode parts then it is known as a clone pair or

clone pair is a couple of code part having some

likeness between them.

C. Clone Set: A set of all the identical or similar

fragments [6].

D. Clone Class:A lot of all the clone matches in

which the current clone sets having a few clone

Based on functionalities and program content,

two.

E. Code Clone Types: On the basis of

functionalities andprogram text, two code parts

are said to be comparable. The main sorts of clone

are chiefly the aftereffect of reorder exercises. In

the accompanying sort of clones Type I, Type II

and Type III clones depend on the literary

closeness and Type IV clones depend on the

practical closeness [7].

2.3. Clone Detection Techniques

This segment characterizes the methods for code

clonedetection.

i. Textual Approach (Text Based technique):

This approach has no source code change before

the correlation being drawn on the two sides. In

assortment of cases, the first source code is used

as it is introduced during the time spent clone

recognition. For instance, NICAD, SDD, Simian

1, etc [5].

ii. Lexical Approach (Token Based technique)

This method at first believers the source code in

the lexical arrangement, known as tokens by using

compiler style lexical examination. The grouping

later sweeps the not required duplication of token

succession by methods for unique code that is

come about as clones. These kinds of

methodologies are typically stronger for little

varieties in the code [6]. It is characterized as

separating, arranging and renaming which is

distinctive as contrast with literary systems. For

instance CC Finder, Dup, CPMiner, etc [7].

iii. Syntactic Approach

This methodology uses a parser for changing over

a source program in unique language structure

trees or parse trees that can be prepared by

utilizing basic measurements or tree coordinating

for finding the clones. For instance: Deckard,

Clone Dr andCloneDigger, etc [8].

January - February 2020
ISSN: 0193 - 4120 Page No. 4989 - 4997

4992 Published by: The Mattingley Publishing Co., Inc.

iv. Semantic Approach

This approach has been developed by utilizing the

static program because it gives the in-depth data

as compare tothe syntactic similarity. In different

approaches, theprovided approach is given in the

form of PDG (Programdependency graph) or in

the form of statements orexpressions but the edges

shows the data or controldependencies. For

example, GPLAG, Duplix and so on [7].

Figure 3: Process of clone detection

Figure 3is characterizing the general strides

during the time spentfor codeclone detection [6].

Table 1: Clone Code Classification and techniques.

Text based Token Based AST Based PDG Based

Category
Textual Textual Semantic Semantic

Supported Clone
Type 1 Type 1, 2 Type 1, 2, 3 Type 1, 2, 3

Complexity
O(n) O(n) O(n) O(n

3
)

n Meaning
Lines of code Number of token Node of AST Node of PDG

Figure 4: Process of Clone removal

January - February 2020
ISSN: 0193 - 4120 Page No. 4989 - 4997

4993 Published by: The Mattingley Publishing Co., Inc.

Figure 4 is defining the code clone evacuation

process. After the discovery of clone, the

reasonable view is seen just. On the off chance

that it is same as the clone which is being

distinguished, than same strategy will be

suggested. On the off chance that the code is

static, since it is language free than a novel

technique will be connected and if the code is

dynamic than the execution is finished with the

assistance of instruments [8].

2.4. Code Analysis

Source code investigation is the mechanized

testing of source code to investigate a PC program

or application before it is appropriated or sold.

The source code is the most changeless type of a

program, despite the fact that the program may

later be adjusted, improved or updated. Source

code examination can be either static or dynamic

[10].

In static investigation, troubleshooting is finished

by analyzing the code without really executing the

program. This can uncover mistakes at a

beginning time in program improvement,

regularly wiping out the requirement for various

amendments later.

After static examination has been done, unique

investigation is performed with an end goal to

reveal progressively unpretentious imperfections

or vulnerabilities. Dynamic examination

comprises of ongoing project testing.Clone is

detected through static analysis of a source code.

3. Overview of the Implemented Tool

A relative report among code clone recognition

devices and procedures are proposed in this

examination venture. The grids of the correlation

are the clone types. For this examination, the

accompanying apparatuses and systems are

considered [9] namely Johnson, SDD, CCFinder,

CPD, CPMiner,CloneDigger and CloneDr. CP-

Miner and CPD is free device, SDD and clone Dr

are found as overshadowing module and clones is

a visual studio clone recognition highlight. The

other three strategies will be executed as an

instrument. The outline of the executed apparatus

is shown in Figure 5 [11].

January - February 2020
ISSN: 0193 - 4120 Page No. 4989 - 4997

4994 Published by: The Mattingley Publishing Co., Inc.

Figure 5: Overview of the implemented tool.

Client will give a java venture as information a

java undertaking and give a decision which

approach s/he is happy to utilize. At that point the

devices create clone classes utilizing the picked

methodology [5]. Johnson is a content based

methodology of distinguishing clones. It parses

the entire source code as content and matches the

codeparts utilizing sliding window procedure. CC

Finder is a token-based methodology which

initially standardizes the identifiers and parses the

stndardized source as tokens. At that point create

postfix tree utilizing the token successions and

play out a tree coordinating calculation to identify

the clones. Then again CloneDigger is a tree-

based clone identification approach. At first it

produces Abstract Syntax Tree (AST) by parsing

the source code. At that point coordinates the sub-

trees to recognize the clones [7].

3.1. Description of implemented tool

The device contains three methodologies. Those

are Johnson, CCFinderandClone Digger

A short depiction of the methodologies is given in

the accompanying sub-areas.

3.1.1. Johnson

It is the soonest approach of clone identification.

It is a content based clone identification system

where the source is considered as content and

Johnson

Start

Choose an

approach

Parsing as text
Parsing as tokens and generate

syntax tree
Parsing as AST

Syntax tree matching
Sliding window technique for

matching
Sub-tree matching

Clone classes

END

Clone Digger

CC Finder

January - February 2020
ISSN: 0193 - 4120 Page No. 4989 - 4997

4995 Published by: The Mattingley Publishing Co., Inc.

broke down by the manner in which archives are

examined. It doesn't utilize any adjustment in the

source code while coordinating. The sliding

window system utilized in the coordinating period

of this methodology. The methodology can be

condensed as [8].

1) For each record being considered, apply a

content to content change to dispose of characters

not to be considered for coordinating. For this

examination, this is a personality change (yield

equivalents input). Be that as it may, different

kinds of surmised coordinating can be obliged by

disposing of various pieces of the information [4].

2) Create a lot of substrings that spread the source

(i.e., each character of content shows up in at any

rate one substring) [12].

3) Recognize which of the substrings coordinate

(i.e., have a similar grouping of characters).

4) Change this database of crude matches into a

structure that all the more briefly communicates a

similar data [11].

5) Perform task-explicit information decrease.

6) Abridge abnormal state matches.

Steps (2) and (3) are data gathering stages, (4) is a

data protectingchange, (5) an accumulation and

rearrangements stage, and (6) the introduction of

results in a valuable structure. Stage (1) gives

more prominent affectability to specific sorts of

info [9].

3.1.2. CCFinder

CCFinder is token-based code clone recognition

device. CCFinder utilizes an addition tree

calculation with both reality complexities O(mn),

where m is the greatest length of included clones

and n is the absolute length of the source record.

On the off chance that it would be expected that m

does not rely upon n and it is limited by some

fixed length, the existence complexities will

basically be O(n) [7].

The optimizations employed inCCFinder to

handle large source files are as follows:

Alignment of Token Sequence:

Source code has its innate granularity, for

example, character, token, explanation, or square.

Code segments of a code clone should start at

their limit. For instance, a code divide, which

starts at the center of an announcement X and

closures the center of an announcement Y, is less

valuable than a code partition which starts toward

the start of Y. As a basic sifting for this reason, it

permits just explicit tokens toward the start of

clones as driving tokens. Watchwords that start

explanations are driving tokens [4]. In C and C++

source records, those watchwords are '#', '{',

catchphrases for choice proclamations (else, if,

switch, and so on.), cycle articulations (do, for,

and keeping in mind that), bounce or organized

special case taking care of explanations (break,

get, return, and so forth), and assertions (class,

enum, typedef, and so on). Likewise, tokens

following watchwords that end explanations (';',

')'} or marks (':') are additionally driving tokens

[9]. The quantity of hubs in the addition tree was

diminished to 33% by this sifting. This method

may somewhat decrease the affectability of clone

identification, however for all intents and

purposes it is imperative to make the procedure

versatile.

Repeated Code Removal:

Repetition of a short code portion tends to

generate manyclone pairs. For example, consider

the following code [10]:

switch (c) {

case '0' : value = 0; break;

case '1' : value = 1; break;

case '2' : value = 2; break;

case '3' : value = 3; break;

case '4' : value = 4; break;

}

Now, consider that the following code section is

January - February 2020
ISSN: 0193 - 4120 Page No. 4989 - 4997

4996 Published by: The Mattingley Publishing Co., Inc.

also included in the target source files:

case 'a':

flag = 2;

break;

For this situation, five code parts make a clone

class, { a2-a2,a3-a3, ..., a6-a6, b1-b3 }, where

each pair of the code segments makes a clone pair,

and the quantity of maximal clone sets are 6C2 =

15, altogether [11]. To maintain a strategic

distance from this blast of clone combines, a

heuristic methodology is presented. After

structure a postfix tree, if a reiteration of a2 is

distinguished at a3, the succeeding redundancy

segment (a3-a6) isn't deliberately embedded into

the tree, with the goal that a piece of the clone sets

isn't being accounted for. Be that as it may, the

clone pair (a2-a2, b1-b3) is still extricated, which

offers adequate data [9]. The rehashed code

expulsion process likewise anticipates location of

self-clones, e.g., (a2-a5, a3-a6), or redundancy of

"steady" revelations [10].

Concatenation of Tokens:

Just before processing the match in the token

succession, adjoining tokens, with the exception

of punctuator catchphrases, are connected. This

procedure decreases the length of a token

grouping in return for an expansion in variety of

the tokens [11].

Division of Large Archive of Source Files:

In the event that the all-out size of source

documents surpasses the memory space for a

solitary postfix tree, the apparatus consequently

utilizes a 'separate and overcome' approach. The

info source documents are isolated into a few

sections [9]. For every mix of the parts, a sub-

postfix tree is worked to concentrate clone sets.

The all out accumulation of clone sets will at last

be the yield. Give m a chance to be the quantity of

subsets of source documents, and after that the

quantity of sets of the lumps (i.e., the quantity of

built subsuffix trees) is mC2. In this way, the time

multifaceted nature moves toward becoming

O(𝑚2) [10].

4. Conclusion

Code cloning is a procedure of reusing the code

all things considered or with a few changes. Code

clone acknowledgment is a forte of perceiving the

substance equivalence between the ventures or

Web Pages. An undertaking is made to

arrangement a methodology called "SDCode

Clone Detection" for both static and dynamic Web

Pages. A device was built up that actualizes three

methodologies, that are picked for assessment

however usage isn't accessible, to play out an

examination on comparison among code

clonedetection techniques.The tools of code

clonemust be incorporated in standard IDE for

having across the board reception. This paper

predominantly centers on depicting the

recognition systems with the techniques for

code clone technique. The procedure of expulsion

is additionally talked about. The code clone

discovery assumes a crucial job in the exploration

of programming advancement wherein the

properties of comparable code element are

watched for number of variants. It is being

inferred that the clones are the noteworthy

viewpoints for programming development. In the

event that the framework must be developed than

its clones should make consistent variations.

References

[1]. Gundeep Kaur and Er. Sumit Sharma

[2018], The Survey of the Code Clone

Detection Techniques and Process with

Types (I,II, III and IV), International Journal

on Future Revolution in Computer Science

& Communication Engineering ISSN: 2454-

4248Volume: 4 Issue: 2, IJFRCSCE |

February 2018.

[2].Ekta Manhas and Er.Samriti Rana [2017],

Code Clone Detection: A Review

And Comparative Analysis, Web Site:

January - February 2020
ISSN: 0193 - 4120 Page No. 4989 - 4997

4997 Published by: The Mattingley Publishing Co., Inc.

www.ijettcs.org Email: editor@ijettcs.org

Volume 6, Issue 5, September- October

2017.

[3].DHAKA, BANGLADESH [2016],Clone

Type Based Comparison among Code

Clone Detection Tools and Techniques.

[4].Hahid Ahmad Wani and Shilpa Dang

[2015], A Comparative Study ofClone

Detection Tools, International Journal of

Advance Research inComputer Science and

Management Studies, Volume 3, Issue 1,

January 2015.

[5]. Filip Van Rysselberghe and Serge

Demeyer [2015], Evaluating Clone

Detection

Techniques,http://www.informatik.uni-

stuttgart.de/ifi/ps/clones/.

[6]. Kuldeep Kaur and Dr. Raman Maini

[2015], A Comprehensive Review of Code

CloneDetectionTechniques, ISSN 2278 –

2540, Volume IV, Issue XII, December

2015.www.ijltemas.in

[7].Jeffrey Svajlenko and Chanchal K. Roy

[2014], Evaluating Modern Clone Detection

Tools, jeff.svajlenko, chanchal.roy.

[8].H. Murakami, Y. Higo and S. Kusumoto

[2014], “A dataset of clone referenceswith

gaps,” in MSR, 2014, pp. 412–415

[9].D. Rattan, R. Bhatia and M. Singh [2013],

“Software clone detection: Asystematic

review,” Information and Software

Technology, vol. 55, no. 7,pp. 1165 – 1199,

2013

[10].Saeed Shafieian and Ying Zou [2012],

Comparison of Clone Detection Techniques

Technical Report 2012-593.

[11]. Chanchal K. Roy, James R. Cordy and

Rainer Koschke [2009], Comparison and

Evaluation ofCode Clone Detection

Techniquesand Tools: A Qualitative

Approach, February 24, 2009.

[12]. Stefan Bellon and Rainer Koschke

[2007], Comparison and Evaluation

of Clone Detection Tools, IEEE

TRANSACTIONS ON SOFTWARE

ENGINEERING, VOL. 33, NO. 9,

SEPTEMBER 2007.

[13].Elizabeth Burd and John Bailey [2002],

Evaluating Clone Detection Tools for Use

during Preventative Maintenance, The

Research Institute in Software Evolution

University of DurhamSouth RoadDurham0-

7695-1793-5/02 $17.00 © 2002.

